当前位置:文档之家› 换热器计算思考题及参考答案

换热器计算思考题及参考答案

换热器计算思考题及参考答案
换热器计算思考题及参考答案

换热器思考题

1. 什么叫顺流?什么叫逆流(P3)?

2.热交换器设计计算的主要内容有那些(P6)?

换热器设计计算包括以下四个方面的内容:热负荷计算、结构计算、流动阻力计算、强度计算。

热负荷计算:根据具体条件,如换热器类型、流体出口温度、流体压力降、流体物性、流体相变情况,计算出传热系数及所需换热面积

结构计算:根据换热器传热面积,计算热交换器主要部件的尺寸,如对管壳式换热器,确定其直径、长度、传热管的根数、壳体直径,隔板数及位置等。

流动阻力计算:确定流体压降是否在限定的范围内,如果超出允许的数值,必须更改换热器的某些尺寸或流体流速,目的为选择泵或风机提供依据。

强度计算:确定换热器各部件,尤其是受压部件(如壳体)的压力大小,检查其强度是否在允许的范围内。对高温高压换热器更应重视。尽量采用标准件和标准材料。

3. 传热基本公式中各量的物理意义是什么(P7)?

4. 流体在热交换器内流动,以平行流为例分析其温度变化特征(P9)?

5. 热交换器中流体在有横向混合、无横向混合、一次错流时的简化表示(P20)?

一次交叉流,两种流体各自不混合

一次交叉流,一种流体混合、另一种流体不混合

一次交叉流,两种流体均不混合

6. 在换热器热计算中, 平均温差法和传热单元法各有什么特点(P25、26)?

什么是温度交叉,它有什么危害,如何避免(P38、76)?

7.管壳式换热器的主要部件分类与代号(P42)?

8.管壳式换热器中的折流板的作用是什么,折流板的间距过大或过小有什么不利之处(P49~50)?

换热器安装折流挡板是为了提高壳程对流传热系数,为了获得良好的效果,折流挡板的尺寸和间距必须适当。对常用的圆缺形挡板,弓形切口过大或过小,都会产生流动“死区”,均不利于传热。一般弓形缺口高度与壳体内径之比为0.15~0.45,常采用0.20和0.25两种。

挡板的间距过大,就不能保证流体垂直流过管束,使流速减小,管外对流传热系数下降;间距过小不便于检修,流动阻力也大。一般取挡板间距为壳体内径的0.2~1.0倍,我国系列标准中采用的挡板间距为:固定管板式有150,300和600mm三种;浮头式有150,200,

300,480和600mm五种。

a.切除过少

b.切除适当

c.切除过多

9管壳式换热器中管程与壳程中流体的速度有什么差异(P292)?

管壳式换热器中管程流体的速度大于壳程中流体的速度。

10.板式换热器与管壳式换热器的比较,板式换热器有什么优点(P125~127)?

? 1)传热系数高:由于平板式换热器中板面有波纹或沟槽,可在低雷诺数(Re=200

左右)下即达到湍流。而且板片厚度又小,故传热系数大。例如水对水的传热系数可达1500~4700W/(m2.℃)。

?2)结构紧凑:一般板间距为4~6mm,单位体积设备可提供的传热面为250~1000m2/m3(列管式换热器只有40~150 m2/m3)。平板式换热器的金属消耗量可减少一半以上。

?3)具有可拆结构:可根据需要,用调节板片数目的方法增减传热面积。操作灵活性大,检修、清洗也都比较方便。

?平板式换热器的主要缺点是允许的操作压强和温度都比较低。通常操作压强低于

1.5Mpa,最高不超过

2.0Mpa,压强过高容易泄露。操作温度受垫片材料的耐热性限

制,一般不超过250℃。另外由于两板的间距仅几毫米,流通面积较小,流速又不大,处理量较小。

11.板翅式换热器的一次传热面、二次传热面、翅片效率、翅片壁面总效率(P146、147~150)

?板翅式换热器的结构形式很多,但是基本结构元件相同,即在两块平行的薄金属板之间,加入波纹状或其它形状的金属翅片,将两侧面封死,即成为一个换热基本元件。将各基本元件进行不同的叠积和适当的排列,并用钎焊固定,即可。

?板翅式换热器的优点是:结构高度紧密、轻巧、单位体积设备所提供的传热面一般能达到2500 m2/m3,最高可达4300 m2/m3。通常用铝合金制造,故重量轻,在相同的传热面下,其重量约为列管式的十分之一。由于翅片促进了流体的湍动并破坏了热边界层的发展,故其传热系数较高;另外铝合金不仅导热系数高,而且在零度以下操作时,其延性和抗拉强度都很高,适用于低温和超低温的场合,故操作范围广,可在200℃至绝对零度范围内使用。同时因翅片对隔板有支撑作用,板翅式换热器允许操作压强也比较高,可达5MPa。

?这种换热器的缺点是设备流道很小,易堵塞,且清洗和检修困难,故所处理的物料应较洁净或预先净制;另外由于隔板的翅片均由薄铝板制称成,故要求介质对铝不腐蚀。

?翅片作用:1、传热,有二次传热面之称;

? 2、强化单元结构。

?翅片形式主要有:平直翅片、波纹翅片、锯齿翅片、多孔翅片、条片翅片、钉状翅片。

?

12.比较干式壳管式蒸发器和满液式壳管式蒸发器,各自的优点是什么?

干式壳管式蒸发器:换热管(管程)内走制冷剂,管外(壳程)为走水,换热形式为液体和气液混合物换热。体积大,这限制了机组制冷制热能力不能太大。干式蒸发器主要用于中小型机组(≤1500KW)。不能拆开清洗,只能用化学腐蚀方法清洗。

满液式壳管式蒸发器:换热管(管程)内走水,管外(壳程)为液态制冷剂,换热形式以液体和液体换热为主。体积小。因此单个换热器可以交换的热量更多。在大型螺杆式和离心式机组中均采用满液式(单机容量可达4000KW)。清洗只需将两端水箱和椭圆封头固定螺栓松开,即可方便进行清洗。

满液式蒸发器具有更高的传热效率,大大缩小了传热温差,使机组的效率提高了15%左右,大幅度降低了运行费用。

13.翅片管换热器中的翅片对传热与流体的影响有那些(P160~163)?

?翅片管换热器是在管的表面加装翅片制成,翅片与管表面的连接应紧密无间,否则连接处的接触热阻很大,影响传热效果。常用的连接方法有热套、镶钳、张力缠绕和焊接等方法。此外,翅片管也可采用整体轧制、整体铸造或机械加工等方法制造。

?当两种流体的对流传热系数相差较大时,在传热系数较小的一侧加翅片可以强化传热。例如用水蒸气加热空气,该过程的主要热阻是空气侧对流传热热阻。在空气侧加装翅片,可以起到强化换热器传热的效果。

?

14.热管换热器的工作原理有什么优点(P178~179)?

?热管是60年代中期发展起来堵塞一种新型传热元件。它是由一根抽除不凝性气体

的密封金属管内充以一定量的某种工作液体而成。工作液体在热端吸收热量而沸腾汽化,产生的蒸汽流至冷端冷凝放出潜热,冷凝液回至热端,再次沸腾汽化。如此反复循环,热量不断从热端传至冷端。冷凝液的回流可以通过不同的方法(如毛细管作用、重力、离心力)来实现,目前应用最广的方法是奖具有毛细结构的吸液芯装在管的内壁,利用毛细管的作用是冷凝液由冷端回流至热端。采用不同的工作液体(氨、水、汞等)。热管可以在很宽的温度范围内使用。

?热管的传热特点是热管中的热量传递通过沸腾汽化、蒸汽流动和蒸汽冷凝三步进行,由于沸腾和冷凝的对流传热强度都很大,两端管表面比管截面大很多,而蒸汽流动阻力损失又较小,因此热管两端温差可以很小,即能在很小的温差下传递很大的热流量。与热管截面相同的金属壁面的导热能力比较,热管的导热能力可达最良好的金属导热体的103~104倍。因此它特别适用于低温差传热以及某些等温性要求较高的场合。

?热管热交换器优点如下:

?1、传热效率高,特别对气-气换热时,由于冷热两侧流体都可以在管外流动,两侧可加翅片,强化传热。

?2、压力损失小

?3、结构紧凑

?4维护费用少

?

15.热管换热器中的工质回流方式有那些(P180~181)?

热管工质的工作循环的四个工作过程:1、液体的蒸发;2、蒸汽的流动;3、蒸汽的凝结;4、凝结液的回流。

按液体回流物理力,热管可分为如下三种类型

? 1、吸液芯热管:主要由毛细抽吸力(表面张力)回流工作液。主要用于宇航中。

?2、两相闭式热虹吸管或重力吸管:依靠重力回流工作液。

?3、旋转吸管:依靠离心力回流工作液。

蒸发式冷凝器

?蒸发式冷凝器的换热主要是靠冷却水在空气中蒸发吸收气化潜热而进行的。按空气流动方式可分为吸入式和压送式。

?蒸发式冷凝器工作时,制冷剂蒸汽从上部进入蛇形管组,在管内凝结放热并从下部出液管流入贮液器。而冷却水由循环水泵送到喷水器,从蛇形盘管组的正上方向盘管组的表面喷淋,通过管壁吸收管内冷凝热量而蒸发。设在箱体侧面或顶部的风机强迫空气自下而上掠过盘管,促进水的蒸发并带走蒸发的水分。

16.冷水塔的工作原理(P214~216)?

17 .举例说明如何强化换热器的换热效率。

18. 举例说明制冷空调产品上强化传热采取的措施?

19.强化传热系数的原则是什么?

20.什么是有源强化换热(主动式强化换热)和无源强化换热(被动式强化换热)?

21.怎样使用试验数据, 用威尔逊图解法求解传热过程分热阻?

换热器计算思考题及参考答案

1、对于q m1c1≥q m2c2,q m1c1

体温度沿流动方向的变化曲线,注意曲线的凹向和q m c 的相对大小。

解:逆流时:

顺流时:

2、对壳管式换热器来说,两种流体在下列情况下,何种走管内,何种走管外?

(1)清洁与不清洁的;(2)腐蚀性大与小的;(3)温度高与低的;(4)压力大与小的;(5)流量大与小的;(6)粘度大与小的。

答:(1)不清洁流体应在管内,因为壳侧清洗比较困难,而管内可定期折开端盖清洗;

(2)腐蚀性大的流体走管内,因为更换管束的代价比更换壳体要低,且如将腐蚀性强的流体置于壳侧,被腐蚀的不仅是壳体,还有管子;(3)温度低的流体置于壳侧,这样可以减小换热器散热损失;(4)压力大的流体置于管内,因为管侧耐压高,且低压流体置于壳侧时有利于减小阻力损;(5)流量大的流体放在管外,横向冲刷管束可使表面传热系数增加;(6)粘度大的流体放在管外,可使管外侧表面传热系数增加。

3、为强化一台冷油器的传热,有人用提高冷却水流速的办法,但发现效果并不显著c 试分析原因。

答:冷油器中由于油的粘度较大,对流换热表面传热系数较小,占整个传热过程中热阻的主要部分,而冷却水的对流换热热阻较小,不占主导地位,因而用提高水速的方法,只能减小不占主导地位的水侧热阻,故效果不显著。

4、有一台钢管换热器,热水在管内流动,空气在管束间作多次折流横向冲刷管束以冷却管内热水。有人提出,为提高冷却效果,采用管外加装肋片并将钢管换成铜管。请你评价这一方案的合理性。

答:该换热器管内为水的对流换热,管外为空气的对流换热,主要热阻在管外空气侧,因而在管外加装肋片可强化传热。注意到钢的导热系数虽然小于铜的,但该换热器中管壁导热热阻不是传热过程的主要热阻,因而无需将钢管换成铜管。

4、为了简化工程计算,将实际的复合换热突出一个主要矛盾来反映,将其次要因素加以适当考虑或忽略掉,试简述多孔建筑材料导热、房屋外墙内表面的总换热系数、锅炉炉膛高温烟气与水冷壁之间的换热等三种具体情况的主次矛盾。

答:⑴通过多孔建筑物材料的导热,孔隙内虽有对流和辐射,但导热是主要的,所以热量传递按导热过程进行计算,孔隙中的对流和辐射的因素在导热系数中加以考虑。⑵房屋外墙内表面的总换热系数是考虑了对流和辐射两因素的复合,两者所起作用相当,因对流换热计算简便,将辐射的因素折算在对流换热系数中较方便些。⑶锅炉炉膛高温烟气与水冷壁之间的换热,由于火焰温度高达1000℃以上,辐射换热量很大,而炉膛烟气流速很小,对流换热相对较小,所以一般忽略对流换热部分,而把火焰与水冷壁之间的换热按辐射换热计算。

5、试述平均温差法(LMTD 法)和效能─传热单元数法(ε-NTU 法)在换热器传热计算中各自的特点?

q m1c 1≥q m2c 2 q m1c 1

q m1c 1≥q m2c 2 q m1c 1

答:LMTD 法和ε-NTU 法都可用于换热器的设计计算和校核计算。这两种方法的设计计算繁简程度差不多。但采用LMTD 法可以从求出的温差修正系数φΔt 的大小看出所选用的流动形式接近逆流程度,有助于流动形式的选择,这是ε-NTU 法所做不到的。对于校核计算,两法都要试算传热系数,但是由于LMTD 法需反复进行对数计算故较ε-NTU 法稍嫌麻烦些,校核计算时如果传热系数已知,则ε-NTU 法可直接求得结果,要比LMTD 法简便得多。

6、热水在两根相同的管内以相同流速流动,管外分别采用空气和水进行冷却。经过一段时间后,两管内产生相同厚度的水垢。试问水垢的产生对采用空冷还是水冷的管道的传热系数影响较大?为什么?

答:采用水冷时,管道内外均为换热较强的水,两侧流体的换热热阻较小,因而水垢的产生在总热阻中所占的比例较大。而空气冷却时,气侧热阻较大,这时,水垢的产生对总热阻影响不大。故水垢产生对采用水冷的管道的传热系数影响较大。

绪论:

1.填空:

1.按传递热量的方式,换热器可以分为间壁式, 混合式, 蓄热式

2. 对于沉浸式换热器,传热系数低, 体积大,金属耗量大。

3. 相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数较低,喷淋式换热器冷却水过少时,冷却器下部不能被润湿.

4.在沉浸式换热器、喷淋式换热器和套管式换热器中,套管式换热器中适用于高温高压流体的传热。

5.换热器设计计算内容主要包括热计算、 结构计算 流动阻力计算和强度计算

6.按温度状况来分,稳定工况的 和 非稳定工况的换热器

7.对于套管式换热器和管壳式换热器来说,套管式换热器金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。

第一章

2.简答(或名词解释):

1. 什么是效能数?什么是单元数?(要用公式表示)

答:实际情况的传热量q 总是小于可能的最大传热量qmax ,我们将q/qmax 定义为换热器的效能,并用 ε 表示,即 换热器效能公式中的 KA 依赖于换热器的设计, W min 则依赖于换热器的运行条件,因此, KA/W min 在一定程度上表征了换热器综合技术经济性能,习惯上将这个比值(无量纲数)定义为传热单元数NTU

2. 热交换器计算方法的优缺点比较?

1)对于设计性热计算,采用平均温差法可以通过Ψ的大小判定所拟定的流动方式与逆流之间的差距,有利于流动方式的选择;2)而在校核性传热计算时,两种方法都要试算。在某些情况下,K 是已知数值或可套用经验数据时,采用传热()()()()max min min h h h c c c h c h c W t t W t t q q W t t W t t ε''''''--≡==''''--

单元书法更加方便;3)假设的出口温度对传热量Q 的影响不是直接的,而是通过定性温度,影响总传热系数,从而影响NTU ,并最终影响 Q 值。而平均温差法的假设温度直接用于计算Q 值,显然ε-NTU 法对假设温度没有平均温差法敏感,这是该方法的优势。

2.在一传热面积为15.8m 2,逆流套管式换热器中,用油加热冷水,油的流量为

2.85kg/s ,进口温度为110℃,水的流量为0.667kg/s ,进口温度为35℃,油和水的平均比热分别为1.9KJ/kg ?℃和4.18KJ/kg ?℃,换热器的总传热系数为320W/m2?℃,求水的出口温度?

解:W 1=2.85X1900=5415W/ ℃

W 2=0.667X4180=2788W/ ℃

因此冷水为最小热容值流体

单元数为

效能数为

所以:

3、一换热器用100℃的水蒸汽将一定流量的油从20℃加热到80℃。现将油的流量增大一倍,其它条件不变,问油的出口温度变为多少?

解:根据题意,相比较水蒸气换热为相变换热的流体,油为热容值小的流体 ()()()()min 8020C 010020C

c c c c c h c h c W t t t t W t t t t ''''''---?====''''---?().75()ε 因此根据效能数和单元数的关系

可得: 现将油的流量增大一倍,其它条件不变,单元数减小为原来的0.5倍, 1NTU e -ε=-525.054152788max min ===W W R c 8.127888.15320min =?==W KF NTU 74.0)]

1(exp[1)]1(exp[1=------=c c c R NTU R R NTU ε74.0'2'1'2"2=--=t t t t

ε1NTU e -ε=-0.25

NTU e -=0.50.250.5NTU e -==()()"20C 010020C c c c h

c t t t t t ε'''--?===''--?().5()

因此可得

解得

4.某换热器用100℃的饱和水蒸汽加热冷水。单台使用时,冷水的进口温度为10℃,出口温度为30℃。若保持水流量不变,将此种换热器五台串联使用,水的出口温度变为多少?总换热量提高多少倍?

解:根据题意,将换热器增加为5台串联使用,将使得传热面积增大为原来的5倍,相比较水蒸气换热为相变换热的流体,水为热容值小的流体,因此

()()()()min 3010C 010010C

c c c c c h c h c W t t t t W t t t t ''''''---?====''''---?().22()ε 因此根据效能数和单元数的关系

1NTU e -ε=- 可得:0.78NTU e -= 现将传热面积增大为原来的5倍,单元数增大为原来的5倍,由于

50.780.29N T U e -== 效能数为 ()()10C 10.29

10010C c c c h c t t t t t '''-''-?===-''--?()()ε 水的出口温度为 "73.9c

t C =? 根据热平衡式,对于冷水,热容值不变,温差增大的倍数为换热量增加的倍数:

73.910C 3.1953010C

-?=-?()() 第二章

1.填空:

1.根据管壳式换热器类型和标准按其结构的不同一般可分为:固定管板式换热器、U 型管式换热器、浮头式换热器、和填料函式换热器等。

2.对于固定管板式换热器和U 型管式换热器,固定管板式换热器适于管程走易于结垢的流体

"60c t C =?

3相对于各种类型的管壳式换热器固定管板式换热器不适于管程和壳程流体温差较大的场合。

4. 相对于各种类型的管壳式换热器,填料函式换热器不适用于易挥发、易燃、易爆、有毒及贵重介质,使用温度受填料的物性限制。

5.管子在管板的固定,通常采用胀管法和焊接法

6. 在管壳式换热器中,管子的排列方式常有等边三角形排列(正六角形排列)法、同心圆排列法和正方形排列法排列法。

7.如果需要增强换热常采用等边三角形排列(正六角形排列)法、,为了便于清洗污垢,多采用正方形排列。同心圆排列法使得管板的划线、制造和装配比较困难。

8.为了增加单位体积的换热面积,常采用小管径的换热管

9.为了提高壳程流体的流速和湍流强度,强化流体的传热,在管外空间常装设纵向隔板和折流板。

10.折流板的安装和固定通过拉杆和定距管

11.壳程换热公式J o=j H j c j l j b j s j r,其中j b表示管束旁通影响的校正因子,j l表示折流板泄漏影响的校正因子。j c表示折流板缺口的校正因子

12. 管壳式换热器理想壳程管束阻力包括理想错流段阻力?P bk和理想缺口段阻力?P wk。

13.管壳式换热器的实际阻力要考虑考虑折流板泄漏造成的影响R l,旁路所造成的影响R b,和进出口段折流板间距不同对阻力影响R s

14.在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B股流体, D股流体折流板与壳体内壁存在间隙而形成的漏流,设置旁路挡板可以改善C流路对传热的不利影响

15.若两流体温差较大,宜使传热系数大的流体走壳程,使管壁和壳壁温差减小。

16.在流程的选择上,不洁净和易结垢的流体宜走管程,因管内清洗方便。被冷却的流体宜走壳程,便于散热,腐蚀性流体宜走管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re>100)下即可达到湍流。

17.采用小管径换热器,单位体积传热面积增大、结构紧凑、金属耗量减少、传热系数提高

18.流体诱发振动的原因是涡流脱落,湍流抖振和流体弹性旋转

19.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将减小管子的支撑跨距

2.名词解释:

(2).布管限定圆:热交换器的管束外缘受壳体内径的限制,因此在设计时要将管

束外缘置于布管限定圆之内,布管限定圆直径D l 大小为

浮头式: 固定板或U 型管式 3.简答:

(1).试分析廷克流动模型各个流路及其意义

答:(1) 流路A ,由于管子与折流板上的管孔间存在间隙,而折流板前后又存在压差所造成的泄漏,它随着外管壁的结垢而减少。(2) 流路B ,这是真正横向流过管束的流路,它是对传热和阻力影响最大的一项。(3) 流路C ,管束最外层管子与壳体间存在间隙而产生的旁路,此旁路流量可达相当大的数值。设置旁

路挡板,可

改善此流路

对传热的不

利影响。(4)

流路D ,

由于折流板

和壳体内壁

间存在一定

间隙所形成

的漏流,它不但对传热不利,而且会使温度发生相当大的畸变,特别在层流流动时,此流路可达相当大的数值。(5) 流路E ,对于多管程,因为安置分程隔板,而使壳程形成了不为管子所占据的通道,若用来形成多管程的隔板设置在主横向流的方向上,他将会造成一股(或多股)旁路。此时,若在旁通走廊中设置一定量的挡管,可以得到一定的改善。

1232()L i D D b b b =-++3

2L i D D b =

-

(2).说明下列换热器的型号

1)BEM600-2.0/1.5-250-5/19-4Ⅰ: 固定管板式换热器:前端管箱为封头管箱,壳体型式为单壳程,后端管箱为封头管箱,公称直径600mm ,管程压力为2.0Mpa,壳程压力为1.5Mpa ,公称换热面积250m 2,管长为5m ,管外径为19mm ,4管程,Ⅰ级管束,较高级冷拔钢管。

2)固定管板式换热器:前端管箱为封头管箱,壳体型式为单壳程,后端管箱为封头管箱,公称直径800mm ,管

程压力为2.0Mpa,壳程压力为1.0Mpa ,公称换热面积254m 2,管长为6m ,管外径为19mm ,4管程,铜管。 3) BIU500-4.0/1.6-75-6/19-2Ⅰ: U 型管式换热器:前端管箱为封头管箱,中间壳体为U 型管式,后端为U 型管束。公称直径500mm ,管程压力为4.0Mpa,壳程压力为1.6Mpa ,公称换热面积75m 2,管长为6m ,管外径为19mm ,2管程Ⅰ级管束,较高级冷拔钢管。 4)6500 1.654 4 25

AES ----I :平盖管箱,公称直径500mm,管程和壳程的设计压力均为 1.6MPa ,公称换热面积为54m 2,碳素钢较高级冷拔换热管外径25mm ,管长6m ,4管程,单壳程的浮头式热交换器。Ⅰ级管束,较高级冷拔钢管。

(3).找出下列图中,换热器的名称及各零部件名称和及作用

1) 固定管板式换热器

1.折流板---使壳程流体折返流动,提高传热系数。支撑管束,防止弯曲

2.膨胀节---补偿管壳式式换热器的温差应力

3.放气嘴---释放不凝结气体

2)浮头式换热器

41962540.10.2800----Cu BEM

1.管程隔板---增大管程流体的流速

2.纵向隔板---提高壳程流体的流速和湍流强度,强化流体的传热,在管外空间常装设纵向隔板

3.浮头---补偿管壳式式换热器的温差应力

3)U形管式换热器

1.U形管---使流体通过及换热

2.纵向隔板---提高壳程流体的流速和湍流强度,强化流体的传热,在管外空间常装设纵向隔板

3.管程隔板---增大管程流体的流速

4)请说出序号2、6、7、8、18各代表什么零件,起什么作用?

2----管程接管法兰,与换热器管程外流路管路连接;

6---拉杆,安装与固定折流板;

7---膨胀节,补偿管子与壳体热应力不同;

8---壳体,用来封装壳程流体,并承受壳程流体压力,

18---折流板-使壳程流体折返流动,提高传热系数。支撑管束,防止弯曲

第三章第一节:

1.填空:

1. 热交换器单位体积中所含的传热面积的大小大于等于700m2/m3,为紧凑式换热器

2. 通常采用二次表面来增加传热表面积,或把管状的换热器改为板状表面,

3. 螺旋板式热交换器的构造包括螺旋型传热板、隔板、头盖和连接管

4.螺旋板式换热器的螺旋板一侧表面上有定距柱,它的作用主要是保持流道的间距、加强湍流、和增加螺旋板刚度。

5.在Ⅲ型螺旋板式热交换器中:一侧流体螺旋流动,流体由周边转到中心,然后再转到另一周边流出。另一侧流体只作(轴向流动),适用于有相变流体换热2.简答

1)说明下列换热器的型号

1.014

BLC----:换热面积为80m2, 碳钢不可拆螺旋板式换热器,

1.680G

160018

其两螺旋通道的举例分别为14mm 和18mm ,螺旋板的板的板宽为1000mm ,公称压力为1.6MPa,公称直径为1600mm.贯通型

第二节

1.填空:

1.板式换热器按构造可以划分为可拆卸、全焊式和串焊式

2.可拆卸板式换热器结构由传热板片,密封垫片,压紧装置和定位装置组成

2.简答:

1).说明下列换热器的型号:人字形波纹板式损热器,单片公称换热面积

0.05m 2,设备总的公称换热面积2m 2, 设计压力8×105Pa ,设计温度120 ℃组装形式

2).BR0.3-1.6-20-F-?:板式热交换器:人字形波纹,单板公称换热面积为0.3m 2,设计压力为1.6MPa ,换热面积为20m 2,氟橡胶垫片密封的双支撑框架结构的板式热交换器。

3)BPl.0–1.0–1002–E –Ⅱ:波纹形式为水平平直波纹,单板公称换热面积为l.0 m 2,设计压力为1.0 MPa ,换热面积为100 m 2。用三元乙丙垫片密封的带中间隔板双支撑框架结构的板式换热器,

4).板式换热器的流程和通道配合为4224

??,其中甲流体为热流体,乙流体为冷流体

3名词解释:

1)热混合:为了使换热器更好地满足传热和压力降的要求,传热流体流经混合板流道就相当于其单独流过这两种倾角的板片各自组成的流道后再混合,所以此种组合而成的板式热交换器在性能上体现了一种“热混合”

采用方法:⑴每两种波纹倾角不同的人字形板片相叠组装成一台板式热交换器⑵各自分段采用波纹倾角不同的人字形板片组装成一台板式热交换器⑶将流道数

甲流体进

乙流体出 甲流体出 乙流体进

120120?

?

分段组装,进一步实现热混合

第三节

1.填空:

1.板翅式换热器由隔板、翅片、封条基本单元和导流片和封头组成

2.简答:

1.对于板翅式热交换器,两个热通道之间相隔三个冷通道A、B、C,冷热通道的翅高均为H,求每个冷通道的定性尺寸及翅片效率。

1)说明定性尺寸及翅片效率

定型尺寸为b,翅片效率为η=tan(mb)/(mb)

对于冷通道A,定性尺寸为H,翅片效率为ηA=tan(mH)/(mH),对于冷通道B,定性尺寸为 1.5H,翅片效率为η

A

=tan(1.5mH)/(1.5mH),

对于冷通道C,定性尺寸为H,翅片效率为ηC=tan(mH)/(mH),强化换热方面:

1.室内暖气片为什么只把外表面制成翅片状?

(增大外表面的传热面积,加剧空气的湍动。因为外表面的对流传热热阻为控制热阻。)2.保温瓶在设计和使用过程中采取了哪些防止热损失的措施?

(首先,保温瓶胆设计成玻璃夹层结构。夹层因空气被抽出接近真空,可防止对流散热损失;其次,瓶胆夹层内两表面均镀有银、铝等低黑度涂层,大幅度降低了辐射散热量;第三,在使用保温瓶时,瓶盖选用导热系数很小的软木制作,而且在灌水时还要在瓶颈处留一段空气柱,因为空气的导热系数比水要小得多,从而有效地降低了瓶口处的热损失。)

3.空气在钢管内流动,管外用水蒸汽冷凝,请问钢管的壁温接近空气的温度还是水蒸汽的

温度?假设管壁清洁,没有污垢。

4.房间内装有一空调,使空气温度稳定在20℃,问人在房间内,冬天感觉较冷还是夏天感

觉较冷?为什么?

冬天感觉较冷。因为人在房间里散失的热量包括两个方面:其一为人和空气的自然对流引起的热损失;其二为人和墙壁的辐射热损失。不管冬天还是夏天,自然对流引起的热损失

基本不变,但辐射热损失会变化。设T2为墙壁温度,

]

)

100

(

)

100

[(4

2

4

1

1

1

2

1

T

T

A

C

Q-

=

-

ε

,显

列管式换热器的设计计算

列管式换热器的设计计算 晨怡热管2008-9-49:49:33 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1)不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3)压强高的流体宜走管内,以免壳体受压。 (4)饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6)需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2.流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3.流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。 4.管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有 φ25×2.5mm及φ19×mm两种规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器 结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。 初选换热器的规格尺寸 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重 新计算。计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。 核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18设计条件数据

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

换热器设计计算范例

列管式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。根据 传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换 热器必须通过试差计算,按以下步骤进行。 ◎初选换热器的规格尺寸 ◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式, 重新计算。 ◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。 ◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排 列。◎计算管、壳程阻力 在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计 算,直到合理为止。 ◎核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 ◎计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的 计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18 设计条件数据 物料流量 kg/h 组成(含乙醇量) mol% 温度℃操作压力 MPa 进口出口 釜液 3.31450.9

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

列管式换热器设计

列管式换热器设计 第一节推荐的设计程序 一、工艺设计 1、作出流程简图。 2、按生产任务计算换热器的换热量Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差D。 11、校核传热量,要求有15-25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。

3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。 8、接管、接管法兰选择及开孔补强等。 9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书 第二节列管式换热器的工艺设计 一、换热终温的确定 换热终温对换热器的传热效率和传热强度有很大的影响。在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。 为合理确定介质温度和换热终温,可参考以下数据: 1、热端温差(大温差)不小于20℃。 2、冷端温差(小温差)不小于5℃。 3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。 二、平均温差的计算 设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。

换热器计算步骤

第2章工艺计算 2.1设计原始数据 表2—1 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 (10)计算管数 N T (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径 D和壳程挡板形式及数量等 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。

对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3 2.4估算传热面积 2.4.1热流量

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

标准系列化管壳式换热器的设计计算步骤(精)

标准系列化管壳式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取经验传热系数 (7)计算传热面积 (8)查换热器标准系列,获取其基本参数 (9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤 (10)校核有效平均温度差 (11)校核传热面积 (12)计算流体流动阻力。若阻力超过允许值,则需调整设计。 非标准系列化列管式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 甲苯立式管壳式冷凝器的设计(标准系列) 一、设计任务 1.处理能力: 2.376×104t/a正戊烷; 2.设备形式:立式列管式冷凝器。 二、操作条件 1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器; 2.冷却介质:为井水,流量70000kg/h,入口温度32℃; 3.允许压降:不大于105Pa; 4.每天按330天,每天按24小时连续运行。 三、设计要求 选择适宜的列管式换热器并进行核算。 附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

换热器设计指南汇总

换热器设计指南 1总贝!I i.i目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1. 2范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号 (版次)的引用文件,其最新版本适用于本规定。 GB150-1999钢制压力容器 GB151-1999管壳式换热器 HTRI设计手册 Shell & tube heat exchangers ------- JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ---------- SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection -------- HEVRON COP. (1989)

HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers ------- TOTAL (2002) 管壳式换热器工程规定——SEI (2005) 2设计基础 2. 1传热过程名词定义 2.1.1无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2沸腾过程 在传热过程中存在着相的变化一液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3冷凝过程 部分或全部流体被冷凝为液相,热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2换热器的术语及分类 2.2.1术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器; 位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分;

管壳式换热器传热计算示例(终)-用于合并

管壳式换热器传热设计说明书 设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程(表压),壳程压力为(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。 2、设计计算过程: (1)热力计算 1)原始数据: 过冷却水进口温度t1′=145℃; 过冷却水出口温度t1〞=45℃; 过冷却水工作压力P1=(表压) 冷水流量G1=80000kg/h; 冷却水进口温度t2′=20℃; 冷却水出口温度t2〞=50℃; 冷却水工作压力P2= Mp a(表压)。改为冷却水工作压力P2= Mp 2)定性温度及物性参数: 冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃; 冷却水的密度查物性表得ρ2= kg/m3; 冷却水的比热查物性表得C p2= kJ/kg.℃ 冷却水的导热系数查物性表得λ2= W/m.℃ 冷却水的粘度μ2=×10-6 Pa·s; 冷却水的普朗特数查物性表得P r2=; 过冷水的定性温度℃; 过冷水的密度查物性表得ρ1=976 kg/m3; 过冷水的比热查物性表得C p1=kg.℃; 过冷水的导热系数查物性表得λ1=m.℃; 过冷水的普朗特数查物性表得P r2; 过冷水的粘度μ1=×10-6 Pa·s。 过冷水的工作压力P1= Mp a(表压) 3)传热量与水热流量 取定换热器热效率为η=; 设计传热量: 过冷却水流量: ; 4)有效平均温差 逆流平均温差:

根据式(3-20)计算参数p、R: 参数P: 参数R: 换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=; 有效平均温差: 5)管程换热系数计算: 附录10,初定传热系数K0=400 W/m.℃; 初选传热面积: m2; 选用φ25×无缝钢管作换热管; 管子外径d0=m; 管子内径d i=×=0.02 m; 管子长度取为l=3 m; 管子总数: 取720根管程流通截面积: m2 管程流速: m/s 管程雷诺数: 湍流管程传热系数:(式3-33c) 6)结构初步设计: 布管方式见图所示: 管间距s=0.032m(按GB151,取); 管束中心排管的管数按所给的公式确定: 取20根;

列管式换热器选型设计计算

第一部分列管式换热器选型设计计算 一.列管式换热器设计过程中的常见问题 换热器设计的优劣最终要以是否适用、经济、安全、负荷弹性大、操作可靠、检修清洗方便等为考察原则。当这些原则相互矛盾时,应在首先满足基本要求的情况下再考虑一般原则。 1.流体流动空间的选择原则 (1)不洁净和易结垢的流体宜走管内,因为管内清洗比较方便。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。(3)压强高的流体宜走管内,以免壳体受压,可节省壳体金属消耗量。 (4)饱和蒸气宜走管间,以便于及时排出冷凝液,且蒸气较洁净,它对清洗无要求。(5)有毒流体宜走管内,使泄漏机会较少。 (6)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,可以提高对流传热系数。 (8)对于刚性结构的换热器,若两流体的温度差较大,对流传热系数较大者宜走管间,因壁面温度与α大的流体温度相近,可以减少热应力。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾。2.流体流速的选择 根据管内湍流时对流传热系数αi∝u0.8,流速增大,则αi增大,同时污垢热阻R si 减小,利于传热,从而可减少传热面积,节约设备费用;但同时又使压降增大,加大了动力消耗,提高了操作费用。可见应全面分析权衡比较适宜的流速。 (1)所选流速要尽量使流体湍流,有利传热。 (2)所选流速应使管长或程数恰当。管子过长,不便于清洗管内污垢;而管子过短,管程数增加,使结构复杂化,传热温差减少,均会降低传热效果。 (3)粘度大的流体,流速应小些,可按滞流处理。 (4)高密度流体(液体),阻力消耗与传热速率相比一般较小,可适当提高流速。 在我们教材及换热器设计手册中均给了出一些经验数据,以供参考。 3.管子规格及排列情况 (1)管径选择:国内换热器系列标准件中管子规格为Φ25×2.5mm、Φ19×2mm,在再沸器中可采用Φ38×3mm。 (2)管长:以清洗方便和合理使用管材为原则,系列标准件中采用1.5m,2m,3 m和6m四种。 (3)管子排列方法 管子在管板上的排列方法有三种:正三角形,正方形直列和正方形错列(见化工原理下册,天大版,P256,图4-25)。 正三角形排列使用最普遍,在同一管板面积上可以排列较多传热管,管外流体搅动较大,对流传热系数较高,但相应阻力也较大,管间不易清洗;正方形直列便于清洗管外表面,但传热系数较小;正方形错列介于上述两者之间,对流传热系数高于正方形直列。 (4)管中心距t 管子与管板采用胀管法连接t=(1.3-1.5)d o,管子与管板采用焊管法连接t=1.25d o,相邻两管外壁间距不应小于6mm。 4.折流挡板 前面已述常用的有圆缺形和盘环形挡板(见化工原理下册,天大版,P257,图4-27),而又以缺口面积为壳体内截面积25%的圆缺形折板用的最广泛。 折流挡板间距h:h=0.2~1D(壳内径),系列标准件中采用的板间距为:固定管板式有150、300、600mm三种,浮头式有150、200、300、480和600mm五种。 5.流体流动阻力

换热器设计计算步骤

换热器设计计算步骤 1. 管外自然对流换热 2. 管外强制对流换热 3. 管外凝结换热 已知:管程油水混合物流量 G ( m 3/d),管程管道长度 L (m),管子外径do (m), 管子内径di (m),热水温度 t ℃, 油水混合物进口温度 t 1’, 油水混合物出口温度 t 2” ℃。 1. 管外自然对流换热 1.1 壁面温度设定 首先设定壁面温度,一般取热水温度和油水混合物出口温度的平均值,t w ℃, 热水温度为t ℃,油水混合进口温度为'1t ℃,油水混合物出口温度为"1t ℃。 "w 11 t ()2 t t =+ 1.2 定性温度和物性参数计算 管程外为水,其定性温度为1()K -℃ 21 ()2 w t t t =+ 管程外为油水混合物,定性温度为'2t ℃ ''"2111 ()2t t t =+ 根据表1油水物性参数表,可以查得对应温度下的油水物性参数值 一般需要查出的为密度ρ (3/kg m ),导热系数λ(/())W m K ?,运动粘度2(/)m s ,体积膨胀系数a 1()K -,普朗特数Pr 。

表1 油水物性参数表 水 t ρ λ v a Pr 10 999.7 0.574 0.000001306 0.000087 9.52 20 998.2 0.599 0.000001006 0.000209 7.02 30 995.6 0.618 0.000000805 0.000305 5.42 40 992.2 0.635 0.000000659 0.000386 4.31 50 998 0.648 0.000000556 0.000457 3.54 60 983.2 0.659 0.000000478 0.000522 2.99 70 997.7 0.668 0.000000415 0.000583 2.55 80 971.8 0.674 0.000000365 0.00064 2.21 90 965.3 0.68 0.000000326 0.000696 1.95 100 958.4 0.683 0.000000295 0.00075 1.75 油 t ρ λ v a Pr 10 898.8 0.1441 0.000564 6591 20 892.7 0.1432 0.00028 0.00069 3335 30 886.6 0.1423 0.000153 1859 40 880.6 0.1414 9.07E-05 1121 50 874.6 0.1405 5.74E-05 723 60 868.8 0.1396 3.84E-05 493 70 863.1 0.1387 0.000027 354 80 857.4 0.1379 1.97E-05 263 90 851.8 0.137 1.49E-05 203 100 846.2 0.1361 1.15E-05 160 1.3 设计总传热量和实际换热量计算 0m v Q Cq t Cq t ρ=?=?v v C q t C q t αρβρ=?+?油油水水 C 为比热容/()j kg K ?,v q 为总体积流量3 /m s ,αβ分别为在油水混合物中 油和水所占的百分比,t ?油水混合物温差,m q 为总的质量流量/kg s 。 实际换热量Q 0Q Q *1.1/0.9= 0.9为换热器效率,1.1为换热余量。 1.4 逆流平均温差计算

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

列管式换热器的设计计算

2.4 列管换热器设计示例 某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。试设计一台列管式换热器,完成该生产任务。 1.确定设计方案 (1)选择换热器的类型 两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。 (2)流动空间及流速的确定 由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。 2.确定物性数据 定性温度:可取流体进口温度的平均值。 壳程油的定性温度为(℃) 管程流体的定性温度为(℃) 根据定性温度,分别查取壳程和管程流体的有关物性数据。 油在90℃下的有关物性数据如下: 密度ρo=825 kg/m3 定压比热容c po=2.22 kJ/(kg·℃) 导热系数λo=0.140 W/(m·℃) 粘度μo=0.000715 Pa·s 循环冷却水在35℃下的物性数据: 密度ρi=994 kg/m3 定压比热容c pi=4.08 kJ/(kg·℃) 导热系数λi=0.626 W/(m·℃) 粘度μi=0.000725 Pa·s 3.计算总传热系数 (1)热流量 Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW) (2)平均传热温差 (℃) (3)冷却水用量 (kg/h)

列管式换热器的计算

四、列管式换热器的工艺计算 4.1、确定物性参数: 定性温度:可取流体进口温度的平均值 壳程油的定性温度为 T=(140+40)/2=90℃ 管程流体的定性温度为 t=(30+40)/2=35℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据煤油在定性温度下的物性数据: ρo=825kg/m3 μo=7.15×10-4Pa?S c po=2.22KJ/(Kg?℃) λo=0.14W/(m?℃) 循环冷却水在35℃下的物性数据: ρi=994kg/m3 C pi=4.08KJ/(kg.℃) λi=0.626W/(m.℃) μi=0.000725Pa.s 4.2、计算总传热系数:

4.2.1、热流量 m o=[(15.8×104)×103]/(300×24)=21944Kg/h Q o=m o c po t o=21944× 2.22×(140-40)=4.87×106KJ/h=1353KW 4.2.1.2、平均传热温差 4.2.1.3、冷却水用量 W i=Q o/C piΔt=4.87×106/(4.08×(40-30))=119362 Kg/h 4.2.2、总传热系数K =0.023××× =4759W/(.℃﹚ 壳程传热系数:假设壳程的传热系数 污垢热阻

管壁的导热系数λ=45W/﹙m.℃﹚ 则总传热系数K为: 4.3、计算传热面积 S’=Q/(KΔt)= (1353×103)/(310×39)=111.9m2 考虑15%的面积裕度,S=1.15×S’=128.7 m2 4.4、工艺结构尺寸 4.4.1、管径和管内流速 选用φ25×2.5传热管(碳钢),取管内流速μi=1m/s 4.4.2、管程数和传热管数 依据传热管内径和流速确定单程传热管数 =(119362/(994×3600) 0.785×0.022×1 =106.2≈107根 按单程管计算,所需的传热管长度为

相关主题
文本预览
相关文档 最新文档