当前位置:文档之家› 中考数学二次函数综合题含答案

中考数学二次函数综合题含答案

中考数学二次函数综合题含答案
中考数学二次函数综合题含答案

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .

(1)求该抛物线的解析式;

(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;

(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;

②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.

【答案】(1)2

y x 2x 3=--+.

(2)3210. (3)①2S m 4m 3=---.

②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】

(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.

(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.

(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】

解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.

又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称,

∴连接AC 交l 于点P ,即点P 为所求的点.

∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.

∵A (-3,0),B (1,0),C (0,3),∴AC=32,BC=10. ∴△PBC 的周长最小是:3210+.

(3)①∵抛物线2

y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),

∴直线AD 的解析式为y=2x+6

∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()2

2

EF m 2m 32m 6m 4m 3=--+-+=---.

()

22DEF AEF 1111

S S S EF GH EF AG EF AH m 4m 32m 4m 3

2222

??=+=??+??=??=?---?=---.

∴S 与m 的函数关系式为2S m 4m 3=---. ②()2

2S m 4m 3m 21=---=-++,

∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).

2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .

(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;

(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,

11

AM AN

+均为定值,并求出该定值.

【答案】(1)a =13

-,A 30),抛物线的对称轴为x 32)点P 的坐标为

04);(3)2

. 【解析】

试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;

(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的

,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;

(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.

试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13

-.

令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =

x =∴点A 0),B (0),∴抛物线的对称轴为x

(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.

∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =3

AO =1,∴点D 的坐标为(0,1).

设点P a ).

依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.

当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).

当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).

综上所述,点P 04).

(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:

m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.

把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1

k

-,0),

∴AN =1

k

-

将3y =+与y =kx +1联立解得:x

,∴点M .

过点M 作MG ⊥x 轴,垂足为G .则AG =

2

33

k +-.

∵∠MAG =60°,∠AGM =90°,∴AM =2AG =233k +-=2323

k k --,

11AM AN +=323231k k k -+-- =33232k k --=3(31)2(31)

k k -- =3

2. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.

3.如图,直线y =-

1

2

x-3与x 轴,y 轴分别交于点A ,C ,经过点A ,C 的抛物线y =ax 2+bx ﹣3与x 轴的另一个交点为点B(2,0),点D 是抛物线上一点,过点D 作DE ⊥x 轴于点E ,连接AD ,DC .设点D 的横坐标为m . (1)求抛物线的解析式;

(2)当点D 在第三象限,设△DAC 的面积为S ,求S 与m 的函数关系式,并求出S 的最大值及此时点D 的坐标;

(3)连接BC ,若∠EAD =∠OBC ,请直接写出此时点D 的坐标.

【答案】(1)y =14x 2+x ﹣3;(2)S △ADC =﹣34

(m+3)2+274;△ADC 的面积最大值为27

4;此时D(﹣3,﹣15

4

);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21). 【解析】 【分析】

(1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F.设点D 的坐

标为:(m ,

14m 2+m ﹣3),则点F 的坐标为:(m ,﹣1

2

m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC .

②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =3

2

x+9,解方程组求出函数图像交点坐标. 【详解】

解:(1)在y =﹣

1

2

x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),

将A(﹣6,0),B(2,0)代入y =ax 2+bx ﹣3得:

36630

4230a b a b --=??

+-=?

, 解得:141

a b ?

=?

??=?,

∴抛物线的解析式为:y =14

x 2

+x ﹣3; (2)设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣1

2

m ﹣3), 设DE 与AC 的交点为点F.

∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣3

2

m , ∴S △ADC =S △ADF +S △DFC

=12DF?AE+1

2?DF?OE =1

2

DF?OA =

12×(﹣14m 2﹣3

2

m)×6 =﹣34m 2﹣9

2

m =﹣

34(m+3)2+274,

∵a =﹣3

4

<0,

∴抛物线开口向下,

∴当m =﹣3时,S △ADC 存在最大值274

, 又∵

当m =﹣3时,14

m 2+m ﹣3=﹣154,

∴存在点D(﹣3,﹣

15

4),使得△ADC 的面积最大,最大值为274

; (3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3), 直线AD′的解析式为y =

3

2

x+9, 由23

9

2

134

y x y x x ?=+????=+-??,解得60x y =-??=?或821x y =??=?,

此时直线AD′与抛物线交于D(8,21),满足条件, 综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)

【点睛】

本题属于二次函数综合题,考查了待定系数法,一次函数的应用,二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会构建一次函数解决实际问题,属于中考压轴题..

4.在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3).

(1)求抛物线的解析式;

(2)如图1,P 为线段BC 上一点,过点P 作y 轴的平行线,交抛物线于点D ,当△CDP 为等腰三角形时,求点P 的坐标;

(3)如图2,抛物线的顶点为E ,EF ⊥x 轴于点F ,N 是线段EF 上一动点,M (m ,0)是x 轴一个动点,若∠MNC =90°,请求出m 的取值范围.

【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣

2,23)

5

5 4

m

-≤≤

【解析】

【分析】

(1)利用待定系数法即可求得此抛物线的解析式;

(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;

(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣3

2

)2﹣

5

4

,然后根

据n的取值得到最小值.

【详解】

解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),

10

3

b c

c

--+=

?

?

=

?

,解得b=2,c=3.

故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,

解得x1=﹣1,x2=3,

即B(3,0),

设直线BC的解析式为y=kx+b′,

3

30

b

k b

'

'

=

?

?

+=

?

解得:k=-1,b’=3

故直线BC的解析式为y=﹣x+3;

∴设P(t,3﹣t),

∴D(t,﹣t2+2t+3),

∴PD=(﹣t2+2t+3)﹣(3﹣t)=﹣t2+3t,∵OB=OC=3,

∴△BOC是等腰直角三角形,

∴∠OCB=45°,

当CD=PC时,则∠CPD=∠CDP,

∵PD ∥y 轴,

∴∠CPD =∠OCB =45°, ∴∠CDP =45°, ∴∠PCD =90°,

∴直线CD 的解析式为y =x +3,

解2

323y x y x x =+??=-++?得03x y =??=?或1

4x y =??=? ∴D (1,4), 此时P (1,2);

当CD =PD 时,则∠DCP =∠CPD =45°, ∴∠CDP =90°, ∴CD ∥x 轴,

∴D 点的纵坐标为3,

代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3, 解得x =0或x =2, 此时P (2,1);

当PC =PD 时,∵PC t , ∴

=﹣t 2+3t ,

解得t =0或t =3,

此时P (3);

综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴E (1,4),

设N (1,n ),则0≤n ≤4, 取CM 的中点Q (2m ,3

2

), ∵∠MNC =90°,

∴NQ =1

2

CM , ∴4NQ 2=CM 2,

∵NQ 2=(1﹣2m )2+(n ﹣3

2

)2, ∴4[(1﹣

2m )2+(n ﹣3

2

)2]=m 2+9, 整理得,m =(n ﹣32)2﹣5

4

, ∵0≤n ≤4,

当n=3

2

时,m最小值=﹣

5

4

,n=4时,m=5,

综上,m的取值范围为:﹣5

4

≤m≤5.

【点睛】

此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.

5.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).

(1)求抛物线y=x2+bx+c的表达式;

(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;

(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.

【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)

【解析】

试题分析:(1)利用待定系数法求抛物线解析式;

(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;

(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于

G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=

2

PG,PF,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣

t2,然后利用二次函数的性质解决问题.

试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:

930

3

b c

c

++=

?

?

=

?

,解

得:

4

3

b

c

=-

?

?

=

?

,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;

(2)如图1,抛物线的对称轴为直线x=﹣

4

2

-

=2,设D(2,y),B(3,0),C(0,

3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);

当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)

2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);

(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交

BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=

2

PG,PF PH,设P

(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF t,PG=﹣t+3﹣(t2﹣

4t+3)=﹣t2+3t,∴PE=t2,∴PE+EF=PE+PE+PF=2PE+PF=﹣

t2=2t=(t﹣2)2,当t=2时,PE+EF的最大值为

点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.

6.如图1,在平面直角坐标系中,直线1

22

y x =+与x 轴交于点A ,与y 轴交于点C ,抛物线2

12

y x bx c =

++经过A 、C 两点,与x 轴的另一交点为点B .

(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点, ①连接BC 、CD 、BD ,设BD 交直线AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2.求:

1

2

S S 的最大值; ②如图2,是否存在点D ,使得∠DCA =2∠BAC ?若存在,直接写出点D 的坐标,若不存在,说明理由.

【答案】(1)213222y x x =--+;(2)①当2a =-时,12S S 的最大值是4

5

;②点D

的坐标是(2,3)- 【解析】 【分析】

(1)根据题意得到A (-4,0),C (0,2)代入y=-

12

x 2

+bx+c ,于是得到结论; (2)①如图,令y=0,解方程得到x 1=-4,x 2=1,求得B (1,0),过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴交于AC 于N ,根据相似三角形的性质即可得到结论;

②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,

求得P(-3

2

,0),得到

PA=PC=PB=

5

2

,过D作x轴的平行线交y轴于R,交AC的延线于G,∠DCF=2∠BAC=∠DGC+∠CDG,解直角三角形即可得到结论.

【详解】

解:(1)根据题意得A(-4,0),C(0,2),

∵抛物线y=-1

2

x2+bx+c经过A.C两点,

1

0164

2

2

b c

c

?

-?-+

?

?

??

3

b=-

2

c=2

?

?

?

??

抛物线解析式为:2

13

2

22

y x x

=--+ ;

(2)①令0

y=,

∴2

13

20

22

x x

--+=

解得:14

x=- ,

2

1

x=

∴B(1,0)

过点D作DM x

⊥轴交AC于M,过点B作BN x

⊥轴交AC于点N,

∴DM∥BN

∴DME BNE

??

∴1

2

S DE DM

S BE BN

==

设:2

13

2

22

D a a a

??

--+

?

??

1

2

2

M a a

??

+

?

??

∵()10 B,

5

1,

2 N

?? ???

∴()

2

2

1

2

1

214

22

555

2

a a

S DM

a

S BN

--

===-++

∴当2

a=-时,1

2

S

S的最大值是

4

5

;

②∵A(-4,0),B(1,0),C(0,2),

∴AC=25,BC=5,AB=5,

∴AC2+BC2=AB2,

∴△ABC是以∠ACB为直角的直角三角形,

取AB的中点P,

∴P(-3

2

,0),

∴PA=PC=PB=5

2

∴∠CPO=2∠BAC,

∴tan∠CPO=tan(2∠BAC)=4

3

过D作x轴的平行线交y轴于R,交AC的延长线于G,如图,

∴∠DCF=2∠BAC=∠DGC+∠CDG,

∴∠CDG=∠BAC,

∴tan∠CDG=tan∠BAC=1

2

即RC:DR=

1

2

令D(a,-

1

2

a2-

3

2

a+2),

∴DR=-a,RC=-1

2a2-

3

2

a,

∴(-1

2a2-

3

2

a):(-a)=1:2,

∴a1=0(舍去),a2=-2,∴x D=-2,

∴-1

2a2-

3

2

a+2=3,

∴点D的坐标是()2,3

-

【点睛】

本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.

7.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.

【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

【解析】

【分析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;

(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;

(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=

1

2

×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】

解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,

10

3

b c c ++=??

=? 解得:b=﹣4,c=3,

∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴BC=32,

点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3 ∴P 1(0,3+32),P 2(0,3﹣32); ②当PB=PC 时,OP=OB=3, ∴P 3(0,-3); ③当BP=BC 时, ∵OC=OB=3 ∴此时P 与O 重合, ∴P 4(0,0);

综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);

(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t , ∴S △MNB=

1

2

×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1,

当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.

8.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封

闭曲线称为“蛋线”.已知点C 的坐标为(0,

),点M 是抛物线C 2:

2y mx 2mx 3m =--(m <0)的顶点.

(1)求A 、B 两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由; (3)当△BDM 为直角三角形时,求m 的值. 【答案】(1)A (

,0)、B (3,0).

(2)存在.S △PBC 最大值为2716

(3)2

m 2

=-或1m =-时,△BDM 为直角三角形. 【解析】 【分析】

(1)在2

y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.

(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.

(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值. 【详解】

解:(1)令y=0,则2mx 2mx 3m 0--=,

∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=. ∴A (

,0)、B (3,0).

(2)存在.理由如下:

∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠), 把C (0,3

2-

)代入可得,12

a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213

y x x 22

=--. 设P (p ,

213

p p 22

--), ∴ S △PBC = S △POC + S △BOP –S △BOC =2

3

327p 4

2

16

--+(). ∵3a 4=-

<0,∴当3p 2=时,S △PBC 最大值为2716

. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -), ∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+. ∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:

当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+, 解得:12m =22

m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+, 解得:1m 1=-,2m 1=(舍去) . 综上所述,2

m 2

=-

或1m =-时,△BDM 为直角三角形.

9.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;

(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.

【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存

在,(32-

,32)或(34-,9

4

),见解析. 【解析】 【分析】

(1)利用待定系数法,然后将A 、B 、C 的坐标代入解析式即可求得二次函数的解析式; (2))过P 点作PQ 垂直x 轴,交AC 于Q ,把△APC 分成两个△APQ 与△CPQ ,把PQ 作为两个三角形的底,通过点A ,C 的横坐标表示出两个三角形的高即可求得三角形的面积.

(3)通过三角形函数计算可得∠DAO=∠ACB ,使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM 为y=-x ,若∠AOM=∠CBA ,则OM 为y=-3x+3,然后由直线解析式可求OM 与AD 的交点M . 【详解】

(1)把A (﹣3,0),B (1,0),C (0,3)代入抛物线解析式y =ax 2+bx+c 得

93003a b c a b c c -+=??

++=??=?

, 解得123a b c =-??

=-??=?

所以抛物线的函数表达式为y =﹣x 2﹣2x+3.

(2)如解(2)图1,过P 点作PQ 平行y 轴,交AC 于Q 点,

∵A (﹣3,0),C (0,3), ∴直线AC 解析式为y =x+3,

设P 点坐标为(x ,﹣x 2﹣2x+3.),则Q 点坐标为(x ,x+3), ∴PQ =﹣x 2﹣2x+3﹣(x+3)=﹣x 2﹣3x . ∴S △PAC =1

PQ A 2

O ?, ∴

()

21

3332

x x --?=, 解得:x 1=﹣1,x 2=﹣2.

当x =﹣1时,P 点坐标为(﹣1,4), 当x =﹣2时,P 点坐标为(﹣2,3),

综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),

(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,

∵D 为抛物线y =﹣x 2﹣2x+3的顶点, ∴D 点坐标为(﹣1,4), 又∵A (﹣3,0),

∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2,

∵B (1,0),C (0,3)

∴tan ∠ABC =3,BC =10,sin ∠ABC

=310

,直线BC 解析式为y =﹣3x+3. ∵AC =4,

∴AE =AC?sin ∠ABC =310410?=6105

,BE =210

5, ∴CE =

310

, ∴tan ∠ACB =

2AE

CE

=, ∴tan ∠ACB =tan ∠PAB =2, ∴∠ACB =∠PAB ,

∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2

Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA , 即OM 为y =﹣x ,

设OM 与AD 的交点M (x ,y )

依题意得:3y x

y x =-??=+?

解得3232x y ?=-????=??

即M 点为(32-

,3

2

). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC , ∵直线BC 解析式为y =﹣3x+3.

∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

圆与二次函数难度题(含答案)

水尾中学中考专项训练(压轴题)答案 1.(四川模拟)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,AC =23,BC =1.以AC 为一边,在AC 的右侧作等边△ACD ,连接BD ,交⊙O 于点E ,连接AE ,求BD 和AE 的长. 解:过D 作DF ⊥BC ,交BC 的延长线于F ∵△ACD 是等边三角形 ∴AD =CD =AC =23,∠ACD =60° ∵∠ACB =90°,∴∠ACF =90° ∴∠DCF =30°,∴DF = 1 2 CD =3,CF =3DF =3 ∴BF =BC +CF =1+3=4 ∴BD = BF 2 +DF 2 = 16+3 =19 ∵AC =23,BC =1,∴AB = AC 2 +BC 2 = 13 ∵BE +DE =BD ,∴AB 2 -AE 2 + AD 2 -AE 2 =BD 即 13-AE 2 + 12-AE 2 =19 ∴13-AE 2 =19- 12-AE 2 两边平方得:13-AE 2=19+12-AE 2-2 19(12-AE 2 ) 整理得:19(12-AE 2 ) =9,解得AE = 7 19 57 2.(四川模拟)已知Rt △ABC 中,∠ACB =90°,∠B =60°,D 为△ABC 外接圆⊙O 上 AC ︵ 的中点. (1)如图1,P 为 ABC ︵ 的中点,求证:PA +PC =3PD ; (2)如图2,P 为 ABC ︵ 上任意一点,(1)中的结论还成立吗?请说明理由. (1)证明:连接AD ∵D 为AC ︵ 的中点,P 为 ABC ︵ 的中点 ∴PD 为⊙O 的直径,∴∠PAD =90° D D P 图1 图2

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

北京国子监中学数学 二次函数中考真题汇编[解析版]

北京国子监中学数学二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

全国中考数学二次函数的综合中考真题汇总及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式; (2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由. 【答案】(1) y=﹣23 4x +94x+3;(2) 有最大值,365 ;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为( 73,256)或(173,﹣253). 【解析】 试题分析: (1)利用待定系数法求二次函数的解析式; (2)设P (m ,﹣ 34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣ 34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365 ,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94 n+3),则D (n ,﹣34n+3),G (0,﹣34 n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析: (1)由OC=3OA ,有C (0,3), 将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:

二次函数与圆结合的压轴题Word版

图6 x y F E H N M P D C B A O 二次函数和圆 【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数k y x = (1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线3 2 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.

【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x 轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上? (4)在抛物线上是否存在三个点,由它构成的三角形与 △AOC相似?直接写出两组这样的点. 【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 【例题5】(南充市)25.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

九年级上册数学 二次函数中考真题汇编[解析版]

九年级上册数学 二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M. (1)分别求出抛物线和直线AB的函数表达式; (2)设△PMN的面积为S1,△AEN的面积为S2,当1 236 25 S S =时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α (0°<α<90°),连接E′A、E′B,求E'A+2 3 E'B的最小值. 【答案】(1)抛物线y=﹣3 4 x2+ 9 4 x+3,直线AB解析式为y=﹣ 3 4 x+3;(2)P(2, 3 2);(3 410 【解析】 【分析】 (1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式; (2)根据题意由△PNM∽△ANE,推出 6 5 PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y轴上取一点M使得OM′=4 3 ,构造相似三角形,可以证明AM′就是 E′A+2 3 E′B的最小值. 【详解】 解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),

则有 3 30 n m m n ? ? ?++ = = ,解得4 3 3 m n ? ? ? ? - ? = = , ∴抛物线2 39 3 44 y x x =-++, 令y=0,得到2 39 3 44 x x -++=0, 解得:x=4或﹣1, ∴A(4,0),B(0,3), 设直线AB解析式为y=kx+b,则 3 40 b k b + ? ? ? = = , 解得 3 3 4 k b ? - ? ? ?? = = , ∴直线AB解析式为y=3 4 -x+3. (2)如图1中,设P(m,2 39 3 44 m m -++),则E(m,0), ∵PM⊥AB,PE⊥OA, ∴∠PMN=∠AEN, ∵∠PNM=∠ANE, ∴△PNM∽△ANE, ∵△PMN的面积为S1,△AEN的面积为S2,1 2 36 25 S S =, ∴6 5 PN AN =, ∵NE∥OB, ∴AN AE AB OA =, ∴AN=5 4 5 4 5 4 5 4 (4﹣m),

2018中考数学专题二次函数

2018中考数专题二次函数 (共40题) 1.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G. (1)求抛物线y=﹣x2+bx+c的表达式; (2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标; (3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标; ②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值. 2.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D. (1)写出C,D两点的坐标(用含a的式子表示); (2)设S△BCD:S△ABD=k,求k的值; (3)当△BCD是直角三角形时,求对应抛物线的解析式. 3.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数解析式; (2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;

(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值. 4.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1 (1)求此抛物线的解析式以及点B的坐标. (2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒. ①当t为何值时,四边形OMPN为矩形. ②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由. 5.如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点. (1)求抛物线的解析式; (2)在第二象限取一点C,作CD垂直X轴于点D,AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值; (3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存

中考数学压轴题专题复习—二次函数的综合含答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式; (2)当点P运动到什么位置时,△PAB的面积有最大值? (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由. 【答案】(1)抛物线解析式为y=﹣1 2 x2+2x+6;(2)当t=3时,△PAB的面积有最大值; (3)点P(4,6). 【解析】 【分析】(1)利用待定系数法进行求解即可得; (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6, 设P(t,﹣1 2 t2+2t+6),则N(t,﹣t+6),由 S△PAB=S△PAN+S△PBN=1 2 PN?AG+ 1 2 PN?BM= 1 2 PN?OB列出关于t的函数表达式,利用二次函数 的性质求解可得; (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案. 【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0), ∴设抛物线解析式为y=a(x﹣6)(x+2), 将点A(0,6)代入,得:﹣12a=6, 解得:a=﹣1 2 , 所以抛物线解析式为y=﹣1 2 (x﹣6)(x+2)=﹣ 1 2 x2+2x+6; (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

二次函数中考真题汇编[解析版]

二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3) (1)求该二次函数所对应的函数解析式; (2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值; (3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标. 【答案】(1)y=x2﹣4x+3;(2)EF的最大值为 2 4 ;(3)M点坐标为可以为(2, 3),(55 2 + ,3),( 55 2 - ,3). 【解析】 【分析】 (1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式. (2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值. (3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解. 【详解】 解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c), ∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0), ∴二次函数解析式:y=a(x﹣1)(x﹣3). 又∵点D(4,3)在二次函数上, ∴(4﹣3)×(4﹣1)a=3, ∴解得:a=1. ∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.

中考数学 二次函数知识点总结

中考数学二次函数知识 点总结 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0 ,可以为零.二次函数的定义域是 a≠,而b c 全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项. 二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 =+的 y ax c 性质:

结论:上加下减。 总结: 3. ()2 =-的性 y a x h 质: 结论:左加右减。 总结: 4.

()2 y a x h k =-+的性质: 总结: 二次函数图象 的平 移 1. 平移步 骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

初中数学二次函数综合题及答案(经典题型)

二次函数试题 论:①抛物线y lx21 是由抛物线y-x2怎样移动得到的22 ②抛物线y2(x 2 1)是由抛物线y 1 x2 2 :怎样移动得到的 ③抛物线y[(x1)21是由抛物线y 1 2 x21怎样移动得到的 22 ④抛物线 y ](x1)21是由抛物线 y 1 2 (x 1)2怎样移动得到22 ⑤抛物线y2(x1)21是由抛物线y 1 2 -x2怎样移动得到的 22 选择题:1、y=(m-2)x m2- m是关于x的二次函数,贝U m=() A -1 B 2 C -1 或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax2+bx+c(a丰0)模型的是() 在一定距离内,汽车行驶的速度与行驶的时间的关系 我国人中自然增长率为1%这样我国总人口数随年份变化的关系 矩形周长一定时,矩形面积和矩形边长之间的关系 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x2,则抛物线的解析式是( A y= —( x-2 ) 2+2 B y= —(x+2 )2+2 C y= (x+2 ) 2+2 D y= —( x-2 1 2 5、抛物线y= x -6x+24 2 的顶点坐标是( A (—6,—6) B(—6, 6) C(6,6) D (6,—6) 6、已知函数y=ax2+bx+c,图象如图所示,则下列结论中正确的有 ①abc〈0 ②a+ c〈 b ③ a+b+c > 7、函数y=ax2-bx+c (a丰 0) 的图象过点( A -1 B 1 C - 的值是 b 1 )个 -1 ,

填空题: 13、无论m为任何实数,总在抛物线y=x2+ 2mx+ m上的点的坐标是------------ 。 16、若抛物线y=ax2+bx+c(0)的对称轴为直线x =2,最小值为—2,则关于方程ax2+bx+c =-2的根为一 17、抛物线y= (k+1)x2+k2-9开口向下,且经过原点,则k= ---------------- 解答题:(二次函数与三角形) 1、已知:二次函数y==x2+bx+c,其图象对称轴为直线x=1,且经过点 4 (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点并求出最大面积. 2、如图,在平面直角坐标系中,抛物线与x轴交于A B两点(A在B的左侧),与y轴 9 交于点C (0,4),顶点为(1,2)? (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点卩,使厶CDP为等腰三角形,请直接写岀满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A B不重合),分另U连接AC BC过点E作EF // AC交线段BC于点F,连接CE记厶CEF的面积为S S是否存在最大值若存在,求出 存在,请说明理由. 4 2 3、如图,一次函数y=—4x—4的图象与x轴、y轴分别交于A、C两点,抛物线y= + bx+ c的图象经过A C两点,且与x轴交于点B (1)求抛物线的函数表达式;己,使厶EBC的面积最大, (第2题图) S的最大值及此时E点的坐标;若不

数学九年级上册 二次函数中考真题汇编[解析版]

数学九年级上册 二次函数中考真题汇编[解析版] 一、初三数学 二次函数易错题压轴题(难) 1.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2 0x +(b+1)x 0+b ﹣2 =x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围; (3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2 121 a +是线段AB 的垂 直平分线,求实数b 的取值范围. 【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣ b <0. 【解析】 【分析】 (1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点; (2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围; (3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121 a +是线段AB 的垂 直平分线,从而可以求得b 的取值范围. 【详解】 解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1, 即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0, ∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

二次函数与圆综合训练(含解析)

二次函数与圆综合提高(压轴题) 1、如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点, 且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图 形L. (1)求△ABC的面积; (2)设AD=x,图形L的面积为y,求y关于x的函数解析式; (3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.解 解:(1)如图3,作AH⊥BC于H, 答: ∴∠AHB=90°. ∵△ABC是等边三角形, ∴AB=BC=AC=3. ∵∠AHB=90°, ∴BH=BC= 在Rt△ABC中,由勾股定理,得 AH=. ∴S△ABC==; (2)如图1,当0<x≤1.5时,y=S△ADE. 作AG⊥DE于G, ∴∠AGD=90°,∠DAG=30°, ∴DG=x,AG=x, ∴y==x2, ∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大,

∴x=1.5时,y 最大=, 如图2,当1.5<x<3时,作MG⊥DE于G, ∵AD=x, ∴BD=DM=3﹣x, ∴DG=(3﹣x),MF=MN=2x﹣3, ∴MG=(3﹣x), ∴y=, =﹣; (3),如图4,∵y=﹣; ∴y=﹣(x2﹣4x)﹣, y=﹣(x﹣2)2+, ∵a=﹣<0,开口向下, ∴x=2时,y最大=, ∵>, ∴y最大时,x=2, ∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME.∴DO=OE=1, ∴DM=DO. ∵∠MDO=60°, ∴△MDO是等边三角形, ∴∠DMO=∠DOM=60°,MO=DO=1. ∴MO=OE,∠MOE=120°,

∴∠OME=30°, ∴∠DME=90°, ∴DE是直径, S⊙O=π×12=π. 2、(2013?压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4), 点B的坐标为(4, 0),点C的坐标为 (﹣4,0),点P在 射线AB上运动,连 结CP与y轴交于点 D,连结BD.过P, D,B三点作⊙Q与 y轴的另一个交点 为E,延长DQ交⊙Q于点F,连结EF,BF. (1)求直线AB的函数解析式; (2)当点P在线段AB(不包括A,B两点)上时. ①求证:∠BDE=∠ADP; ②设DE=x,DF=y.请求出y关于x的函数解析式; (3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由. 解:(1)设直线AB的函数解析式为y=kx+4, 代入(4,0)得:4k+4=0, 解得:k=﹣1, 则直线AB的函数解析式为y=﹣x+4; (2)①由已知得: OB=OC,∠BOD=∠COD=90°, 又∵OD=OD, ∴△BOD≌△COD,

二次函数综合题训练(含答案)

二次函数综合题训练 一、综合题(共24题;共305分) 1.如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 2.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧). (1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围; (2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值. 3.已知抛物线y=2x2-4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 4.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3). (1)求a的值和图象的顶点坐标。 (2)点Q(m,n)在该二次函数图象上. ①当m=2时,求n的值;

②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围. 5.若二次函数图象的顶点在一次函数的图象上,则称 为的伴随函数,如:是的伴随函数. (1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值. 6.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点. (1)求k的值: (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标. 7.如图,在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点. (1)求拋物线的解析式; (2)过点作直线轴,点在直线上且,直接写出点的坐标.8.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上. (1)求点B的坐标(用含的式子表示); (2)求抛物线的对称轴; (3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围. 9.如图,直线与轴、轴分别交于两点,抛物线经过点 ,与轴另一交点为,顶点为. (1)求抛物线的解析式; (2)在轴上找一点,使的值最小,求的最小值;

人教版九年级上册数学 二次函数中考真题汇编[解析版]

人教版九年级上册数学二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难) 1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x ﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上. (1)求此二次函数的表达式; (2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值; (3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由. 【答案】(1)y=1 2 x2﹣ 3 2 x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值 为4;(3)Q的坐标为(5 3 ,﹣ 28 9 )或(﹣ 11 3 , 92 9 ). 【解析】 【分析】 (1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解; (2)由题意过点P作PH//y轴交BC于点H,并设点P(x,1 2 x2﹣ 3 2 x﹣2),进而根据S =S△PHB+S△PHC=1 2 PH?(x B﹣x C),进行计算即可求解; (3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解. 【详解】 解:(1)对于直线y=1 2 x﹣2, 令x=0,则y=﹣2, 令y=0,即1 2 x﹣2=0,解得:x=4, 故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4), 将点C的坐标代入上式并解得:a=1 2 ,

故抛物线的表达式为y= 1 2 x2 ﹣ 3 2 x﹣2①; (2)如图2,过点P作PH//y轴交BC于点H, 设点P(x, 1 2 x2﹣ 3 2 x﹣2),则点H(x, 1 2 x﹣2), S=S△PHB+S△PHC= 1 2 PH?(x B﹣x C)= 1 2 ×4×( 1 2 x﹣2﹣ 1 2 x2+ 3 2 x+2)=﹣x2+4x, ∵﹣1<0,故S有最大值,当x=2时,S的最大值为4; (3)①当点Q在BC下方时,如图2, 延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形, 则点C是RQ的中点, 在△BOC中,tan∠OBC= OC OB = 1 2 =tan∠ROC= RC BC , 则设RC=x=QB,则BC=2x,则RB22 (2) x x 5=BQ, 在△QRB中,S△RQB= 1 2 ×QR?BC= 1 2 BR?QK,即 1 2 2x?2x= 1 2 5, 解得:KQ 5 ∴sin∠RBQ= KQ BQ 5 5x = 4 5 ,则tanRBH= 4 3 ,

相关主题
文本预览
相关文档 最新文档