当前位置:文档之家› 数学分析教案-(华东师大版)第六章-微分中值定理及其应用

数学分析教案-(华东师大版)第六章-微分中值定理及其应用

数学分析教案-(华东师大版)第六章-微分中值定理及其应用
数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用

教学目的:

1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基

础;

2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限;

3.掌握泰勒公式,并能应用它解决一些有关的问题;

4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象;

5.会求函数的最大值、最小值,了解牛顿切线法。

教学重点、难点:

本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。

教学时数:14学时

§ 1 中值定理(4学时)

教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。

教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。

教学重点:中值定理。

教学难点:定理的证明。

教学难点:系统讲解法。

一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌

握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什

么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数

的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第

六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题)

二、讲授新课:

(一)极值概念:

1.极值:图解,定义 ( 区分一般极值和严格极值. )

2.可微极值点的必要条件:

Th ( Fermat ) ( 证 )

函数的稳定点, 稳定点的求法.

(二)微分中值定理:

1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性.

https://www.doczj.com/doc/3d18663919.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 .

用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参

阅[1]P157.

Lagrange中值定理的各种形式. 关于中值点的位置.

推论1 函数在区间I上可导且为I上的常值函数. (证)

推论2 函数和在区间I上可导且

推论3 设函数在点的某右邻域上连续,在内可导.

若存在,则右导数也存在,且有

(证)

但是, 不存在时, 却未必有不存在. 例如对函数

虽然不存在,但却在点可导(可用定义求得).

Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在

内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函

数的连续点,要么是的第二类间断点.这就是说,当函数在区间I

上点点可导时,导函数在区间I上不可能有第二类间断点.

推论4 ( 导函数的介值性 ) 若函数在闭区间上可导, 且

( 证 )

Th ( Darboux ) 设函数在区间上可导且. 若

为介于与之间的任一实数, 则

设对辅助函数, 应用系4的结果. ( 证 )

3.Cauchy中值定理:

Th 3 设函数和在闭区间上连续, 在开区间内可导, 和在内不同时为零, 又则在内至少存在一点使.

证分析引出辅助函数. 验证在上满足Rolle定理的条件,

必有, 因为否则就有.这与条件“和在内不同时为零”矛盾.

Cauchy中值定理的几何意义.

(三)中值定理的简单应用:

1. 证明中值点的存在性

例1 设函数在区间上连续, 在内可导, 则, 使得.

证在Cauchy中值定理中取.

例2设函数在区间上连续,在内可导,且有.试证明: .

2.证明恒等式:原理.

例3证明: 对, 有.

例4设函数和可导且又则

.证明.

例5设对, 有, 其中是正常

数. 则函数是常值函数. (证明 ).

3.证明不等式:

例6证明不等式: 时, .

例7证明不等式: 对,有.

4. 证明方程根的存在性:

证明方程在内有实根.

例8证明方程在内有实根.

§ 2 柯西中值定理和不定式的极限(2学时)

教学目的:

1. 掌握讨论函数单调性方法;

2. 掌握L’Hospital法则,或正确运用后求某些不定式的极限。

教学要求:

1. 熟练掌握L’Hospital法则,并能正确运用后迅速正确地求某些不定式的

极限;

2. 深刻理解函数在一区间上单调以及严格单调的意义和条件;熟练掌握运用导数判断函数单调性与单调区间的方法;能利用函数的单调性证明某些不等式。

教学重点:利用函数的单调性,L’Hospital法则

教学难点:L’Hospital法则的使用技巧;用辅助函数解决问题的方法;。

教学方法:问题教学法,结合练习。

一. 型:

Th 1 (Hospital法则 ) ( 证 ) 应用技巧.

例1

例2 .

例3 . ( 作代换或利用等价无穷小代换直接计算. ) 例4 . ( Hospital法则失效的例 )

二.型:

Th 2 (Hospital法则 ) ( 证略 )

例5.

例6.

註: 关于当时的阶.

例7. ( Hospital法则失效的例 )

三. 其他待定型: .前四个是幂指型的. 例8

例9.

例10 .

例11 .

例12 .

例13 .

例14 设且求

.

§ 3 Taylor公式(2学时)

教学目的:掌握Taylor公式,并能应用它解决一些有关的问题。

教学要求:

1. 深刻理解Taylor定理,掌握Taylor公式,熟悉两种不同余项的Taylor公式及其之间的差异;

2. 掌握并熟记一些常用初等函数和Taylor展开公式,并能加以应用。

3. 会用带Taylor型余项的Taylor公式进行近似计算并估计误差;会用代Peanlo余项的Taylor公式求某些函数的极限。

教学重点:Taylor公式

教学难点:Taylor定理的证明及应用。

教学方法:系统讲授法。

一. 问题和任务:

用多项式逼近函数的可能性;对已知的函数,希望找一个多项式逼近到要求的精度.

二. Taylor( 1685—1731 )多项式:

分析前述任务,引出用来逼近的多项式应具有的形式

定义Taylor多项式及Maclaurin多项式

例1求函数在点的Taylor多项式.

[1]P174.( 留作阅读 )

三. Taylor公式和误差估计:

称为余项.称给出的定量或定性描述的式

为函数的Taylor公式.

1. 误差的定量刻画( 整体性质 ) ——Taylor中值定理:

Th 1 设函数满足条件:

ⅰ> 在闭区间上有直到阶连续导数;

ⅱ> 在开区间内有阶导数.则对

使

.

证 [1]P175—176.

称这种形式的余项为Lagrange型余项. 并称带有这种形式余项的Taylor公式为具Lagrange型余项的Taylor公式. Lagrange型余项还可写

.

时, 称上述Taylor公式为Maclaurin公式, 此时余项常写为

.

2.误差的定性描述( 局部性质 ) ——Peano型余项:

Th 2 若函数在点的某邻域内具有阶导数,且存在,则

, .

证设, . 应用Hospital法则次,并注意到存在, 就有

=

.

称为Taylor公式的Peano型余项, 相应的Maclaurin 公式的Peano型余项为. 并称带有这种形式余项的Taylor公式为具Peano型余项的Taylor公式( 或Maclaurin公式).

四. 函数的Taylor公式( 或Maclaurin公式 )展开:

1. 直接展开:

例2求的Maclaurin公式.

解.

例3求的Maclaurin公式.

解,

.

例4求函数的具Peano型余项的Maclaurin公式 .

解.

.

例5把函数展开成含项的具Peano型余项的Maclaurin 公式 . ( [1]P179 E5, 留为阅读. )

2.间接展开:利用已知的展开式,施行代数运算或变量代换,求新的展开式.

例6把函数展开成含项的具Peano型余项的Maclaurin 公式 .

解,

.

例7把函数展开成含项的具Peano型余项的Maclaurin

公式 .

解,

注意,

.

例8先把函数展开成具Peano型余项的Maclaurin公式 . 利用得到的展开式, 把函数在点展开成具Peano型余项的Taylor公式.

解.

=+

例9把函数展开成具Peano型余项的Maclaurin公式,并与

的相应展开式进行比较.

;

.

而.

五.Taylor公式应用举例:

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

第3章 微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便 于直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞ ∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim () x x f x → 那么就在0x 附近展开。如果极限是

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

拉格朗日中值定理教学设计

教学设计 第六章微分中值定理及其应用 §1 拉格朗日定理和函数的单调性 题目:罗尔定理与拉格朗日定理 一、教学目的: 1.知识目标:分别掌握罗尔定理和拉格朗日定理及对应的几何意义,掌握三个推 论。 2.能力目标:首先让同学们知道微分中值定理包括四大定理(罗尔定理、拉格朗 日定理、柯西定理、泰勒定理),然后通过学习罗尔定理,类比学习理解拉格 朗日定理,培养学生分析、抽象、概括和迁移的学习能力。 3.情感目标:在教学过程中,让学生发现数学知识的融会贯通,培养数形结合的 思想,以及严密的思维方法,从而亲近数学,爱上数学。 二、教学重点与难点: 1.重点:罗尔定理和拉格朗日定理,定理是基石,只有基石牢固,大厦才能建的 高。 2.难点:罗尔定理和拉格朗日定理的应用与推广,以及这两个定理之间的区别 与联系。 三、教学方法:教师启发讲授和学生探究学习的教学方法 四、教学手段:板书与课件相结合 五、教学基本流程:

六、教学 情境设计(1学时): 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为f 的极值点,则必有0)(0='x f 。它的几何意义在于:若函数)('x f 在=x 0x 可导,那么在该点的切线平行于x 轴。 2、引出定理,探究案例 微分中值定理是微分学的重要组成部分,在导数的应用中起着桥梁作用,它包括 四大定理,分别是罗尔定理、拉格朗日定理、柯西定理和泰勒定理,先学习拉格朗日定理的预备定理——罗尔定理。 定理 6.1 (罗尔(Rolle )中值定理) 若函数f 满足如下条件: (i)f 在闭区间[]b a ,上连续; (ii)f 在开区间()b a ,内可导; (iii)()()b f a f =, 则在()b a ,内至少存在一点ξ,使得 ()0='ξf . ()1 罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线(图6—1).

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

微分中值定理教案

微分中值定理 【教学内容】 拉格朗日中值定理 【教学目的】 1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义; 2、能应用拉格朗日中值定理证明不等式。 3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】 1、拉格朗日中值定理,拉格朗日中值定理的应用 2、拉格朗日中值定理证明中辅助函数的引入。 3、利用导数证明不等式的技巧。 【教学过程】 一、背景及回顾 在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。这样一来,类似于求已知曲线上点的切线问题已获完美解决。但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。 另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。 由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若 函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 ③)()(b f a f = 则在()b a ,内至少存在一点c ,使得0)(' =c f 二、新课讲解 1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理, 但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容: 2.1拉格朗日定理 若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 则在开区间()b a ,内至少存在一点c ,使 ()()a b a f b f c f --= )(' 注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。 b 、若加上)()(b f a f =,则()()00 )(' =-=--= a b a b a f b f c f 即:0)('=c f ,拉格朗日定理变为罗尔 定理,换句话说罗尔定理是拉格朗日定理的特例。 c 、形象认识(几何意义),易知()()a b a f b f --为过A 、B

高数中值定理

第三章中值定理与导数 的应用

中值定理与导数的应用的结构 洛必达法则 Rolle 定理 Lagrange 中值定理 常用的泰勒公式 型 0,1,0∞∞型 21∞-∞型 ∞?0型00型∞ ∞Cauchy 中值定理 Taylor 中值定理 x x F =)() ()(b f a f =0 =n g f g f 1= ?2 11 2 21111∞∞∞-∞=∞-∞取对数 令g f y =单调性,极值与最值,凹凸性,拐点,函数图形的描绘;曲率;求根方法. 导数的应用

第三章中值定理与导数的应用 1. 中值定理 2. 常用麦克劳林公式 3. 洛必达法则 4. 函数的单调性、凹凸性、极值与拐点 5. 函数图形性质的讨论 6. 判定极值的充分条件 7. 最值问题 8. 典型例题

1. 中值定理 泰勒中值定理 设f (x )在含0x 的某开区间(a ,b )内具有(n +1)阶 导数, 则当),(b a x ∈时,在 x 与0x 之间存在 ξ ,使 (柯西中值公式) ) () ()()()()('' ξξg f b g a g b f a f =--(拉氏中值公式) )()()(ξf b f a f '=-柯西中值定理 设f (x ), g (x )在闭区间[a ,b ]上连续,在开区间 (a ,b )内可导且g '(x )≠0, 那末),(b a ∈?ξ,使 罗尔中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导且f (a )= f (b ), 那末),(b a ∈?ξ,使f '(ξ )=0 1 0)1(0 00)() ()!1()()(!)()(++=-++-=∑n n n k n n x x n f x x n x f x f ξ拉氏中值定理 设f (x )在闭区间[a ,b ]上连续,在开区间(a ,b )内 可导, 那末),(b a ∈?ξ,使

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

高等数学第三章微分中值定理与导数的应用题库(附带答案)

第三章 微分中值定理与导数的应用 一、选择题 1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( ) 是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A ( 2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( ) 0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''= 3、的凸区间是 x e y x -=( ) ) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞ 4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( ) (A)x x sin )x (f = (B)2)1x ()x (f += (C) 3 2 x )x (f = (D)1x )x (f 2+= 5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值 6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( ) (A) [-1,1] (B) [0,1] (C) [-2,2] (D) ] 5 4, 5 3[- 7、x 2 e x y -=的凹区间是( ) (A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-, 8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) . (A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3 x 3sin3x asinx f(x )π=+ =( ) (A) 1 (B) 2 (C) 3 π (D) 0 10、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( ) ] 5 4 , 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( ) 的极值 必定不是的极值点为必定为曲线的驻点 , 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000 二、填空题 1、__________________e y 82 x 的凸区间是曲线-=. 2、______________ 2 x y x 的极小值点是函数=.

微分中值定理及其应用习题解析2

第六节 定积分的近似计算 1. 分别用梯形法和抛物线法近似计算 ?21x dx (将积分区间十等份) 解 (1)梯形法 ?21x dx ≈412.111.1121(1012+??+++-)6938.0≈ (2)抛物线法 ?21x dx =???++-(42 113012])8.116.114.112.11(2)9.117.115.113.111.11++++++++6932.0≈ 2. 用抛物线法近似计算dx x x ?π0sin 解 当n=2时,dx x x ?π 0sin ≈12π?? ?????+++πππ22)32222(41≈1.8524. 当n=4时,dx x x ?π 0sin ≈ 24π ??? ????????? ??+++??? ??++++πππππππππππ322222287sin 7885sin 5883sin 388sin 841 ≈1.8520. 当n=6时,dx x x ?π 0sin ≈ ??? ? ??+++++???? ??+?+++++πππππππππππππππ54332233321211sin 11122234127sin 712125sin 5122212sin 124136≈1.8517. 3..图10-27所示为河道某一截面图。试由测得数据用抛物线法求截面面积。 解 由图可知n=5,b-a=8. ? b a x f )(dx ≈()()[]864297531100245*68y y y y y y y y y y y ++++++++++ =()()[]85.075.165.185.0255.02.10.230.15.0400154++++++++++ =()2.102.2215 4+=8.64(m 2) (1)按积分平均 ?-b a t d t f a b )(求这一天的平均气温,其中定积分值由三种近视法分别计算;

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。

一、引入新课: 通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌 握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什 么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数 的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第 六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.doczj.com/doc/3d18663919.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参 阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证)

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

高等数学(微分中值定理与导数的应用)练习题目及答案

第1页 《高等数学Ⅰ(一)》第三章测试卷参考答案 一、 B B C B C C B B 二、9. 0 . 10. 2 . 11.. 12. . 13. . 14.. 15.曲率为,曲率半径为. 三、16.计算. 17.. . . 18.设,证明:. 证 令,则 , 因为 ,则,从而在单调减少,又在处连续, 故 ,即. 19.求的单调区间、凹凸区间、极值与拐点. 解 定义域为,且,; 令得驻点,;令得; 0 0 0 单增、凸 极大值 单减、凸 拐点 单减、凹 极小值 单增、凹 函数的单调递增区间为和,单调递减区间为;凹区间为,凸区间为;极大值为,极小值为;拐点为. 20.在一点,使得. 提示:令,在上用拉格朗日中值定理证得. 6π(1,0)0 y =2d t 1/2K =2R =3 0sin lim (arctan )x x x x →-()120lim 1x x x →+3300sin sin lim lim (arctan )x x x x x x x x →→--=()2ln(1) 1200lim 1lim e x x x x x x +→→+=2220011cos 12lim lim 336 x x x x x x →→-===20ln(1)lim e x x x →+=2 0lim 0e e 1x x x →===0>x 2 ln(1)2 x x x -<+2()ln(1)2x f x x x =--+2 1()111x f x x x x -'=--=++0>x ()0f x '<()f x ()+∞,0()f x 0x =()(0)0f x f <=()x x x +<-1ln 2 2 3223122y x x x =--+(,)-∞+∞266126(1)(2)y x x x x '=--=+-1266(21)y x x ''=-=-0y '=11x =-22x =0y ''=312x =x (,1)-∞-11x =-1(1,)2-312x =1(,2)222x =(2,)+∞y '+--+y ''--++y (,1]-∞-[2,)+∞[1,2]-1[,)2+∞1(,]2-∞(1)9y -=(2)18y =-19(,22-(0,1)ξ∈1()()e f f ξξξ-'+=()e ()x F x f x =[0,1]

文科高等数学(4.中值定理)

第四章 中值定理与导数的应用 §4. 1 中值定理 一、罗尔定理 费马引理 设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0. 罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0. 简要证明: (1)如果f (x )是常函数, 则f '(x )≡0, 定理的结论显然成立. (2)如果f (x )不是常函数, 则f (x )在(a , b )内至少有一个最大值点或最小值点, 不妨设有一最大值点ξ∈(a , b ). 于是 0) ()(lim )()(≥--='='- →-ξξξξξ x f x f f f x , 0)()(lim )()(≤--='='+ →+ξ ξξξξ x f x f f f x , 所以f '(x )=0. 罗尔定理的几何意义: 二、拉格朗日中值定理 拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 那么在(a , b )内至少有一点ξ(a <ξ

拉格朗日中值定理教案教案资料

拉格朗日中值定理教 案

拉格朗日中值定理教案 授课人:*** 一、教材分析 微积分学是高等数学的重要的部分,是近代数学的伟大成果之一。它为我 们研究函数和变量提供了重要的方法。微分中值定理(罗尔定理,拉格朗日中值定理,柯西中值定理,泰勒定理等)是微分学的重要组成部分,在导数的应用中起着桥梁作用。 拉格朗日中值定理,建立了函数值和导数之间的定量联系,成为我们讨论 怎样由导数的已知性质推断函数所具有的性质的有效工具。 二、教学重点和难点 教学重点:学习罗尔定理,类比探求和理解拉格朗日中值定理。 教学难点:探求拉格朗日中值定理条件,运用定理研究函数单调性。 三、教学目标 1、通过学习罗尔定理,类比学习理解拉格朗日中值定理,培养学生分析,抽象,概括,迁移的学习能力。 2、通过学习定理,发现数学知识的融会贯通,培养数形结合的思想,以及严密的思维方法。 四、授课过程 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为 f 的极值点,则必有0)0 (='x f 。它的几何意义在于,若函数)('x f 在=x 0x 可导,那么在该点的切线平行于x 轴。

2、新科讲授 首先看一个定理,可以看作是拉格朗日中值定理的引理。 (板书)罗尔定理:如果函数)(x f 满足 (1)在闭区间[]b a ,上连续; (2)在开区间()b a ,内可导; (3))()(b f a f = . 那么在()b a ,内至少存在一点ξ,使得函数在该点的导数等于零,即 0)(='ξf . 罗尔定理的几何意义在于:在每一点都可导的一段连续曲线上,如果曲线的两端高度相同,则至少存在一条水平切线。 如图,)(x f 的图像曲线弧AB ,点C 处的切线平行于x 轴,即0)(1='ξf 。 注 (1)点D 处也是符合定理结论的点 ,故应注意原定理中的至少存在一 点,而不是唯一存在的。 (2)定理的三个条件缺少任何一个,结论都会不一定成立; 接下来看下面三个函数的图像:

相关主题
文本预览
相关文档 最新文档