当前位置:文档之家› 看图说话——导数中的图象识别

看图说话——导数中的图象识别

看图说话——导数中的图象识别
看图说话——导数中的图象识别

看图说话——导数中的图象识别

一、两个实用结论

结论1:在导函数图象中,在x 轴上方区域对应原函数单调递增区间;在x 轴下方区域对应原函数单调递减区间.

结论2:在导函数图象中,图象由x 轴上方到x 轴下方与x 轴的交点为极大值点;由x 轴下方到x 轴上方与x 轴的交点为极小值点.

二、结论应用

题型1:由导函数图象确定函数单调区间

例1 (2004年高考浙江卷)设()f x '是函数()f x 的导函

数,()y f x '=的图象如图1所示,则()y f x =的图象最有可

能的是( )

解:由导函数图象结合结论1知:函数在(0)-∞,上递增,在(0,2)上递减,在(2)+,∞

上递增.故选(C ).

点评:要求对导数含义要深刻理解.

题型2:由导函数图象确定函数极值

例2 (2006年高考天津卷)函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图2所示,则函数()f x 在开区间()a b ,内有极小值点( ) (A)1个 (B)2个

(C)3个 (D)4个

解:由结论2易知,函数()a b ,只有1个极小值点.

点评:本题主要考查导函数的概念、极值点及对图象的识别能力.

题型3:由导函数图象确定其参数值

例3 (2006年高考北京卷)已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点(1,0),(2,0),如图3所示,求:

(1)0x 的值;

(2)a ,b ,c 的值.

解:(1)由图象可知,在(1)-∞,

上()0f x '>,在(1,2)上()0f x '<,在(2)+,∞上()0f x '>.

故()f x 在(1)-∞,、(2)+,∞上递增,在(1,2)上递减,(结合结论2知)()f x 在1

x =处取得极大值,所以01x =;

(2)2()32f x ax bx c '=++,

由(1)0f '=,(2)0f '=,(1)5f =,得32012405a b c a b c a b c ++=??++=??++=?

,,,,

解得2912a b c ==-=,,.

点评:函数的增减性可由导数的值的符号反映出来,利用图象把导函数与函数紧密结合起来考查成为高考亮丽的风景线.

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

导数不等式证明

1.函数2ln 2)(x x x f -=,求函数)(x f y =在]2,2 [上的最大值 2.. 已知f(x)=e x -ax- (1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由. 3. 已知函数f(x)=x 2e -ax (a >0),求函数在[1,2]上的最大值. 4.已知x =3是函数f(x)=aln(1+x)+x2-10x 的一个极值点. (1)求a 的值; (2)求函数f(x)的单调区间; (3)若直线y =b 与函数y =f(x)的图象有3个交点,求b 的取值范围. 5. (2010年全国)已知函数 f(x)=x3-3ax2+3x +1. (1)设a =2,求 f(x)的单调区间; (2)设 f(x)在区间(2,3)中至少有一个极值点,求a 的取值范围. 不等式的证明: 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式 ()()f x g x >(()()f x g x <) 的问题转化为证明 ()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小 值(最大值)大于或等于零(小于或等于零)。 一、利用题目所给函数证明 【例1】 已知函数 x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+- )1ln(1 1 1 【绿色通道】1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(m a x ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左令11 1 )1ln()(-+++=x x x g , 2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、直接作差构造函数证明 【例2】已知函数 .ln 2 1)(2 x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数3 3 2)(x x g = 的图象的下方; 【绿色通道】设)()() (x f x g x F -=,即x x x x F ln 2 132)(2 3--= ,

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

导数探讨函数图像的交点问题

由2006年高考看如何用导数探讨函数图象的交点问题 2006年高考数学导数命题的方向基本没变,主要从五个方面(①与切线有关的问题②函数的单调性和单调区间问题③函数的极值和最值问题④不等式证明问题⑤与函数的单调性、极值、最值有关的参数问题)考查了学生对导数的掌握水平。 但是,2006年高考数学导数命题在方向基本没变的基础上,又有所创新。福建理科卷第21题研究两个函数的交点个数问题,福建文科卷第19题研究分式方程的根的分布问题,湖南卷第19题研究函数的交点问题,四川卷第21题研究函数图象的交点个数问题。从以上试卷我们可以发现导数命题创新的两个方面:一是研究对象的多元化,由研究单一函数转向研究两个函数或多个函数,二是研究内容的多元化,由用导数研究函数的性质(单调性、最值、极值)转向运用导数进行函数的性质、函数图象的交点和方程根的分布等的综合研究,实际上就是运用导数考查函数图象的交点个数问题。 试题“以能力立意”的意图表现明显,试题注重了创新、开放、探究性,以所学数学知识为基础,对数学问题进行深入探讨,从数学角度对问题进行探究。考查了学生综合与灵活地应用所学的数学思想方法,进行独立的思考、探索和研究,创造性地解决问题的能力。 如何运用导数的知识研究函数图象的交点问题呢?下面我们先看一看今年的高考题。 例1(福建理科第21题)已知函数f(x)=-x 2 +8x,g(x)=6lnx+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m ,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点? 若存在,求出m 的取值范围;,若不存在,说明理由。 解:(Ⅰ)略 (II )∵函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点, ∴令f(x)= g(x) ∴g(x)-f(x)=0 ∵x>0 ∴函数?(x)=g(x)-f(x) = 2 x -8x+6ln x+m 的图象与x 轴的正半 轴有且只有三个不同的交点。 ∵262862(1)(3) '()28(0),x x x x x x x x x x ?-+--=-+= => 当x ∈(0,1)时,)(1 x ?〉0,)(x ?是增函数;当x ∈(1,3)时,)(1 x ?〈0,)(x ?是减函数;当x ∈(3,+∞)时,)(1 x ?〉0,)(x ?是增函数;当x=1或x=3时,)(1 x ?=0。 ∴?(x )极大值=?(1)=m -7, ?(x )极小值=?(3)=m+6ln 3-15. ∵当x →0+ 时,?(x)→∞-,当x +∞→时,?(x)+∞→ ∴要使?(x)=0有三个不同的正实数根,必须且只须 ?? ?<-=>-=, 0153ln 6)(, 07)(+极小值极大值m x m x ?? ∴7

导数大题中不等式的证明题

导数大题中不等式的证明 1.使用前面结论求证(主要) 2.使用常用的不等关系证明,有三种:()ln 1x x +<,sin ,x x 时,比较()f x 与()n g x 的大小,并说明理由; (3)证明:()123222211e 2341n n g n ????????+++++< ? ? ? ? +???????? ≤L (* n ∈N ). 2、已知函数2 901x f x a ax = >+()() . (1)求f x ()在1 2 2[,]上的最大值; (2)若直线2y x a =-+为曲线y f x =()的切线,求实数a 的值; (3)当2a =时,设1214122x x x ,?? ∈???? …,,, ,且121414x x x =…+++ , 若不等式1214f x f x +f x λ≤…()+()+()

恒成立,求实数λ的最小值. 3、已知,ln 2)(),0()(bx x x g a x a x x f +=>- =且直线22-=x y 与曲线)(x g y =相切. (1)若对),1[+∞内的一切实数x ,不等式)()(x g x f ≥恒成立,求实数a 的取值范围; (2)当a=1时,求最大的正整数 k ,使得对Λ71828.2](3,[=e e 是自然对数的底数)内的任意 k 个实数k x x x x ,,,,321Λ都有)(16)()()(121k k x g x f x f x f ≤++-Λ成立; (3)求证:)12ln(1 4412 +>-∑ =n i i n i )(* ∈N n

用导数求函数的极值..

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+= x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1() 1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处 取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2 --=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3) 2(533)5(2)5(32)(33323x x x x x x x x x f -=+-= +-= ' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

(完整版)导数与函数图像问题

导数与函数图像问题 1.函数()y f x =的图像如右图,那么导函数,()y f x =的图像可能是( ) 2.函数)(x f 的定义域为开区间),(b a ,导函数)(x f ' 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A. 1个 B.2个 C.3个 D.4个 3.设()f x '是函数()f x 的导函数,将()y f x =和 ()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 4若函数f (x )=x 2+bx+c 的图象的顶点在第四象限,则函数f′(x )的图象是( ) A . B . C . D . 5.设函数f (x )在R 上可导,其导函数为f′(x ),且函数f (x )在x=-2处取得极小值,则函数y=xf′(x )的图象可能是( ) A . B . C . D . a b x y ) (x f y ?=O

6.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是() A.B.C.D. 7.若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是() A.B.C.D. 8.已知函数y=xf′(x)的图象如上中图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是() A.B.C.D. 9.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如上右图所示,则下列结论中一定成立的是()

导数证明和不等式综合典型

用导数证明和式不等式-典型 (1)若护(工)=『J 上再減睛It求宾畫以杓取恒范 寵 (町证明车等式t 2n 1 L 1 I lii J J 1H^ In 4 hi(” +1) n , 1 1 1 < —+ l + - + —— 2 2 3 n 解析: :郭问圖利斛出 来看第二问? 1. 读者朋友们一起来思考这样一个命题逻辑:第二问单独出一道证明题行不行? 当然行? 2. 为什么不那样出呢? 因为那样出的话,难度太大. 3. 为什么出在本题的第二问的位置? 因为这样命题使得学生解题相对容易一些. 4. 为什么会容易一些呢? 因为题干和第一问,为我们顺利解决第二问提供帮助.这些内容可作为梯子,为我们搭桥、铺路. 5. 从第1问能得到什么结论呢? '"|加 < 数特(打=—■—luz 在[人炖)上対城函

6. 这个结论对解决第 2问有什么帮助呢? 第2问是证明不等式,我们希望能够通过第 1问得到不等式? 通过函数的单调性,我们可以得到什么样的不等式呢? di 沿-1) 小如取= 2,则鸭(.工)= -- - Inx 凶为卩(工)在仏是内诚函数, 所以貯(1)=山 即——-hi^ 0, £ > 0 ' * 建+】 不芳式网边同时戕讨数得: i i + i Qr I 1 1 .1】』2(r — I j lui 2 f - J 下面对x 进行赋值,以便于进一步靠近所证不等式 ?同时注意到, 需要采用累加的办法? 令雷■ n + 1. —」—r < - + - Itifn + 1J 2 T 将上述所右不等式相加御: 111 I hi2 Ind Ini UnZl 所证不等式的右半部分得证了,下面来看左半部分 观察这个不等式,不等号右边为和式的形式, 左边不是,为了有利于证明,我们把左边也变 为和式? 不等式为求和型的不等式 ,

高中数学典型例题详解和练习-利用导数求函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数 )(x f 定义域内所有可能的极值点, 然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f ,

当2=x 时,函数取得极大值24)2(-=e f . 3.函数的定义域为R . .)1()1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f 令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数)(x f 在0x 处有极值的必要条 件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极 值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极

导数与函数图像

导数与函数图像问题
1.函数 y ? f (x) 的图像如右图,那么导函数 y ? f , (x) 的图像可能是( )
2.函数 f (x) 的定义域为开区间 (a, b) ,导函数 f ?(x) 在 (a, b) 内的图象如图所示,则函数 f (x) 在开区间 (a, b)
内有极小值点( )
A. 1个 B. 2 个 C. 3 个 D. 4 个
a
3 . 设 f ?(x) 是 函 数 f (x) 的 导 函 数 , 将 y ? f (x) 和
y
y ? f ?(x)
b
O
x
y ? f ?(x) 的图象画在同一个直角坐标系中,不可能正确的是( )
4若 函 数 f( x) =x2+bx+c 的 图 象 的 顶 点 在 第 四 象 限 , 则 函 数 f′ ( x) 的 图 象 是 (

A.
B.
C.
D.
5.设 函 数 f( x) 在 R 上 可 导 , 其 导 函 数 为 f′ ( x), 且 函 数 f( x) 在 x=-2处 取 得 极 小 值,则函数 y=xf′(x)的图象可能是( )
A.
B.
C.
D.
1

6. 设 函 数 f( x) =ax2+bx+c( a, b, c∈ R), 若 x=-1为 函 数 y=f( x) ex 的 一 个 极 值 点 , 则下列图象不可能为 y=f(x)的图象是( )
A.
B.
C.
D.
7.若函数 y=f(x)的导函数在区间[a,b]上是增函数,则函数 y=f(x)在区间[a,b] 上的图象可能是( )
A.
B.
C.
D.
8.已 知 函 数 y=xf′( x)的 图 象 如 上 中 图 所 示( 其 中 f′( x)是 函 数 f( x)的 导 函 数 ),
下面四个图象中 y=f(x)的图象大致是( )
A.
B.
C.
D.
9.设函数 f(x)在 R 上可导,其导函数为 f′(x),且函数 y=(1-x)f′(x)的图象如上
右图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) 值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) 值 f(2)
B.函数 f(x)有极大值 f(-2)和极小 D.函数 f(x)有极大值 f(-2)和极小
2

导数的切线方程和图像知识点与习题

导 数 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

专题导数图像(有答案)

. 1.函数的图象如图1所示,则的图象可能是( D) 2.函数的部分图象大致为( D ). 3.函数f(x)的定义域为开区间(a,b),导函数f ′(x)在(a,b)内的图象如下图所示,则函数f(x)在开区间(a,b)内有极大值点( B ) A.1个B2个 .C3个 .D.4个 4.当时,函数的图象大致是(B ) \ 5..已知在R上可导的函数的图象如图所示,则不等式的解集为( B ) A.B. C.D.6.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是( C ) A.f(b)>f(c)>f(d) B.f(b)>f(a)>f(e) C.f(c)>f(b)>f(a) D.f(c)>f(e)>f(d) (6)(7) 7.设三次函数的导函数为,函数的图象的一部分如下图所示,则( D ) A.极大值为,极小值为B.极大值为,极小值为C.极大值为,极小值为D.极大值为,极小值为 8.设函数在定义域内可导,的图象如下右图所示,则导函数可能为( D ) 9.当a>0时,函数f(x)=(x2-2ax)e x的图象大致是( B )

. 10.设函数f(x) 在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( D ) A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) 11.[2013·浙江高考]已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是( B ) 12.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(-1)等于( D ) A.B.-C.D.-或 13.已知函数的导函数的图象如图所示,则函数的图象可能是( D ) A B C D 14.已知其导函数的图象如图,则函数的极小值是(D ) A B.C.D.c 15.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如 图所示,则函数f(x)在开区间(a,b)内有极小值点( A ) A.1个B2个 .C3个 .D.4个 16.设函数的图像如左图,则导函数的图像可能是下图中的(D) 17.设函数在定义域内可导,的图像如右图,则导函数的图像可能是( C )

导数证明不等式的问题(练习答案)

“导数证明不等式问题”练习题答案 1.设L 为曲线C:ln x y x =在点(1,0)处的切线. (I)求L 的方程; (II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 解: (I)设ln ()x f x x =,则21ln ()x f x x -'=.所以(1)1f '=.所以L 的方程为1y x =-. (II)令()1()g x x f x =--,则除切点之外,曲线C 在直线l 的下方等价于()0 g x >(0,1)x x >≠. ()g x 满足(1)0g =,且221ln ()1()x x g x f x x -+''=-=. 当01x <<时,210x -<,ln 0x <,所以()0g x '<,故()g x 单调递减; 当1x >时,210x ->,ln 0x >,所以()0g x '>,故()g x 单调递增. 所以,()(1)0g x g >=(0,1x x >≠). 所以除切点之外,曲线C 在直线L 的下方. 又解:()0g x >即ln 10x x x -->变形为2ln 0x x x -->,记2()ln h x x x x =--,则2121(21)(1)()21x x x x h x x x x x --+-'=--==, 所以当01x <<时,()0h x '<,()h x 在(0,1)上单调递减; 当1x >时,()0h x '>,()h x 在(1,+∞)上单调递增. 所以()(1)0h x h >=.)

2.Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域. 解⑴证明:()2e 2 x x f x x -=+ ()()()22224e e 222x x x x f x x x x ??-' ?=+= ?+++?? ∵当x ∈()()22,-∞--+∞,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时, ()2e 0=12x x f x ->-+, ∴()2e 20x x x -++> ⑵ ()()()24e 2e x x a x x ax a g x x ----'= () 4e 2e 2x x x x ax a x -++= ()322e 2x x x a x x -??+?+ ?+??= [)01a ∈, 由(1)知,当0x >时,()2e 2x x f x x -= ?+的值域为()1-+∞,,只有一解. 使得2e 2 t t a t -?=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增 ()()()222e 1e e 1e 22 t t t t t t a t t h a t t t -++?-++===+ 记()e 2t k t t =+,在(]0,2t ∈时,()()() 2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ??=∈ ??? ,. 3.设函数. x x 2f (x)x 2 -=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x -->()()g x ()h a ()h a ()1x f x e -=-

用导数求函数的极值.

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

看图说话——导数中的图象识别

看图说话——导数中的图象识别 一、两个实用结论 结论1:在导函数图象中,在x 轴上方区域对应原函数单调递增区间;在x 轴下方区域对应原函数单调递减区间. 结论2:在导函数图象中,图象由x 轴上方到x 轴下方与x 轴的交点为极大值点;由x 轴下方到x 轴上方与x 轴的交点为极小值点. 二、结论应用 题型1:由导函数图象确定函数单调区间 例1 (2004年高考浙江卷)设()f x '是函数()f x 的导函 数,()y f x '=的图象如图1所示,则()y f x =的图象最有可 能的是( ) 解:由导函数图象结合结论1知:函数在(0)-∞,上递增,在(0,2)上递减,在(2)+,∞ 上递增.故选(C ). 点评:要求对导数含义要深刻理解. 题型2:由导函数图象确定函数极值 例2 (2006年高考天津卷)函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图2所示,则函数()f x 在开区间()a b ,内有极小值点( ) (A)1个 (B)2个 (C)3个 (D)4个 解:由结论2易知,函数()a b ,只有1个极小值点.

点评:本题主要考查导函数的概念、极值点及对图象的识别能力. 题型3:由导函数图象确定其参数值 例3 (2006年高考北京卷)已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点(1,0),(2,0),如图3所示,求: (1)0x 的值; (2)a ,b ,c 的值. 解:(1)由图象可知,在(1)-∞, 上()0f x '>,在(1,2)上()0f x '<,在(2)+,∞上()0f x '>. 故()f x 在(1)-∞,、(2)+,∞上递增,在(1,2)上递减,(结合结论2知)()f x 在1 x =处取得极大值,所以01x =; (2)2()32f x ax bx c '=++, 由(1)0f '=,(2)0f '=,(1)5f =,得32012405a b c a b c a b c ++=??++=??++=? ,,,, 解得2912a b c ==-=,,. 点评:函数的增减性可由导数的值的符号反映出来,利用图象把导函数与函数紧密结合起来考查成为高考亮丽的风景线.

相关主题
文本预览
相关文档 最新文档