脉冲编码调制(PCM)原理
- 格式:pdf
- 大小:161.30 KB
- 文档页数:5
PCM原理什么是PCM?PCM是pulse code modulation的缩写。
翻译成中文是脉冲编码调制脉冲编码调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。
抽样所谓抽样就是不断地以固定的时间间隔采集模拟信号当时的瞬时值。
图1―1是一个抽样概念示意图,假设一个模拟信号f(t)通过一个开关,则开关的输出与开关的状态有关,当开关处于闭合状态,开关的输出就是输入,即y(t)=f(t),若开关处在断开位置,输出y(t)就为零。
可见,如果让开关受一个窄脉冲串(序列)的控制,则脉冲出现时开关闭合,则脉冲消失时开关断开,此输出y(t)就是一个幅值变化的脉冲串(序列),每个脉冲的幅值就是该脉冲出现时刻输入信号f(t)的瞬时值,因此,y(t)就是对f(t)抽样后的信号或称样值信号。
图1―1 抽样概念示意图图1―2是脉冲编码调制的过程示意图。
图1―2(a)是一个以Ts为时间间隔的窄脉冲序列p(t),因为要用它进行抽样,所以称为抽样脉冲。
在图1―2(b)中,v(t)是待抽样的模拟电压信号,抽样后的离散信号k(t)的取值分别为k(0)=0.2,k(Ts)=0.4,k(2Ts)=1.8,k(3Ts)=2.8,k(4Ts)=3.6,k(5Ts)=5.1,k(6Ts)=6.0,k(7Ts)=5.7,k(8Ts)=3.9,k(9Ts)=2.0,k(10Ts)=1.2。
可见取值在0~6之间是随机的,也就是说可以有无穷个可能的取值。
在图1―2(c )中,为了把无穷个可能取值变成有限个,对k(t)的取值进行量化(即四舍五入),得到m(t)。
则m(t)的取值变为m(0)=0.0,m(Ts)=0.0,m(2Ts)=2.0,m(3Ts)=3.0,m(4Ts)=4.0,m(5Ts)=5.0,m(6Ts)=6.0,m(7Ts)=6.0,m(8Ts)=4.0,m(9Ts)=2.0,m(10Ts)=1.0,总共只有0、1、2、3、4、5、6等七个可能的取值。
脉冲编码调制原理脉冲编码调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。
抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
抽样速率采用8Kbit/s。
量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码后转换成二进制码。
对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。
为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大。
在实际中使用的是两种对数形式的压缩特性:A律和U律,A律编码主要用于30/32路一次群系统,U律编码主要用于24路一次群系统。
A律PCM用于欧洲和中国,U律PCM用于北美和日本。
pcm聚焦原理PCM(Pulse Code Modulation)是一种用于模拟信号数字化的方法。
它的聚焦原理是通过对模拟信号进行采样、量化和编码,将连续变化的模拟信号转换为离散的数字信号,从而实现信号的传输和处理。
PCM的聚焦原理涉及到信号的采样过程。
采样是指按照一定的时间间隔对模拟信号进行取样,获取离散的样本值。
采样的频率越高,样本值的数量越多,可以更精确地还原原始模拟信号。
常用的采样频率有8kHz、16kHz、44.1kHz等。
PCM的聚焦原理还包括信号的量化过程。
量化是指将采样得到的连续样本值映射到离散的量化级别上,以便用有限的位数来表示。
量化级别的数量决定了数字信号的精度和动态范围。
常见的量化级别有8位、16位、24位等。
PCM的聚焦原理还涉及信号的编码过程。
编码是指将量化得到的离散样本值表示为二进制码字,以便进行传输和处理。
编码方式常用的有直接二进制编码(BPCM)、自然二进制编码(NBPCM)和格雷码编码(GPCM)等。
总结起来,PCM的聚焦原理是通过采样、量化和编码将模拟信号转换为数字信号。
采样将连续的模拟信号转换为离散的样本值,量化将样本值映射到离散的量化级别上,编码将量化值表示为二进制码字。
这样,PCM可以实现模拟信号的准确传输和数字信号的高质量处理。
PCM的聚焦原理在实际应用中具有重要意义。
首先,PCM可以有效地抵抗传输过程中的噪声和失真,提高信号的抗干扰能力。
其次,PCM 具有较高的信号转换精度,可以准确地还原原始模拟信号,保证信号的质量。
此外,PCM的数字信号可以方便地进行存储、传输和处理,为后续的数字信号处理提供了便利。
除了PCM的聚焦原理,还有其他一些相关的技术和应用。
例如,Delta调制技术是一种基于差值的离散化方法,可以用于音频信号的压缩和传输。
脉冲编码调制(PCM)是一种将模拟信号转换为数字信号的编码方法,广泛应用于通信领域。
此外,还有自适应差分脉冲编码调制(ADPCM)、多通道脉冲编码调制(MPCM)等技术,用于提高信号的传输效率和质量。
脉冲编码调制(PCM)系统摘要:脉冲编码调制(PulseCodeModulation),简称PCM。
是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。
PCM的优点就是音质好,缺点就是体积大。
PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。
关键字:脉冲编码调制、取样、量化、编码、解码Abstract:Pulse Code Modulation (PulseCodeModulation), referred to as PCM. Digital signal is a continuous change in analog signal sampling, quantization and coding production. PCM sound quality is good advantages and disadvantages are bulky. PCM can provide users from 2M to 155M line speed of digital data services, can also provide voice, video transmission, remote learning, and other businesses.Keywords:Pulse code modulation, modulation, demodulation目录一、工作原理 (4)1.1 取样 (5)1.2 量化 (5)1.3 编码 (7)1.4 再生 (10)1.5 解码 (10)二、芯片选择 (11)2.1 TP3067管脚定义 (13)三、电路设计 (14)四、心得体会 (16)一、工作原理:脉冲编码调制是把模拟信号数字化传输的基本方法之一,它通过抽样、量化和编码,把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号,然后在信道中进行传输。
简述脉冲编码调制技术摘要:一、脉冲编码调制技术简介二、脉冲编码调制的基本原理1.采样2.量化3.编码三、脉冲编码调制的应用领域四、脉冲编码调制的优缺点五、发展趋势与展望正文:脉冲编码调制技术是一种将模拟信号转换为数字信号的调制技术。
其主要过程包括采样、量化和编码三个步骤。
一、脉冲编码调制的基本原理1.采样:采样是脉冲编码调制的第一个步骤。
在采样过程中,根据一定的采样频率,将连续的模拟信号转换为离散的数字信号。
采样频率越高,数字信号的分辨率越高,但同时也意味着更高的传输带宽需求。
2.量化:量化是将采样后的数字信号映射到离散的数值集合中。
量化的过程通常采用均匀量化或非均匀量化两种方法。
均匀量化是将采样值映射到固定长度的整数,而非均匀量化则根据采样值的大小,映射到不同长度的整数。
量化过程中,量化噪声不可避免地引入到数字信号中。
3.编码:量化后的数字信号需要进行编码,以便于传输和存储。
常用的编码方法有努塞尔编码、韦弗编码等。
编码后的数据可以进一步采用信道编码和交织技术,提高传输过程中的抗干扰能力。
二、脉冲编码调制的应用领域脉冲编码调制技术在我国数字通信、数据传输、音频视频处理等领域具有广泛的应用。
例如,在电话通信中,采用PCM技术将语音信号数字化,提高通信质量;在数字电视、高清视频领域,PCM技术用于音频和视频信号的处理,实现高品质的音视频传输。
三、脉冲编码调制的优缺点优点:1.数字信号具有更好的抗干扰能力,有利于信号传输和存储。
2.易于实现信号的加密和压缩,提高信息安全性。
3.便于实现多路信号的复用,提高通信系统的利用率。
缺点:1.量化噪声引入,可能导致信号质量下降。
2.传输带宽需求较高,对信道条件要求较严格。
四、发展趋势与展望随着信息技术的不断发展,脉冲编码调制技术也在不断演进。
未来的发展趋势包括:1.高精度、高速率的采样和量化技术,以满足更高清晰度、更高质量的视频和音频处理需求。
2.更高效的编码和压缩算法,降低传输带宽需求,提高数据传输效率。
实验十三时分多路复用PCM实验【实验内容】1.脉冲编码调制(PCM)及系统实验2.PCM编码时分多路复用时序分析实验【实验目的】1.加深对PCM编码过程的理解。
2.掌握时分多路复用的工作过程。
3.了解PCM系统的工作过程。
【实验环境】1.分组实验:两人一组或单人2.设备:通信实验箱,数字存储示波器【实验原理】1.PCM基本工作原理脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉冲编码调制包括三个步骤,对模拟信号先抽样,再对样值幅度量化、编码的过程。
抽样:要使模拟信号数字化并实现时分多路复用,首先要在时间上对模拟信号进行离散化处理,这一过程叫抽样。
所谓抽样就是每隔一定的时间间隔T,抽取话音信号的一个瞬时幅度值(抽样值),抽样后所得出的一系列在时间上离散的抽样值称为样值序列。
抽样后的样值序列在时间上是离散的,可进行时分多路复用,也可将各个抽样值经过量化、编码变换成二进制数字信号。
量化:抽样把模拟信号变成了时间上离散的脉冲信号,但脉冲的幅度仍然是模拟的,还必须进行离散化处理,才能最终用数码来表示。
这就要对幅值进行舍零取整的处理,这个过程称为量化。
量化有均匀量化和非均匀量化。
采用均匀间隔量化级进行量化的方法称为均匀量化或线性量化,这种量化方式会造成大信号时信噪比有余而小信号时信噪比不足的缺点。
如果使小信号时量化级间宽度小些,而大信号时量化级间宽度大些,就可以使小信号时和大信号时的信噪比趋于一致。
这种非均匀量化级的安排称为非均匀量化或非线性量化。
目前国际上普遍采用容易实现的A律13折线压扩特性和μ律15折线的压扩特性。
我国规定采用A律13折线压扩特性。
采用13折线压扩特性后小信号时量化信噪比的改善量可达24dB,而这是靠牺牲大信号量化信噪比(亏损12dB)换来的。
A律和μ律的压扩特性如下图所示:编码:抽样、量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。
PCM原理什么是PCM?PCM是pulse code modulation的缩写。
翻译成中文是脉冲编码调制脉冲编码调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。
抽样所谓抽样就是不断地以固定的时间间隔采集模拟信号当时的瞬时值。
图1―1是一个抽样概念示意图,假设一个模拟信号f(t)通过一个开关,则开关的输出与开关的状态有关,当开关处于闭合状态,开关的输出就是输入,即y(t)=f(t),若开关处在断开位置,输出y(t)就为零。
可见,如果让开关受一个窄脉冲串(序列)的控制,则脉冲出现时开关闭合,则脉冲消失时开关断开,此输出y(t)就是一个幅值变化的脉冲串(序列),每个脉冲的幅值就是该脉冲出现时刻输入信号f(t)的瞬时值,因此,y(t)就是对f(t)抽样后的信号或称样值信号。
图1―1 抽样概念示意图图1―2是脉冲编码调制的过程示意图。
图1―2(a)是一个以Ts为时间间隔的窄脉冲序列p(t),因为要用它进行抽样,所以称为抽样脉冲。
在图1―2(b)中,v(t)是待抽样的模拟电压信号,抽样后的离散信号k(t)的取值分别为k(0)=0.2,k(Ts)=0.4,k(2Ts)=1.8,k(3Ts)=2.8,k(4Ts)=3.6,k(5Ts)=5.1,k(6Ts)=6.0,k(7Ts)=5.7,k(8Ts)=3.9,k(9Ts)=2.0,k(10Ts)=1.2。
可见取值在0~6之间是随机的,也就是说可以有无穷个可能的取值。
在图1―2(c )中,为了把无穷个可能取值变成有限个,对k(t)的取值进行量化(即四舍五入),得到m(t)。
则m(t)的取值变为m(0)=0.0,m(Ts)=0.0,m(2Ts)=2.0,m(3Ts)=3.0,m(4Ts)=4.0,m(5Ts)=5.0,m(6Ts)=6.0,m(7Ts)=6.0,m(8Ts)=4.0,m(9Ts)=2.0,m(10Ts)=1.0,总共只有0、1、2、3、4、5、6等七个可能的取值。
PPM和PCM的工作原理:前面提到了PPM和PCM编解码技术,那么,究竟什么是PPM和PCM呢?两者又有什么区别呢?PCM是英文pulse-code modulation的缩写,中文的意思是:脉冲编码调制,又称脉码调制。
PPM是英文pulse position modulation的缩写,中文意思是:脉冲位置调制,又称脉位调制,这里顺便提一句,有些航模爱好者误将PPM编码说成是FM,其实这是两个不同的概念。
前者指的是信号脉冲的编码方式,后者指的是高频电路的调制方式。
比例遥控发射电路的工作原理如图1所示。
操作通过操纵发射机上的手柄,将电位器组值的变化信息送人编码电路。
编码电路将其转换成一组脉冲编码信号(PPM或PCM)。
这组脉冲编码信号经过高频调制电路(AM或FM)调制后,再经高放电路发送出去。
目前,比例遥控设备中最常用的两种脉冲编码方式就是PPM和PCM:最常用的两种高频调制方式是FM调频和AM调幅:最常见的组合为PPM/AM脉位调制编码/调幅、PPM/FM 脉位调制编码/调频、PPM/FM脉冲调制编码/调频三种形式。
通常的PPM接收解码电路都由通用的数字集成电路组成,如CD4013,CD4015等。
对于这类电路来说,只要输入脉冲的上升沿达到一定的高度,都可以使其翻转。
这样,一旦输入脉冲中含有干扰脉冲,就会造成输出混乱。
由于干扰脉冲的数量和位置是随机的,因此在接收机输出端产生的效果就是“抖舵”。
除此之外,因电位器接触不好而造成编码波形的畸变等原因,也会影响接收效果,造成“抖舵”。
对于窄小的干扰脉冲,一般的PPM电路可以采用滤波的方式消除;而对于较宽的干扰脉冲,滤波电路就无能为力了。
这就是为什么普通的PPM比例遥控设备,在强干扰的环境下或超出控制范围时会产生误动作的原因。
尤其是在有同频干扰的情况下,模型往往会完全失控。
PPM的编解码方式一般是使用积分电路来实现的,而PCM编解码则是用模/数(A/D)和数/模(D/A)转技术实现的。
脉冲编码调制PCM原理PCM(Pulse Code Modulation) 脉码调制是实现语音信号数字化的一种方法。
是对模拟信号数字化的取样技术,将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。
PCM 对信号每秒钟取样8000 次;每次取样为8 个位,总共64 kbps。
取样等级的编码有二种标准。
北美洲及日本使用Mu-Law 标准,而其它大多数国家使用A-Law 标准。
一、语音信号的数字化语音信号是连续变化的模拟信号,实现语音信号的数字化必须经过抽样、量化和编码三个过程。
1 抽样(Samping)抽样是把模拟信号以其信号带宽2倍以上的频率提取样值,变为在时间轴上离散的抽样信号的过程。
例如,话音信号带宽被限制在0.3~3.4kHz内,用8kHz 的抽样频率(fs),就可获得能取代原来连续话音信号的抽样信号。
对一个正弦信号进行抽样获得的抽样信号是一个脉冲幅度调制(PAM)信号。
对抽样信号进行检波和平滑滤波,即可还原出原来的模拟信号。
抽样必须遵循奈奎斯特抽样定理,离散信号才可以完全代替连续信号。
低通连续信号抽样定理内容:一个频带限制在赫内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。
语音信号经过抽样变成一种脉冲幅度调制(PAM)信号。
2 量化(quantizing)把幅度连续变化的模拟量变成用有限位二进制数字表示的数字量的过程称为量化。
即:抽样信号虽然是时间轴上离散的信号,但仍然是模拟信号,其样值在一定的取值范围内,可有无限多个值。
显然,对无限个样值一一给出数字码组来对应是不可能的。
为了实现以数字码表示样值,必须采用“四舍五入”的方法把样值分级“取整”,使一定取值范围内的样值由无限多个值变为有限个值。
量化后的抽样信号与量化前的抽样信号相比较,当然有所失真,且不再是模拟信号。
这种量化失真在接收端还原模拟信号时表现为噪声,并称为量化噪声。
量化噪声的大小取决于把样值分级“取整”的方式,分的级数越多,即量化级差或间隔越小,量化噪声也越小。
pcm原理PCM原理什么是PCM?PCM是pulse code modulation的缩写。
翻译成中⽂是脉冲编码调制脉冲编码调制就是把⼀个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。
抽样所谓抽样就是不断地以固定的时间间隔采集模拟信号当时的瞬时值。
图1―1是⼀个抽样概念⽰意图,假设⼀个模拟信号f(t)通过⼀个开关,则开关的输出与开关的状态有关,当开关处于闭合状态,开关的输出就是输⼊,即y(t)=f(t),若开关处在断开位置,输出y(t)就为零。
可见,如果让开关受⼀个窄脉冲串(序列)的控制,则脉冲出现时开关闭合,则脉冲消失时开关断开,此输出y(t)就是⼀个幅值变化的脉冲串(序列),每个脉冲的幅值就是该脉冲出现时刻输⼊信号f(t)的瞬时值,因此,y(t)就是对f(t)抽样后的信号或称样值信号。
图1―1 抽样概念⽰意图图1―2是脉冲编码调制的过程⽰意图。
图1―2(a)是⼀个以Ts为时间间隔的窄脉冲序列p(t),因为要⽤它进⾏抽样,所以称为抽样脉冲。
在图1―2(b)中,v(t)是待抽样的模拟电压信号,抽样后的离散信号k(t)的取值分别为k(0)=0.2,k(Ts)=0.4,k(2Ts)=1.8,k(3Ts)=2.8,k(4Ts)=3.6,k(5Ts)=5.1,k(6Ts)=6.0,k(7Ts)=5.7,k(8Ts)=3.9,k(9Ts)=2.0,k(10Ts)=1.2。
可见取值在0~6之间是随机的,也就是说可以有⽆穷个可能的取值。
在图1―2(c )中,为了把⽆穷个可能取值变成有限个,对k(t)的取值进⾏量化(即四舍五⼊),得到m(t)。
则m(t)的取值变为m(0)=0.0,m(Ts)=0.0,m(2Ts)=2.0,m(3Ts)=3.0,m(4Ts)=4.0,m(5Ts)=5.0,m(6Ts)=6.0,m(7Ts)=6.0,m(8Ts)=4.0,m(9Ts)=2.0,m(10Ts)=1.0,总共只有0、1、2、3、4、5、6等七个可能的取值。
下面主要以语音信号为例,介绍PCM 原理:一、语音信号的数字化大家都知道,语音信号是模拟信号,而数字程控交换机内部交换的却是数字信号,那么如何使模拟的语音信号数字化,可采用脉冲编码调制的方法,即PCM 。
我们知道,模拟信号数字化称为模/数(A/D )变换,而把数字信号还原成模拟信号称为数/模(D/A )变换,综合A/D 和D/A 的一般步骤,图1给出了PCM 通信的简单模型。
图1 PCM 通信的简单模型 (一)抽样语音信号在时间上是连续的,经过抽样后变成时间上离散的信号。
简单的说,抽样就是将模拟信号在时间上离散的过程。
抽样上每隔一定的时间间隔T ,在抽样器上接发送端接收端A/D 变换 D/A 变换入一个抽样脉冲,通过抽样的脉冲去控制抽样器的开关电路,取出话音信号的瞬间电压值,即样值。
如图2所示,抽样后的信号称为抽样信号,显然,它可以看作按幅度调制的脉冲信号,即PAM 信号,其幅度的取值仍是连续的,不能用有限个数字来表示,因此抽样值仍是模拟信号。
图2 语音信号的抽样语音信号抽样后信号所占用的时间被压缩了,这是时分复用技术的必要条件。
关于这一点将在本节课第三个内容讲解,但是,用抽样信号代替原信号必须要满足抽样定理,否则样值不能够完全表征原信号。
f(t)t tt抽样脉冲抽样定理:对于一个具有有限带宽的模拟信号f(t),其最高频率分量为fm ,则当抽样频率fs ≥2fm 时,样值可以完全表征原信号。
我们的语音信号频率在300-3400HZ之间,根据抽样定理,抽样频率fs=2x3400=6800HZ,为了留一定的防卫带,ITU(International Telecommunications Union,国际电信联)盟规定的抽样频率为:fs=8000HZ,抽样周期为T=1/8000=125μs。
(二)量化抽样后的信号,其幅度的取值仍是无限多个,是连续的,在幅度上离散化抽样信号,就是量化。
简单的说,量化就是将抽样信号在幅度上离散化的过程。
pcm脉冲编码调制原理
PCM脉冲编码调制是一种将模拟信号转换为数字信号的过程,其原理包括三个主要步骤:采样、量化和编码。
1. 采样:每隔一定的时间对连续模拟信号进行采样,这样连续的模拟信号就变成了离散的信号。
根据采样定理,采样频率必须满足f≥fmax,以确保能够完整地捕获原始信号的所有信息。
2. 量化:这是一个分级过程,将采样得到的脉冲信号根据幅度进行N等分,然后让每个采样值近似等于一个标称值。
这个过程会丢失一些信息,但可以大大减少数据量。
3. 编码:用一组二进制数组合来表示采样序列量化后的量化幅度。
这样,模拟信号就被转换成了数字信号,可以进行传输和存储。
PCM-在电力通信系统中的应用什么是PCMPCM是脉冲编码调制(Pulse Code Modulation)的简称。
PCM是一种采用模拟信号的数字编码技术,它广泛应用于通信领域和电力系统中。
PCM的原理PCM可以将模拟信号转换成数字信号,从而保证信号的可靠传输。
PCM的原理可以简单概述为:首先将模拟信号进行采样,然后对采样到的信号进行量化。
通过量化将连续的模拟信号转换成离散的数字信号,再通过编码将数字信号表示成一个字节流。
最后,再通过解码将数字信号恢复成模拟信号。
PCM在电力通信系统中的应用在电力通信系统中,PCM技术被广泛应用于数字通信和保护通信中。
具体包括以下方面。
数字通信在数字通信中,PCM技术可以将模拟信号转换成数字信号,提高通信质量和可靠性。
在数字通信中,光模块和数字电路等设备都可以使用PCM技术,使得信号的传输更快捷、可靠。
保护通信保护通信是电力系统中非常重要的通信方式。
通常情况下,保护通信的需求是因为在电力系统中,如果发生故障,则电网必须在最短时间内停电,以保护设备和人员的安全。
在保护通信中,PCM技术可以将保护信号转换成数字信号,以确保信号的可靠传输。
此外,采用PCM技术的数字通信和保护通信还可以对抗电磁干扰和外部噪声等干扰因素,提高电力系统的抗干扰性和可靠性。
整站监测整站监测是电力系统中另一重要应用场景。
通过对电力系统各个站点的电压、电流、温度等参数进行实时监测和分析,可以及时发现并解决故障,保证电力系统的稳定运行。
使用PCM技术可以将整站监测的信号进行数字化处理,实时上传到电力调度中心进行分析和监测。
PCM技术具有实时性强和精度高的优点,在整站监测中的应用广泛。
PCM技术具有数字化处理信号和保证信号可靠传输的优点,因此在电力通信系统中应用广泛。
具体应用方面包括数字通信、保护通信和整站监测等。
需要注意的是,在应用过程中需要做好参数设置和调试工作,确保PCM技术的性能优良和应用效果良好。
1 设计原理1.1 PCM系统基本原理PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。
PCM调制的实现主要包括三个步骤完成:抽样、量化、编码。
分别完成时间上离散、幅度上离散、及量化信号的二进制表示。
为改善小信号量化性能,采用压扩非均匀量化,有两种方式,分别为A律和μ律方式,此处采用了A律方式,由于A律压缩实现复杂,常使用13 折线法编码,采用非均匀量化。
PCM通信系统示意图图1.1 时分复用PCM通信系统框图1.2 抽样、量化、编码下面介绍PCM编码中抽样、量化及编码的原理:(1)抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
(2)量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。
模拟信号的量化分为均匀量化和非均匀量化。
由于均匀量化存在的主要缺点m t 是:无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号()较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中,往往采用非均匀量化。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区∆也小;反之,量化间隔就大。
它与均匀量化相比,有两个突间,其量化间隔v出的优点。
首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。
非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。
脉冲编码调制(PCM)原理
PCM是实现语音信号数字化的一种方法
一语音信号的数字化
语音信号是连续变化的模拟信号,实现语音信号的数字化必须经过抽样、量化和编码三个过程。
1 抽样
把连续信号变为时间轴上离散的信号的过程称为抽样
抽样必须遵循奈奎斯特抽样定理,离散信号才可以完全代替连续信号。
低通连续信号抽样定理内容:一个频带限制在赫
,若的间隔对它进行等间隔抽样,则将
语音信号经过抽样变成一种脉冲幅度调制(PAM)信号。
2 量化
把幅度连续变化的模拟量变成用有限位二进制数字表示的数字量的过程称为量化。
量化误差:量化后的信号和抽样信号的差值。
量化误差在接收端表现为噪声,称为量化噪声。
量化级数越多误差越小,相应的二进制码位数越多,要求传输速率越高,频带越宽。
为使量化噪声尽可能小而所需码位数又不太多,通常采用非均匀量化的方法进行量化。
非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔取得小,幅度大的区间量化间隔取得大。
非均匀量化的实现方法有两种:一种是北美和日本采用的μ律压扩,一种是欧洲和我国采用的A律压扩。
在PCM-30/32通信设备中,采用A律13折线的分段方法,具体是:Y轴均匀分为8段,每段均匀分为16份,每份表示一个量化级,则Y轴一共有16×8=128个量化级。
;X轴采用非均匀划分来实现非均匀量化的目的,划分规律是每次按二分之一来进行分段。
13折线示意图如下:
由于分成128个量化级,故有7位二进制码(27=128),又因为Y 轴有正值和负值之分,需加一位极性码,故共有8位二进制码。
3 编码
在实际的PCM设备中,量化和编码是一起进行的。
通信中采用高速编码方式。
编码器分为逐次反馈型、折叠级联型和混合型三种,在PCM-30/32通信设备中通常采用逐次反馈型的编码器。
二时分复用
所谓时分复用,是将某一信道按时间加以分割,各路信号的抽样值依一定的顺序占用某一时间间隔(也成时隙),即多路信号利用同一信道在不同的时间进行各自独立的传输。
时分复用的特点:
1 复用设备内部各通路的部件基本通用
2 要求收、发两端同时工作,要求有良好的同步系统。
时分复用的目的:一个信道传输多路信号,即若干路信号可以采用时分复用方式以一定的结构形式复接成一路高速率的复合数字信号-群路信号。
数字复接包括bit复接和码组复接。
PCM-30/32路通信设备是采用码组复接的时分复用系统。
PCM-30/32路系统的帧结构如下图所示
图中帧周期T=1/8000秒=125us,将其平均分成32个时隙,每个时隙的时间间隔为125/32=3.91us,每一时隙传送8位编码,每个码的时间间隔为3.91us/8=488ns,每帧共传送32×8=256位码字。
在30/32路PCM系统中,帧结构中第一个时隙TS0用于传送帧同步信号,TS16用于传送话路信令,故只有30个时隙用于传送话音信号,所以只能提供30个话路。
当采用共路信令传送方式时,必须将16帧再构成一个更大的帧,称为复帧。
复帧的重复频率为500Hz,周期为2ms。
目前数字电话都采用PCM方式。
对PCM系统,国际上采用PDH(准同步)复接技术。
此技术有两种制式,一种是北美和日
本采用的24路话音信号复接成一个基群的T制,速率是1554kbit/s;
一种是欧洲和我国采用的30/32路话音信号复接成一个基群的E 制,速率为2048kbit/s。
为了进一步提高信道利用率,国际电联规定四个基群复接成一个二次群,四个二次群复接成一个三次群,四个三次群复接成一个四次群。
PDH系列存在诸如传输速率、帧结构和光纤接口等无世界性规范,逐级复用插入分支不灵活等问题,不能适应现代电信网的发展需要。
国际电联于1988-1993年提出并完善了同步数字系列(SDH)。
其复用结构如下图:
在SDH中,其基础传输信号是同步传输模块(STM)。
STM-1的传输速率为155520kbit/s,STM-N的传输速率为N×155520kbit/s,目前N的取值为1、4、16和64。