3.1.2函数的极值
- 格式:ppt
- 大小:650.50 KB
- 文档页数:28
《3.1.2 函数的单调性》作业设计方案(第一课时)一、作业目标本作业设计旨在帮助学生巩固和深化对“函数的单调性”的理解,通过实际操作和练习,掌握判断函数单调性的方法和技巧,为后续学习打下坚实的基础。
二、作业内容1. 基础知识巩固- 要求学生复习函数单调性的定义,理解增函数和减函数的概念,并能够正确使用数学语言描述函数的单调性。
- 布置相关练习题,如填空题和选择题,考察学生对基本概念的掌握情况。
2. 函数单调性判断- 指导学生通过图像、导数、差分等方法判断函数的单调性。
- 设计一定数量的应用题,让学生在具体情境中应用单调性的概念。
3. 函数单调性与实际生活的联系- 通过实例分析,如气温变化、商品销售量与价格的关系等,让学生理解函数单调性在实际生活中的意义。
- 要求学生分析生活中的一些现象,用数学语言表达其单调性,并给出简要的解释。
4. 综合练习- 设计一组综合题目,涵盖函数单调性的判断、计算和实际应用等内容。
- 要求学生独立完成综合练习,并在课堂上进行讨论和交流。
三、作业要求1. 学生需在规定时间内独立完成作业,并保证答案的准确性和规范性。
2. 对于每个题目,学生需写出详细的解题步骤和思路,以便于教师了解学生的掌握情况。
3. 学生在完成作业过程中,应注重理解题目的意图和解题方法,而不仅仅是追求答案的正确性。
4. 对于涉及图像的题目,学生需使用数学软件绘制准确的函数图像,并标注关键点。
5. 学生在完成作业后,需进行自我检查和修正,确保答案的准确性。
四、作业评价1. 教师将根据学生的答案,对学生的理解和应用能力进行评估。
2. 教师将对解题步骤和思路的规范性、准确性和完整性进行评价。
3. 对于有创意的解题思路和方法,教师将给予额外的加分和表扬。
4. 对于存在的问题和不足,教师将给出具体的指导和建议。
五、作业反馈1. 教师将在课堂上对作业进行讲解和点评,帮助学生纠正错误并加深理解。
2. 学生需根据教师的反馈和建议,对作业进行修正和完善。
多元函数极值与最值在微积分中,我们学习了一元函数的极值与最值问题。
而在现实生活中,很多问题涉及到多个变量的函数,即多元函数。
对于多元函数来说,我们也需要研究其极值与最值问题。
本文将介绍多元函数的极值与最值的求解方法,并通过几个例子进行说明。
1. 极值与最值的定义在进行多元函数的极值与最值问题的求解之前,首先需要了解各种极值与最值的定义。
(这里插入合适的图表和示意图)1.1 局部极值:若对于一个给定的多元函数,存在某个点使得在该点的某个邻域内,函数值在该点之上或之下都小于等于(或大于等于)该点的函数值,那么称该点是该函数的一个局部极值点。
1.2 全局极大值与极小值:若对于一个给定的多元函数,如果函数的取值在定义域上的每个点上都大于等于(或小于等于)其它点,那么称该函数在该定义域上有全局极大值或极小值。
1.3 最大值与最小值:若对于一个给定的多元函数,对于其定义域上的每个点,函数值都小于等于(或大于等于)某个常数,那么称该常数为该函数在定义域上的最小值或最大值。
2. 求解方法接下来,我们将介绍两种常用的方法来求解多元函数的极值与最值问题。
2.1 梯度法梯度法是一种常用的用于求解多元函数极值的方法。
它利用函数在某个点的梯度方向可以指示函数值增大或减小的趋势。
具体步骤如下:(这里插入梯度法求解极值的算法步骤)2.2 拉格朗日乘子法拉格朗日乘子法是另一种常用的求解多元函数极值与最值的方法。
它适用于含有约束条件的优化问题,即在满足一定条件下求取函数的极值或最值。
具体步骤如下:(这里插入拉格朗日乘子法求解极值的算法步骤)3. 实例分析为了更好地理解多元函数的极值与最值问题的求解方法,我们将通过几个实例来进行分析。
3.1 示例一:二元函数我们考虑一个二元函数示例,如下所示:(这里插入具体示例的函数表达式和图形展示)通过梯度法和拉格朗日乘子法,我们可以求解该函数的极值与最值,并得出结果。
3.2 示例二:三元函数我们再考虑一个三元函数示例,如下所示:(这里插入具体示例的函数表达式和图形展示)同样地,我们可以利用梯度法和拉格朗日乘子法来求解该函数的极值与最值。
2014 届本科毕业论文(设计)论文题目:函数极值的理论及其应用所在院系:数学科学学院所学专业:数学与应用数学完成时间:2014-05-20函数极值的理论及其应用摘要函数的极值不仅是反映函数性态的一个重要特征,而且在解决实际问题中也占有极其重要的地位。
很多经济和生活中的问题都可以转化为数学中的函数极值问题进行讨论,从而得到该问题的最优方案。
本文主要探讨函数极值的理论及求解方法,并附以相应的例子阐明函数极值在实际问题中的应用,重点探讨一元函数和多元函数的极值理论及应用等问题。
关键词:函数极值,多元函数,极值应用The Extreme Value Theory of Function and its ApplicationsAbstractThe extreme value is not only a significant characteristic of a function, but also play an important role in solving practical problems. A lot of problems in the economy and life can be transformed into the function extremum problems, thus the optimal solution of these problems can be obtained. This thesis mainly discusses the theory and its corresponding solving methods of the function extreme value, together with the corresponding extreme value theory to practical problems in the application. The main contents focus on the theory and applications of the single variable functions and multivariate functions.Keywords: Function extreme value, Multivariate functions, Application of extreme value theory目录一、引言 (1)二、一元函数极值理论及其判别方法 (2)2.1 一元函数极值的概念 (2)2.2 一元函数极值的判定 (2)2.3 一元函数极值的求解 (3)三、多元函数的极值理论及其判别方法 (3)3.1 二元函数极值的概念 (3)3.2 二元函数极值的判定 (3)3.3 二元函数两类极值的求解 (4)3.4 n元函数极值的概念 (6)3.5 n元函数极值的判定 (6)3.6 n元函数两类极值的求解 (7)四、函数极值理论的应用 (9)4.1 一元函数极值的应用 (9)4.2 二元函数极值的应用 (10)4.3 n元函数极值的应用 (11)4.4 函数极值在经济生活中的应用 (12)五、结论 (13)参考文献........................................... 错误!未定义书签。
XX学院毕业论文浅析函数极值的求法及应用院系:数学与计算机科学学院专业:数学与应用数学年级、班级: 08数本姓名: XXX学号: XXXXXXX指导教师(职称): XXXXX2012 年3 月15 日浅析函数极值的求法及应用摘要函数极值是数学研究的重要内容之一,故对函数极值问题的探讨具有重要意义。
本文讨论了利用拉格朗日乘数法、柯西不等式法和梯度法求函数条件极值,以及利用方向导数判别法、MATLAB法求函数无条件极值,归纳出了函数极值在不等式证明、物理学、生产销售和蜂房最优化问题的若干应用。
关键词函数极值求法应用Analysis of the function extreme value solution and its applicationAbstractThe extreme value of function is one of the important contents of mathematics study,so the function extreme problems of the function extreme value has important significance.This paper discusses the use of the Lagrange multiplier method,the Cauchy inequality method and gradient method for function conditional extremum,and the use of directional derivative method,MATLAB software and function unconditional extremum,summarized some applications about the extreme value of function in the proof of inequality, physics, production and sales and bee house problems.Keywords function;extreme value;solution;application目录摘要 (Ⅰ)关键词 (Ⅰ)第一章引言 (1)第二章函数极值的定义及其存在的条件 (1)2.1多元函数极值的定义 (2)2.2多元函数极值存在的条件 (2)第三章函数极值的若干求法 (3)3.1拉格朗日乘数法求极值 (3)3.2柯西不等式法求极值 (4)3.3梯度法求极值 (5)3.4利用方向导数判别多元函数的极值 (7)3.5 Matlab求函数极值 (9)第四章函数极值理论的应用 (12)4.1函数极值在不等式证明中的应用 (12)4.2函数极值在物理学中的应用 (13)4.3函数极值在生产销售中的利润最大化方案的应用 (14)4.4运用函数极值分析蜂房的最优化问题 (15)第五章结束语 (18)致谢语 (18)引用文献 (18)第一章 引言函数极值一直是数学研究的重要内容之一,在科学与生产实践中存在着许多和极值有关问题。
函数的极值与最值知识点总结函数的极值和最值是数学中重要的概念,它们对于函数的图像和性质有着重要的影响。
本文将对函数的极值和最值进行详细总结。
1. 函数的极值函数的极值是指函数在某一区间内取得的最大值或最小值。
在函数图像上就是曲线的顶点或谷底。
1.1 极大值和极小值函数在区间内取得最大值的点称为极大值点,函数在区间内取得最小值的点称为极小值点。
极大值点和极小值点合称为极值点。
1.2 极值的必要条件函数的极值一定是函数的驻点(即函数的导数为0)或者是函数定义域的端点,这是极值的必要条件。
1.3 极值判定的充分条件若函数在某点的导数由正变负,则该点是函数的极大值点;若函数在某点的导数由负变正,则该点是函数的极小值点。
这是极值判定的充分条件。
2. 函数的最值函数的最值是指函数在定义域内取得的最大值或最小值。
2.1 最大值和最小值函数在定义域内取得的最大值称为最大值,函数在定义域内取得的最小值称为最小值。
2.2 最值的存在性当函数在闭区间上连续时,函数一定存在最大值和最小值。
但是当函数在开区间上连续时,函数不一定存在最大值和最小值。
2.3 最值的求解方法求函数的最值主要通过导数的方法进行。
首先求出函数的导数,然后求出导数的零点,即函数的极值点。
从这些极值点中选取函数值最大的点,即为函数的最大值;选取函数值最小的点,即为函数的最小值。
3. 案例分析接下来通过一个具体的案例来说明函数的极值和最值的求解过程。
3.1 求函数 f(x) = x^3 - 3x^2 的极值和最值。
首先求导得到 f'(x) = 3x^2 - 6x,令 f'(x) = 0,解得 x = 0 或 x = 2。
当 x = 0 时,f''(0) = 0,无法判断极值情况;当 x = 2 时,f''(2) = 6 > 0,说明 x = 2 是极小值点。
计算 f(2) = 2^3 - 3(2)^2 = -4,可知函数的极小值为 -4。
目录摘要 (2)ABSTRACT (2)第一章引言 (4)第二章一元函数的极值 (5)2.1极值的充分条件 (5)2.2几种特殊函数的极值 (8)第三章多元函数的极值 (12)3.1无条件极值 (13)3.2条件极值 (15)第四章函数极值的应用 (19)参考文献 (24)致谢 (25)函数极值的求法及其应用曾浪数学与信息学院数学与应用数学专业 2013级指导教师:罗家贵摘要:函数极值问题是我们在中学数学和高等数学中都能常常遇见的问题,自然学科、工程技术及生产活动、生活实践中很多需要解决的问题,都与求函数极值有关,而导数和微积分的重要应用之一,就是求函数极值。
本文从参考书中的例子和生活中的实际问题入手,分别对一元函数和多元函数的极值的求法及其应用进行总结和分析。
关键词:函数;极值;应用The extreme of function of religion and its applicationZeng LangMathematics and applied mathematics professional,college of mathematics and information,Grade 2013 Instructor:Luo JiaguiAbstract:Extremum problems is that we can often meet in the middle school mathematics and higher mathematics problems need to solve many natural science, engineering technology and production activities and life practice problems are related with extremal function, and the important application of derivative and differential calculus, is extremal function. In this paper, we start from the examples in reference books and the practical problems in life, and sum up and analyze the methods and applications of the extremum of the function of one variable and multiple functions.Key word: function; the extreme; applicationThe extreme of function of religion and its applicationZeng LangMathematics and applied mathematics professional,college of mathematics and information,Grade 2013 Instructor:Luo JiaguiAbstract:Extremum problems is that we can often meet in the middle school mathematics and higher mathematics problems need to solve many natural science, engineering technology and production activities and life practice problems are related with extremal function, and the important application of derivative and differential calculus, is extremal function. In this paper, we start from the examples in reference books and the practical problems in life, and sum up and analyze the methods and applications of the extremum of the function of one variable and multiple functions.Key word: function; the extreme; application第一章引言函数极值问题在我们学习和生活中都会常常遇到。
函数的极值与导数第一章:函数极值概念的引入1.1 教学目标让学生了解极值的概念,理解极大值和极小值的区别。
学会通过图像来观察函数的极值。
掌握利用导数求函数极值的方法。
1.2 教学内容函数极值的定义利用图像观察函数极值利用导数求函数极值1.3 教学步骤1. 引入极值的概念,让学生通过具体的例子来理解极大值和极小值。
2. 通过图像来观察函数的极值,引导学生学会从图像中找出极大值和极小值。
3. 讲解利用导数求函数极值的方法,让学生通过例题来掌握这个方法。
1.4 作业布置f(x) = x^3 3x^2 + 3x 1g(x) = x^2 4x + 4第二章:函数的单调性2.1 教学目标让学生理解函数单调性的概念,学会判断函数的单调性。
掌握利用导数来判断函数的单调性。
2.2 教学内容函数单调性的定义利用导数判断函数单调性2.3 教学步骤1. 引入函数单调性的概念,让学生通过具体的例子来理解函数单调性。
2. 讲解利用导数来判断函数单调性的方法,让学生通过例题来掌握这个方法。
2.4 作业布置h(x) = x^3 3xk(x) = x^2 4x + 3第三章:函数的极值定理3.1 教学目标让学生了解函数的极值定理,学会应用极值定理来解决问题。
3.2 教学内容函数的极值定理3.3 教学步骤1. 讲解函数的极值定理,让学生理解极值定理的意义。
2. 通过例题让学生学会应用极值定理来解决问题。
3.4 作业布置求函数f(x) = x^3 3x^2 + 3x 1 的极大值和极小值。
第四章:函数的拐点4.1 教学目标让学生了解拐点的概念,学会通过导数来找函数的拐点。
4.2 教学内容拐点的定义利用导数找拐点4.3 教学步骤1. 引入拐点的概念,让学生通过具体的例子来理解拐点。
2. 讲解利用导数来找拐点的方法,让学生通过例题来掌握这个方法。
4.4 作业布置m(x) = x^3 3xn(x) = x^2 4x + 4第五章:函数的单调性与极值的应用5.1 教学目标让学生学会运用函数的单调性和极值来解决实际问题。