平面向量与直线圆方程
- 格式:doc
- 大小:111.00 KB
- 文档页数:2
解析几何第5版介绍解析几何是数学中一个重要的分支,主要研究在一个平面上的几何形状的性质和关系。
解析几何第5版是一本经典的教材,通过系统的理论解释和大量的实例,帮助读者深入理解解析几何的基本概念和方法。
本文将对该教材进行全面、详细、完整的探讨,帮助读者深入了解解析几何。
第一章:平面解析几何基本概念1.1 平面直角坐标系平面直角坐标系是解析几何的基础,通过引入坐标轴和坐标点的概念,将几何图形转化为数学问题。
平面直角坐标系包括原点、横坐标轴、纵坐标轴等基本要素,通过坐标点的表示方法,可以准确描述平面上的点的位置。
1.2 平面向量及其运算平面向量是解析几何中另一个重要的概念,它由大小和方向共同确定。
平面向量的运算包括加法、减法、数量乘法等,这些运算法则可以简化解析几何问题的求解过程。
平面向量的性质和运算规律是解析几何中的基本知识点,读者应该牢固掌握。
1.3 平面直线及其方程平面直线是解析几何中的另一个重要概念,它可以由一个或两个方程来描述。
通过对平面直线的方程进行研究,可以准确地描述直线的性质,如斜率、截距等。
平面直线的方程是解析几何中的基础知识,对于解析几何问题的解答至关重要。
1.4 平面曲线及其方程平面曲线是解析几何中较为复杂的概念,它包括圆、椭圆、抛物线、双曲线等形状。
每种曲线都有特定的方程形式,通过研究这些方程,可以揭示曲线的性质和变化规律。
平面曲线的方程是解析几何中的进阶知识,读者需要具备一定的数学基础才能深入理解。
第二章:直线与圆相关性质2.1 直线的位置关系在解析几何中,直线的位置关系是一个重要的研究方向。
直线可以相交、平行或重合,这种关系对于解析几何问题的求解有着重要的指导作用。
本节将详细介绍直线的位置关系及其性质。
2.2 圆的位置关系圆在解析几何中也是一个重要的研究对象,它可以相交、相切或包含等。
圆的位置关系不仅涉及圆心的位置,还涉及半径、切线等概念。
本节将详细介绍圆的位置关系及其性质。
直线和圆及平面向量在高考中的特点直线和圆、平面向量是高中数学中比较基础的两章.数形结合、转化思想在这两章达到完美体现,它们在高考中往往起到基础或工具作用,纵观历年高考试卷,这两部分试题分值占较大的比例,约占20﹪;题型多为中档题,以考查三基为主,概括起来它们有以下几个特点:特点1:考查直线斜率(范围)这个最典型的概念,体现高考考试是考查数学基础的考试。
直线的倾斜角、斜率、截距和方程是直线和圆一章的基本量,它们的考查多以客观题形式出现,问题中主要渗透数形结合、分类讨论等思想,具有重方法选择,轻运算之特点。
例1、设直线l过点(-2,0),且与圆x2+y2=1相切,则l的斜率是()a)±1 b)±c)± d)±分析1、设直线的斜率为k,建立直线方程,根据圆心到直线的距离等于半径,易求得k=±;故选(c)分析2、如右图=1,=2,∴∠bao=30°∴k=±;故选(c)温馨提示:本题考查了数形结合思想,直线和圆的对称性,方法选择上体现优化数学解法的重要性。
特点2:线性规划主要考查不等式组表示平面区域等基础内容,是个难点,它体现了高考考查的应用性。
线性规划部分是数学应用的体现,它着重考查不等式(组)表示平面区域,利用截距的意义,从运动变化的观点,研究目标函数的最值,题型新、动静结合达到了很好的体现。
例2:在坐标平面上,不等式组所表示的平面区域的面积为(a)(b)(c)(d)2分析:如右图,显然a(0,1) d(0,-1)通过联立方程组可求b(-1,-2 c(,-)观察可得 s△abc=s△abd+s△adc=(+)=×2×(1+)=故选(b)温馨提示:人们常说数学是一门具有方法论的学科,作出不等式组表示的区域并不难,但三角形的面积如何求是个难点,因此我们平常应加强方法教学(分割法、补形法)。
特点3:平面向量的运算(数量积、加法、减法和数乘)是本章的重点知识,向量平行和垂直的应用是热点,而高考的考查则坚持考重点和热点的原则。
高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。
第6讲 平面向量等和线定理求系数和问题【考点分析】考点一:平面向量等和线问题 ①平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
①平面向量等和线问题平面内一组基底,OA OB 及任一向量OP ,(,)OP OA OB R λμλμ=+∈,若点P 在直线AB 上或者在平行于AB的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
注意:1.当等和线恰为直线AB 时,1k =;2.当等和线在O 点和直线AB 之间时,(0,1)k ∈;3.当直线AB 在点O 和等和线之间时,(1,)k ∈+∞;4.当等和线过O 点时,0k =;5.若两等和线关于O 点对称,则定值k 互为相反数; 【典型例题】题型一: 平面向量等和线求系数和问题【例1】如图,在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若满足AP mAB nAD =+,则n m +的最大值为( )A .3B .22C .5D .2OABCP P 1【答案】A【解析】法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系, 则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,2BC =,1CD =,BD ∴∴1122BC CD BD r =,r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为1θ+2)θ+,AP AB AD λμ=+,1θ∴+2)(1θλ+=,0)(0μ+,2)(λ=,2)μ,∴1θλ+=22θμ+=,2sin()2λμθθθϕ∴+=++=++,其中tan 2ϕ=,∵1)sin(1≤+≤-ϕθ,∴31≤+≤μλ,故λμ+的最大值为3,故选A .法二:由等和线性质知:APAPAD AN n m 1==+,所以当1P 在如图所示位置时,n m +取得最大值,33==+rr n m 【例2】如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .1【答案】A 【详解】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F , 设AP AE AF λμ=+,则1λμ+=, ∵BC//EF ,∴设AE AF k AB AC ==,则4[0,]3k ∈ ∴,AE k AB AF k AC ==,AP AE AF k AB k AC λμλμ=+=+ ∴,x k y k λμ==∴22x y=+8223k k λμ+=≤()故选:A.【例3】在ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN AB AC λμ=+(λ,μ∈R ),则λμ+的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .[0,1]D .[1,2]【答案】C 【解析】 【分析】设AN t AM =,()01t ≤≤,当0=t 时, 可得0λμ==,从而有0λμ+=;当01t <≤时,有B A A M AC ttλμ=+,根据M 、B 、C 三点共线,可得1t t,进而可得(]0,1t λμ+=∈,从而即可求解.【详解】解:由题意,设AN t AM =,()01t ≤≤,当0=t 时,0AN =,所以0AB AC λμ+=, 所以0λμ==,从而有0λμ+=;当01t <≤时,因为AN AB AC λμ=+(λ,μ∈R ), 所以B t A A A M C λμ=+,即B A A M AC ttλμ=+,因为M 、B 、C 三点共线,所以1t t,即(]0,1t λμ+=∈.综上,λμ+的取值范围是[0,1]. 故选:C.【例4】如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD 与BA 平行,若OP xOB yOA =+,当12x =-时,y 的取值范围是( )A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】根据向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OA 与OB 的反向延长线为两邻边,当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,得到y 的取值范围. 【详解】∵//OD AB ,OP xOA yOB =+,由向量加法的平行四边形法则,OP 为平行四边形的对角线, 该四边形应是以OA 与OB 的反向延长线为两邻边,∴当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,13,22CE OA CF OA ==,∴y 的取值范围为1322⎡⎤⎢⎥⎣⎦,.故选:D.【例5】在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+,则3x y +的取值范围是_________. 【答案】[]1,3 【解析】 【分析】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.向量坐标化进行坐标运算,利用三角函数求出3x y +的取值范围. 【详解】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.则()11,0,2OA OB ⎛== ⎝⎭.不妨设()cos ,sin ,03OC πθθθ⎛⎫=≤≤ ⎪⎝⎭. 因为OC xOA yOB =+,所以1cos 2sin x y yθθ⎧=+⎪⎪⎨⎪=⎪⎩,解得:cos x y θθθ⎧=⎪⎪⎨⎪=⎪⎩,所以s 3co 3in x y θθ+=. 因为cos y θ=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,sin y θ=-在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,所以s 3co 3in x y θθ+=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减.所以当0θ=时33x y +=最大;当3πθ=时cos1333332x y ππ===+最小. 所以3x y +的取值范围是[]1,3. 故答案为:[]1,3. 【题型专练】1.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )A .4 BC .2 D【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标表示M ,结合三角函数最值的求法,求得λμ+的最大值. 【详解】依题意在直角ABC 中,AB AC ⊥,2AB AC ==, 以A 为原点建立如图所示平面直角坐标系,()()0,2,2,0C B ,设D 是BC 的中点,则()1,1D .BC =(),M x y 满足()()22211x y -+-=,设11x y αα⎧=+⎪⎨=+⎪⎩(α为参数,π3π44α-≤≤),依题意AM AB AC λμ=+,即()()()1,12,00,2ααλμ=+,()()1,12,2ααλμ=,λμ⎧⎪⎪⎨⎪⎪⎩,π22sin π4sin 124αλμα⎛⎫++ ⎪⎛⎫⎝⎭+===++ ⎪⎝⎭, 所以当πππ,424αα+==时,λμ+取得最大值为2. 故选:C2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .CD .2【答案】A 【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心Q 在线段CD (含端点)上运动,P 是圆Q 上及其内部的动点,设向量AP mAB nAF =+(m ,n 为实数),则m +n 的最大值为______.【答案】5 【解析】 【分析】根据||||||AC AQ AD ≤≤及||1||||1AQ AP AQ -≤≤+得到1||5AP ≤≤,根据平面向量知识得到22||4()12AP m n mn =+-,利用2()4m n mn +≤可求出结果.【详解】在边长为2的正六边形ABCDEF 中,AC CD ⊥,||224AD =⨯=, 所以||||4AQ AD ≤=,当且仅当Q 与D 重合时,等号成立,又||||1AP AQ ≤+,即||415AP ≤+=,当||5AP =时,P 是AD 的延长线与圆Q 的交点,此时,由AP mAB nAF =+可知,m n =.因为AP mAB nAF =+,且2π,3AB AF <>=, 所以22222||||2||||||AP m AB mn AB AF n AF =⋅+⋅⋅+⋅22144222()2m n mn =++⋅⋅⋅-22444m n mn =+- 24()12m n mn =+-,所以2211()||312mn m n AP =+-,结合图形可知,0,0m n >>,由2()0m n -≥,得2m n mn +≥,即2m n mn +≥,即2()4m n mn +≤,当且仅当m n =时等号成立,所以22211()()||3124m n m n AP ++-≤,所以||m n AP +≤,又||5AP ≤,时,等号成立, 所以5m n +≤,当且仅当m n =时,等号成立. 即m +n 的最大值为5. 故答案为:5.4.已知ABC 的外接圆圆心为O ,120A ∠=,若AO x AB y AC =+(x ,y R ),则x y +的最小值为( )A .12 B .23C .32D .2【答案】D 【解析】 【分析】设OA 与BC 交点为E ,则AE AB AC λμ=+其中1λμ+=,由于()RAO xAB y AC AB AC R OEλμ=+=+-,得()R R x y R OE R OE λμ+=+=--,因为2ROE R ≤< 故x y +的最小值可得.【详解】设OA 与BC 交点为E ,设OE m =,圆的半径为R ,D 为BC 中点,如图所示:则RAO AE R m=-,设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+= 所以()R AO xAB y AC AB AC R m λμ=+=+-,故()R Rx y R m R mλμ+=+=-- 因为120A ∠=︒,则60COD ∠=︒所以1cos602OD R R =︒=则2R m R ≤< ,故22R RR R m R ≥=-- 所以x y +的最小值为2 故选:D 【点睛】设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+=,得()R Rx y R m R mλμ+=+=--是解题的关键. 5.给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π,如图所示点C 在 以O 为圆心的圆弧AB 上运动,若OC xOA yOB =+,其中x ,y R ∈,则x y +的取值范围为( )A .(1,2]B .[1,2]C .[1,2)D .[2-,2]【答案】B解析:由等和线性质知:连接AB ,当C 点在B A 或点时,()1min =+y x ;作AB 的平行线,当与AB 相切时,当C 点在切点时,()2max =+y x6.已知O 是ABC ∆内一点,且0OA OB OC ++=,点M 在OBC ∆内(不含边界),若AM AB AC λμ=+,则2λμ+的取值范围是A .51,2⎛⎫ ⎪⎝⎭B .()1,2C .2,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 【答案】B【解析】根据0OA OB OC ++=可知O 为ABC ∆的重心;根据点M 在OBC ∆内,判断出当M 与O 重合时,2λμ+最小;当M 与C 重合时,2λμ+的值最大,因不含边界,所以取开区间即可.【详解】因为O 是ABC ∆内一点,且0OA OB OC ++=所以O 为ABC ∆的重心M 在OBC ∆内(不含边界),且当M 与O 重合时,2λμ+最小,此时 ()21113233AM AB AC AB AC AB AC λμ⎡⎤=+=⨯+=+⎢⎥⎣⎦ 所以11,33λμ==,即21λμ+= 当M 与C 重合时,2λμ+最大,此时AM AC =所以0,1λμ==,即22λμ+=因为M 在OBC ∆内且不含边界所以取开区间,即()21,2λμ+∈所以选B【点睛】本题考查了向量在三角形中的线性运算,特殊位置法的应用,属于难题. 7.在直角ABC 中,A ∠为直角,1,2AB AC ==,M 是ABC 内一点,且12AM =,若AM AB AC λμ=+,则23λμ+的最大值为_________. 【答案】54【解析】【分析】由12AM =得出22144λμ+=,即224+161λμ=,且由0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭,然后利用辅助角公式可求出23λμ+的最大值.【详解】 2A π∠=,1AB =,2AC =,AM AB AC λμ=+,则0AB AC ⋅=,且12AM =, 则()222222221244AM AB AC AB AB AC AC λμλλμμλμ=+=+⋅+=+=, 点M 在ABC 内,则0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭, ()3523cos sin sin 44λμθθθϕ∴+=+=+,其中4tan 3ϕ=, 因此,4λμ+的最大值为54. 故答案为:54. 8.如图,扇形的半径为1,且0OA OB ⋅=,点C 在弧AB 上运动,若OC xOA yOB =+,则2x y +的最大值是__________【解析】【分析】根据题意将OC xOA yOB =+,两边同时平方可得221x y =+,再三角代换cos sin [0,]2x y πααα==∈,,,利用三角函数的性质即得.【详解】由题意得,0OA OB ⋅=,1OA OB ==,1OC =,由OC xOA yOB =+,等式两边同时平方,得2OC =22222x OA y OB xy ++OA OB ⋅, 所以221x y =+,令AOC α∠=,则cos sin [0,]2x y πααα==∈,,,则22cos sin )x y αααθ+=+=+,其中sin cos [0,]2πθθθ==∈, 因为2πθαθθ≤+≤+,sin()1αθ≤+≤,所以1)αθ≤+≤即2x y +。
高中数学重要公式定律1.指数(1)分数指数幂①nm nm a a =()1,,,0*>∈>n Nn m a 且②n m n m nm aa a 11-==()1,,,0*>∈>n Nn m a 且③0的正分数指数幂等于0;0的负分数指数幂没有意义。
(2)运算的性质:设Qs ,r ,b<a>∈,00①s r s r a a a +=sr s r aa a +=②r-s s r a aa =③()rssr a a =④()r r r b a ab =⑤rb r a rb a =⎪⎭⎫⎝⎛2.对数(1)性质:①()101log ≠>=,a a a a ②()1001log ≠>=,a a a (2)常用对数:N N lg log 10=;自然对数:N N e In log =(3)运算性质:设1000≠>>>,a ,a ,N M 那么:①()N M MN a a a log log log +=②N M Ma a alog log log -=③()R n M n M a a ∈=log log n (4)常用公式设0011000≠≠≠≠>>>,n ,m ,b ,a ,b ,a N①对数恒等式:N a N a =log ②换底公式:bN N a a b log log log =③ab b a log 1log =3.空间几何体公式(1)侧面积公式:①πrl S 2圆柱侧=②πrl S =圆锥侧③()l r r πS '+=圆台侧(2)表面积公式:①()l r πr S +=2圆柱②2圆锥πr πrl S +=③()rl l r r r πS ''+++=22圆台④2R 4πS =球(3)体积公式:①Sh V =棱柱②hπr V 2圆柱=③ShV 1棱柱=()''S SS S h V ++=1棱台④h πr V 2圆锥31=()22圆台31r'rr r πh V '++=⑤3球34πR V =4.直线与平面之间的平行与垂直(1)空间两直线平行的判定:①c a c b b a //////⇒⎭⎬⎫②b a b a //⇒⎭⎬⎫⊥⊥αα③ba b a //⇒⎭⎬⎫=⊂βαβ ④a//bb βγa αγ⇒⎭⎬⎫== (2)空间两直线垂直的判定:①b a b a a ⊥⇒⎪⎭⎪⎬⎫⊂⊥ααα//②b l a l b a ⊥⇒⎪⎭⎪⎬⎫⊥////βα(3)直线与平面平行的判定:①ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄②βαβα////a a ⎭⎬⎫⊂(4)直线与平面平行的性质:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βααβ(5)直线与平面垂直的判定:①ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⊂⊂l n l m l B n m n m ,, ②αα⊥⇒⎭⎬⎫⊥b a b a //(6)直线与平面垂直的性质:b a b a //⇒⎭⎬⎫⊥⊥αα(7)平面与平面平行的判定:①βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂A b a b a b a ②βαβα//⇒⎭⎬⎫⊥⊥a a ③βαγβγα//////⇒⎭⎬⎫(8)平面与平面平行的性质:b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα (9)平面与平面垂直的判定:①βαβα⊥⇒⎭⎬⎫⊥⊂a a ②二面角的平面角90=θ(10)平面与平面垂直的性质:①βαβαβα⊥⇒⎭⎬⎫⊥⊂=⊥a b a a b ,, ②αββαα⊂⇒⎭⎬⎫⊥⊥∈∈a a A a A ,,5.直线、圆与方程(1)直线的斜率公式:()211212x x x x y y k ≠--=(2)直线方程:①点斜式:()00x x k y y -=-②斜截式:b kx y +=③两点式:121121x x x x y y y y --=--④截距式:()01≠=+ab bya x ⑤一般式:()0022≠+=++B A C By Ax (3)两条直线的位置关系:①()()2121222111且平行b b k k b x k y l b x k y l ≠=+=+=:与②()()1垂直21222111-=+=+=k :k b x k y 与l b x k y l ③2121212222111100C CB B A A :)C y B x (A l )C y B x (A l ≠==++=++平行与④000212122221111=+=++=++B B A :A )C y B x (A l )C y B x (A l 垂直与(4)距离公式:①两点间距离:()()21221221y y x x P P -+-=②点到直线的距离:2200B A CBy Ax d +++=③两平行线间的距离:2212B A C C d +-=(5)圆的方程:①圆的标准方程:()()222r b y a x =-+-,其中圆心为()b a ,,半径为r②圆的一般方程:FE D r E DF E D F Ey Dx y x 421,2,2,04,0222222-+=⎪⎭⎫⎝⎛-->-+=++++半径为圆心为其中(6)空间直角坐标系:①空间中的点与原点的距离公式:222z y x OP ++=②空间中任意两点的距离公式:()()()22122122121z z y y x x P P -+-+-=③空间的中点坐标公式:⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x 6.概率与统计(1)概率:①古典概型的概念公式:()nmA A P ==基本事件总数包含的基本事件数事件②几何概型的概率公式:()()()体积积或面的区域长区试验的全部结果所构成体积积或面的区域长区构成事件A A P =(2)统计①离散型随机变量的数学期望:()nn i i p x p x p x p x X E ++++=2211性质:()()()是常数b a b X aE b aX E ,+=+若X 服从两点分布,则()p X E =;若X 服从二项分布,即()p n B X ,~,则()npX E =②离散型随机变量的方差:()()()ini i p X E x X D ∑=-=12性质:()()()是常数b a X D a b aX D ,2=+若X 服从两点分布,则()()p p X D -=1若X 服从二项分布,即()p n B X ,~,则()()p np X D -=17.三角函数(1)弧度与角度的换算关系:①rad rad 017453.01==π②'18573.571801=≈⎪⎭⎫ ⎝⎛=πrad (2)弧长公式:rl α=扇形的面积公式:2211r lr S α==(3)同角三角函数的基本关系:①1cos sin 22=+αα②⎪⎭⎫⎝⎛∈+≠=z ,k πkπαααα2cos sin tan (4)三角函数的诱导公式:公式一:()απαsin 2sin =⋅+k ()απαcos 2cos =⋅+k ()()z k απk α∈=⋅+其中tan 2tan 公式二:()ααπsin sin -=+()ααπcos cos -=+()ααπtan tan =+公式三:()ααsin sin -=-()ααcos cos =-()ααtan tan -=-公式四:()ααπsin sin =-()ααπcos cos -=-()ααπtan tan -=-公式五:ααπcos 2sin =⎪⎭⎫⎝⎛-ααπsin 2cos =⎪⎭⎫⎝⎛-公式六:ααπcos 2sin =⎪⎭⎫⎝⎛+ααπsin 2cos -=⎪⎭⎫⎝⎛+8.平面向量(1)向量的坐标运算:设()()则,,,,,2211R y x b y x a ∈==λ①()2121,y y x x b a ±±=±②()()1111,,y x y x a λλλλ== ③2121cos y y x x b a b a +=⋅=⋅θ (2)平面向量的重要定理、公式:①平面向量基本定理:2211e e aλλ+=②两个向量平行的充要条件:()0//1221=-⇔=⇔≠y x y x b a b b aλ③两个非零向量垂直的充要条件:002121=+⇔=⋅⇔⊥y y x x b a b a④长度公式:()()⎧-+-=+=22122122y y x x y x a ⑤角度公式:()之间的夹角与为非零向量b a y x y x y y x x b a b aθcos 222221212121+⋅++=⋅⋅=θ9.三角恒等变换(1)两角和与差的三角函数:()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±()()πϕϕϕϕααα20cos ,sin ;sin cos sin 222222≤≤+=+=++=+ba a ba b b a b a 其中(2)二倍角公式:αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=(3)积化和差与和差化积公式:()()βαβαβα-++=sin sin cos sin 2()()βαβαβα--+=sin sin sin cos 2()()βαβαβα-++=cos cos cos cos 2()()βαβαβα--+=-cos cos sin sin 22cos 2sin 2sin sin βαβαβα-+=+sincos 2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-(4)半角公式:2cos 1sinαα-±=2cos 1cosαα+±=αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=10.解三角形(1)正弦定理:()的外接圆外接为2sin sin sin ΔABC R R CcB b A a ===(2)余弦定理:Abc c b a cos 2222-+=Bac c a b cos 2222-+=Cab b a c cos 2222-+=推理:bca cb A 2cos 222-+=acb c a B 2cos 222-+=abc b a C 2cos 222-+=(3)三角形的面积公式Cab B ac A bc S sin 21sin 21sin 21===∆11.数列(1)等差数列:通项公式:()dn a a n 11-+=中项公式:()成等差列,,2b A a b a A +=前n 项和公式:()()dn n na a a n S n n 21211-+=+=(2)等比数列:通项公式:11-=n n q a a 中项公式:abG =2()成等比数列,,b G a 前n 项和公式:()()()⎪⎩⎪⎨⎧=≠--=--=11111S 111n q na q q q a a q q a n n (3)n a 与n S 的关系:()()⎩⎨⎧=≥-=-1211n S n S S a n nn (4)常用求和公式:①()211+=∑=n n k nk ②()()612112++=∑=n n n k nk ③()2131⎥⎦⎤⎢⎣⎡+=∑=n n k nk 12.基本不等式(1)()时等号成立当且仅当b a ab b a =≥+222(2))时等号成立当且仅当b a ab ba =≥+(3)()()时等号成立当且仅当b a b a b a ba ab ba =>+≤+≤≤+0,,221122213.圆锥曲线与方程(1)椭圆:标准方程:()012222>>=+b a b y a x 离心率:()222,10b a c e ace -=<<=(2)双曲线:标准方程:()0,012222>>=-b a b y a x 离心率:()222,1b a c e ace +=>=(3)抛物线:标准方程:()022>=p px y 准线:2p x -=离心率:1=e 14.空间向量与立体几何(1)空间向量运算的坐标表示:设()()为实数,则,,,,,,222111λz y x b z y x a ==()212121,,z z y y x x b a +++=+()212121,,z z y y x x b a ---=-()111,,z y x a λλλλ=212121z z y y x x b a ++=⋅222222212121212121,cos z y x z y x z z y y x x ba b a b a ++⋅++++=⋅⋅=(2)空间向量的平行和垂直:()λλ===⇔=⇔≠2121210//z z y y x x b a b b a2121210z z y y x x b a b a ++⇔=⋅⇔⊥(3)空间两点的距离:()()()212212212z z y y x x -+-+-=15.导数及其应用(1)几种常见函数的导数:①()为常数0'c c =②()()0,1'≠∈=-n Q n nx x n n 且③()x x cos sin '=④()x x sin cos '-=⑤()x x e e ='⑥()()1,0'≠>=a a Ina a a x x 且⑦()()01'>=x x Inx ⑧()()1,0,01log '≠>>=a a x x a 且(2)导数的运算①()[]()[]()()x g x f x g x f '''±=±②()()[]()()()()x g x f x g x f x g x f '''+=⋅③()()()()()()()[]()()02'''≠-=⎥⎦⎤⎢⎣⎡x g x g x g x f x g x f x g x f (3)定积分的基本性质:①()()()为常数k dx x f k dx x kf ba b a ⎰⎰=②()()[]()()⎰⎰⎰±=±b a b a b a dx x f dx x f dx x f x f 2121③()()()()b c a dx x f dx x f dx x f bc c a b a <<+=⎰⎰⎰其中16.数系的扩充与复数的引入(1)复数:()R b a bi a z ∈+=,,其共轭复数为bia z -=(2)复数的代数运算12-=i i i -=314=i d b c a di c bi a ==⇔+=+,()()()()i d b c a di c bi a ±+±=+±+()()()()i ad bc bd ac di c bi a ++-=++()02222≠++-+++=++di c i ad bc bd ac bi a 17.记数原理(1)排列数公式:()()()()()n m N m n m n n m n n n n A m n ≤∈-=+---=且、,!!121* (2)组合数公式:()()()()()n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+---==且、,!!!!121* (3)组合数与排列数的关系:()n m A C A m m m n m n≤⋅=(4)二项式定理()()*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+-- 通项公式:()n r b a C T r r n r nr ≤≤=-+01二项式系数的性质:①m n n m n C C -=②n n n n nC C C 210=+++ ③131202-=++=++n n n n nC C C C 特例:1!0=10=n C。
平面向量的向量方程和参数方程在向量代数中,平面向量是研究平面上的向量运算和方程的工具之一。
平面向量既可以用向量方程的形式表示,也可以用参数方程的形式表示。
本文将探讨平面向量的向量方程和参数方程,并分析它们的应用。
1. 向量方程向量方程是用向量表示的平面上的一个点集合。
对于平面上的任意一点P(x, y),可以用向量a和b来表示,即P = a + b。
其中,a和b为平面上的两个向量。
向量方程的一般形式为:P = O + ra + sb其中,P为表示平面上的点的向量,O为平面上的一个已知点的向量,a和b为平面上的两个已知向量,r和s为任意常数。
向量方程中的ra和sb表示与向量a和b的长度成比例的向量。
向量方程的应用非常广泛。
例如,在几何学中,可以用向量方程表示平面上的直线和曲线。
在物理学和工程学中,向量方程常用于描述平面上的力、速度和位移等物理量。
2. 参数方程参数方程是用参数表示的平面上的一个点集合。
对于平面上的任意一点P(x, y),可以用参数t来表示,即P = P(t)。
参数方程的一般形式为:x = f(t),y = g(t)其中,x和y为平面上的坐标,f(t)和g(t)为与参数t有关的函数。
参数方程中的函数f(t)和g(t)描述了平面上的x坐标和y坐标与参数t的关系。
参数方程的优势在于可以表示复杂的曲线和图形。
通过调整参数t 的取值范围,可以得到曲线上的所有点。
参数方程常用于计算机图形学和数学建模等领域。
3. 向量方程与参数方程的关系向量方程和参数方程可以相互转化。
给定一个向量方程,可以通过分解向量得到对应的参数方程。
具体而言,对于向量方程P = O + ra + sb,可以将其分解为:x = Ox + ra1x + sb1xy = Oy + ra1y + sb1y其中,Ox和Oy为点O的x坐标和y坐标,a1x、a1y、b1x和b1y 为向量a和b的分量。
相反地,给定一个参数方程x = f(t),y = g(t),可以通过构造向量得到对应的向量方程。
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。
平面向量 坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=-- . (4)设a =(,),x y R λ∈,则λa =(,)x y λλ. (5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +.向量内积:a 与b 的数量积(或内积):a ·b =|a ||b |cos θ 两向量的夹角公式:121222221122cos ||||x x y y a b a b x y x y θ+⋅==⋅+⋅+ (a =11(,)x y ,b =22(,)x y ).平面两点间的距离公式:,A B d 222121()()x x y y =-+- (A 11(,)x y ,B 22(,)x y ). 向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0 ,则:a ||b 12210x y x y ⇔-=.(交叉相乘差为零) a ⊥b (a ≠0 )⇔ a ·b =012120x x y y ⇔+=.(对应相乘和为零)线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ= ,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ 直线和圆斜率公式 :2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 直线方程:(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式 112121y y x x y y x x --=--(12y y ≠) (111(,)P x y 、222(,)P x y (1212,x x y y ≠≠))(4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,00a b ≠≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 直线0Ax By C ++=的法向量:(,)l A B '= ,方向向量:(,)l B A =-夹角公式:(1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.1l 到2l 的角:(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 点到直线的距离 :0022||Ax By C d A B++=+(点00(,)P x y ,直线l :0Ax By C ++=).圆的四种方程:(1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.点与圆的位置关系:点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种:2200()()d a x b y =-+-, 则d r >⇔点P 在圆外; d r =⇔点P 在圆上; d r <⇔点P 在圆内.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=): 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21,则:条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .立体几何空间中的平行问题线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
数学选修一知识点汇总
一、平面向量
1. 向量的基本概念:
- 向量的定义
- 零向量
- 平行向量
- 共线向量
2. 向量的运算:
- 向量的加法
- 向量的减法
- 向量的数量积
- 向量的点积
3. 向量的基本性质:
- 向量的相等性质
- 向量的加法交换律
- 向量的加法结合律
- 向量的数量积分配律
- 向量的点积性质
二、坐标系
1. 直角坐标系:
- 直角坐标系的建立
- 坐标与向量的关系
- 向量的坐标表示
2. 极坐标系:
- 极坐标系的建立
- 极坐标与直角坐标的转换
三、解析几何
1. 直线与圆的方程:
- 直线方程的一般式
- 直线方程的斜率截距式
- 圆的方程
2. 直线与圆的位置关系:
- 直线与圆的位置关系的判定方法
四、函数与方程
1. 函数的概念与性质:
- 函数的定义
- 函数的单调性
- 函数的奇偶性
- 函数的周期性
2. 一次函数与二次函数:
- 一次函数的性质
- 一次函数的图像
- 二次函数的性质
- 二次函数的图像
以上是数学选修一的一些重要知识点的汇总,希望对你的研究有所帮助。
专题七 平面向量的等和线根据平面向量基本定理,如果P A →,PB →为同一平面内两个不共线的向量,那么这个平面内的任意向量PC →都可以由P A →,PB →唯一线性表示:PC →=xP A →+yPB →.特殊地,如果点C 正好在直线AB 上,那么x +y =1,反之如果x +y =1,那么点C 一定在直线AB 上.于是有三点共线结论:已知P A →,PB →为平面内两个不共线的向量,设PC →=xP A →+yPB →,则A ,B ,C 三点共线的充要条件为x +y =1.以上讨论了点C 在直线AB 上的特殊情况,得到了平面向量中的三点共线结论.下面讨论点C 不在直线AB 上的情况.如图所示,直线DE ∥AB ,C 为直线DE 上任一点,设PC →=xP A →+yPB →(x ,y ∈R ).1.平面向量等和线定义(1)当直线DE 经过点P 时,容易得到x +y =0.(2)当直线DE 不过点P 时,直线PC 与直线AB 的交点记为F ,因为点F 在直线AB 上,所以由三点共线结论可知,若PF →=λP A →+μPB →(λ,μ∈R ),则λ+μ=1.由△P AB 与△PED 相似,知必存在一个常数k ∈R ,使得PC →=kPF →(其中k =|PC ||PF |=|PE ||P A |=|PD ||PB |),则PC →=kPF →=kλP A →+kμPB →.又PC →=xP A →+yPB → (x ,y ∈R ),所以x +y =kλ+kμ=k .以上过程可逆.在向量起点相同的前提下,所有以与两向量终点所在的直线平行的直线上的点为终点的向量,其基底的系数和为定值,这样的线,我们称之为“等和线”.2.平面向量等和线定理平面内一组基底PA →,PB →及任一向量PF →满足:PF →=λPA →+μPB →(λ,μ∈R ),若点F 在直线AB 上或在平行于AB 的直线上,则λ+μ=k (定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线.3.平面向量等和线性质(1)当等和线恰为直线AB 时,k =1;(2)当等和线在点P 和直线AB 之间时,k ∈(0,1); (3)当直线AB 在点P 和等和线之间时,k ∈(1,+∞); (4)当等和线过点P 时,k =0;(5)若两等和线关于点P 对称,则定值k 互为相反数. 考点一 根据等和线求基底系数和的值 【方法总结】根据等和线求基底系数和的步骤(1)确定值为1的等和线;(2)平移(旋转或伸缩)该线,作出满足条件的等和线;(3)从长度比或点的位置两个角度,计算满足条件的等和线的值.已知点P 是△ABC 所在平面内一点,且AP →=xAB →+yAC →,则有点P 在直线BC 上⇔x +y =1;点P 与点A 在直线BC 异侧⇔x +y >1,且x +y 的值随点P 到直线BC 的距离越远而越大;点P 与点A 在直线BC 同侧⇔x +y < 1,且x +y 的值随点P 到直线BC 的距离越远而越小.平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和.考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操作,那么理论上来说,所有的系数之间的线性关系,我们都可以通过调节基底,使得要求的表达式是两个新基底的系数和.【例题选讲】[例1](1)如图,A ,B 分别是射线OM ,ON 上的点,给出下列以O 为起点的向量:①OA →+2OB →;②12OA→+13OB →;③34OA →+13OB →;④34OA →+15OB →;⑤34OA →+BA →+23OB →.其中终点落在阴影区域(不包括边界)内的向量的序号是________(写出满足条件的所有向量的序号).答案 ①③ 解析 由向量共线的充要条件可得,当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP →=uOA →+v OB →成立,且u +v =1,所以点P 位于阴影区域内的充要条件是“满足OP →=uOA →+v OB →,且u >0,v >0,u +v >1”.①因为1+2>1,所以点P 位于阴影区域内,故正确;同理③正确,②④不正确;⑤原式=34OA →+(OA →-OB →)+23OB →=74OA →-13OB →,而-13<0,故不符合条件.综上可知,只有①③正确.(2)设向量OA →,OB →不共线(O 为坐标原点),若OC →=λOA →+μOB →,且0≤λ≤μ≤1,则点C 所有可能的位置区域用阴影表示正确的是( )答案 A 解析 当λ=0时,OC →=μOB →,故点C 所有可能的位置区域应该包括边界OB →或OB →的一部分,故排除B ,C ,D 项.故选A 项.(3)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14 D .1答案 A 解析 通法 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 等和线法 如图,BC 为值是1的等和线,过N 作BC 的平行线,设λ+μ=k ,则k =|AN ||AM |.由图易知,|AN ||AM |=12,故选A .(4)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 通法 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF→=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧ 12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43. 等和线法 如图,EF 为值是1的等和线,过C 作EF 的平行线,设λ+μ=k ,则k =|AC ||AM |.由图易知,|AC ||AM |=43,故选B . A(5)如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,向量AO →=λa +μb ,则λ+μ的值为_______.答案 23解析 等和线法 如图,BC 为值是1的等和线,过O 作BC 的平行线,设λ+μ=k ,则k=|AO ||AM |.由图易知,|AO ||AM |=23. B(6)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )BA .1B .34C .23D .12答案 B 解析 通法 ∵为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.等和线法 如图,AD 为值是1的等和线,过E 作AD 的平行线,设λ+μ=k ,则k =|BE ||BF |.由图易知,|BE ||BF |=34,故选B .(7)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .54答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.等和线法 如图,连接MN 并延长,交AB 的延长线于点T ,则MT 为值是1的等和线,设λ+μ=k ,则k =|AB ||AT |.由图易知,|AB ||AT |=45,故选C .(8) (2013江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC→(λ1,λ2∈R ),则λ1+λ2的值为________.答案 12 解析 如图,过点A 作AF →=DE →,设AF 与BC 的延长线交于点H ,易知AF =FH ,∴DF =12BH ,因此λ1+λ2=12.(9)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,且AF →=λa +μb ,则λ+μ等于( )A .1B .34C .23D .12答案 A 解析 等和线法 如图,作AG →=BD →,延长CD 与AG 相交于G ,因为C ,F ,G 三点共线,所以λ+μ=1.故选A .C考点二 根据等和线求基底的系数和的最值(范围) 【方法总结】根据等和线求基底的系数和的最值(范围)的步骤(1)确定值为1的等和线;(2)平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值; (3)从长度比或点的位置两个角度,计算最大值和最小值.当点P 是某个平面区域内的动点时,首先作与基底两端点连线平行的直线l ,因点P 无论在l 何处,对应α+β的值恒为定值,我们不妨称之为“等和线”(或“等值线”),然后将“等和线”l 在动点P 的“可行域”内平行移动,于是问题便转化为求两个线段长度的比值范围,称之为“平移法”.已知点P 是△ABC 所在平面内一点,且AP →=xAB →+yAC →,则有点P 在直线BC 上⇔x +y =1;点P 与点A 在直线BC 异侧⇔x +y >1,且x +y 的值随点P 到直线BC 的距离越远而越大;点P 与点A 在直线BC 同侧⇔x +y < 1,且x +y 的值随点P 到直线BC 的距离越远而越小.平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和.考虑到向量可以通过数乘继而将向量进行拉伸压缩反向等操作,那么理论上来说,所有的系数之间的线性关系,我们都可以通过调节基底,使得要求的表达式是两个新基底的系数和.【例题选讲】[例1](1)如图,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R ),则α+β的取值范围是________.答案 [3,4] 解析 等和线法 直线BF 为k =1的等和线,当P 在△CDE 内时,直线EC 是最近的等和线,过D 点的等和线是最远的,所以α+β∈[AN AM ,ADAM]=[3,4].(2)(2009安徽)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3,如图所示,点C 在以O 为圆心的弧AB 上运动,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的最大值是________.答案 2 解析 通法 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y yαα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.等和线法 令x +y =k ,所有与直线AB 角度,不难得到k =|DO ||OE |=2.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .等和线法 过动点P 作等和线,设x +y =k ,则k =|AM ||AB |.由图易知,当等和线与EF 重合时,k 取最大值,由EF ∥BD ,可求得|AE ||AB |=3,∴λ+μ取得最大值3.故选A .(4)在直角梯形ABCD 中,AB ⊥AD ,AD =DC =1,AB =3,动点P 在以点C 为圆心,且与直线BD 相切的圆内运动,设AP →=xAB →+yAD →(x ,y ∈R ),则x +y 的取值范围是________.答案 ⎝⎛⎭⎫1,53 解析 等和线法 如图,作CE ⊥BD 于E ,由△CDE ∽△DBA 知CE DA =CD BD ,即CE 1=110,所以CE =1010,设与BD 平行且与圆C 相切的直线交AD 延长线于点F ,作DH 垂直该线于点H ,显然DH =2CE =105,由△DFH ∽△BDA 得DF BD =DH BA ,即DF10=105 3,所以DF =23,过点P 作直线l ∥BD ,交AD 的延长线于点M ,设t =AMAD,则x +y =t ,由图形知“等值线”l 可从直线BD 的位置平移至直线FH 的位置(不包括BD 和FH ),由平面几何知识可得1=AD AD <AM AD <AF AD =53,即1<t <53,故x +y 的取值范围是⎝⎛⎭⎫1,53.(5)如图,在平行四边形ABCD 中,M ,N 为CD 的三等分点,S 为AM 与BN 的交点,P 为边AB 上一动点,Q 为三角形SMN 内一点(含边界),若PQ →=xAM →+yBN →(x ,y ∈R ),则x +y 的取值范围是________.答案 [34,1] 解析 如图,作PE →=BN →,PF →=AM →,过S 直线MN 的平行线,由等和线定理知,(x +y )max =1,(x +y )min =34.(6)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.A等和线法 BM →=xBA →+yBD →=2x (12BA →)+yBD →=2xBE →+yBD →,作出值1为的等和线DE ,AC 是过圆上的点最远的等和线,设2x +y =k ,则k =|NB ||PB |=2.∴2x +y 取得最大值2.故选C .(7) 如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0) 解析 通法 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).等和线法 如图,作OA →,OB →的相反向量OA 1→,OB 1→,则AB ∥A 1B 1,过O 作直线l ∥AB ,则直线l ,A 1B 1分别为以OA →,OB →为基底的值为0,-1的等和线,由题意线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,所以点C 在直线l 与直线A 1B 1之间,所以m +n ∈(-1,0).(8)已知点O 为△ABC 的边AB 的中点,D 为边BC 的三等分点,DC =2DB ,P 为△ADC 内(包括边界)任一点,若OP →=xOB →+yOD →,则x -2y 的取值范围为________.答案 [-8,-1] 解析 等和线法 如图,延长DO 至点E ,使DO =2OE ,则OE →=-12OD →,则OP →=xOB →+yOD →=xOB →+(-2y ) OE →,令z =-2y ,则x -2y =x +z ,OP →=xOB →+zOE →,设过点A ,C ,P 与BE 平行的直线分别为为l 1,l 2,l ,设l ,l 2交线段OD 延长线于点M ,H ,l 1交线段OD 于点K ,令x +z =t ,由图形知,t =-OMOE ,“等和线”l 可从l 1的位置平移至l 2的位置,由平面几何知识可知△OBE ≌△OAK ,△DBE∽△DCH ,所以OE OK =OB OA =1,BD CD =DE DH =3OE DH =12,所以1=OK OE ≤OM OE ≤OH OE =OD +DH OE =2OE +6OEOE =8,则-8≤t ≤-1,故x -2y 的取值范围为[-8,-1].(9)如图,在边长为1的正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧(在正方形内,包括边界点)上的任意一点,若向量AC →=λDE →+μAP →,则λ+μ的最小值为________.答案 12 解析 通法 以A 为原点,以AB 所在的直线为x 轴,AD 所在的直线为y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),E ⎝⎛⎭⎫12,0,C (1,1),D (0,1).设P (cos θ,sin θ),∴AC →=(1,1),AP →=(cos θ,sin θ),DE →=⎝⎛⎭⎫12,-1,∵AC →=λ⎝⎛⎭⎫12,-1+μ(cos θ,sin θ)=⎝⎛⎭⎫λ2+μcos θ,-λ+μsin θ=(1,1),∴⎩⎪⎨⎪⎧λ2+μcos θ=1,-λ+μsin θ=1,∴⎩⎪⎨⎪⎧λ=2sin θ-2cos θ2cos θ+sin θ,μ=32cos θ+sin θ,∴λ+μ=3+2sin θ-2cos θ2cos θ+sin θ=-1+3sin θ+32cos θ+sin θ.∴(λ+μ)′=6+6sin θ-3cos θ(2cos θ+sin θ)2>0,故λ+μ在⎣⎡⎦⎤0,π2上是增函数,∴当θ=0,即cos θ=1时,λ+μ取最小值为3+0-22+0=12.等和线法 由题意,作AK →=DE →,设AD →=λAC →,直线AC 与PK 直线相交于点D ,则有AD →=λxAK →+λyAP →,由等和线定理,λx +λy =1,从而x +y =1λ,当点P 与B 点重合时,如图,λmax =2,此时,(x +y ) max =12.(10) (2013·安徽)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是( )A .22B .23C .42D .43答案 D 解析 等和线法 如图,分别作OC →=-OA →,OD →=-OB →.当λ≥0,μ≥0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OA →+|μ|OB →,|λ|+|μ|≤1,λ,μ∈R },对应区域1;当λ≥0,μ<0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OA →+|μ|OD →,|λ|+|μ|≤1,λ,μ∈R },对应区域2;当λ<0,μ≥0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OC →+|μ|OB →,|λ|+|μ|≤1,λ,μ∈R },对应区域3;当λ<0,μ<0时,{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }={P |OP →=|λ|OC →+|μ|OD →,|λ|+|μ|≤1,λ,μ∈R },对应区域4.综上所述可得,点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域即图中的矩形区域,其面积S =2×23=43.故选D .【对点训练】1.如图,△BCD 与△ABC 的面积之比为2,点P 是区域ABCD 内任意一点(含边界),且AP →=λAB →+μAC →, 则λ+μ的取值范围为( )ABCDO 1342AA .[0,1]B .[0,2]C .[0,3]D .[0,4] 1.答案 解析 等和线法 如图,(λ+μ)min =0,(λ+μ)max =3.故选C .2.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.2.答案 ⎣⎡⎦⎤0,12 解析 通法 由题意可求得AD =1,CD=3,所以AB →=2DC →.∵点E 在线段CD 上, ∴DE →=λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 等和线法 如图,(1+μ)min =1,μmin =0.(1+μ)max =32,μmax =12.3.如图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且OD =2,点P 是△BCD 内任意 一点(含边界),设OP →=λOC →+μOD →,则λ+μ的取值范围为________.3.答案 [1,32] 解析 等和线法 如图,(λ+μ)min =1,(λ+μ)max =32.4.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .24.答案 B 解析 通法 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 等和线法 确定值为1的等和线AB ,过动点C 作等和线,设x +y =k ,则k =|CO ||PO |.由图易知,当等和线与圆相切时,k 取最大值,此时|MO ||NO |=2,∴x +y 取得最大值2.故选B .5.如图,在边长为2的正六边形ABCDEF 中,动圆Q 半径为1,圆心在线段CD (含端点)上运动,P 是圆 上及其内部的动点,设AP →=mAB →+nAF →(m ,n ∈R ),则m +n 的取值范围是________.5.答案 [2,5] 解析 等和线法 如图1时,m +n 的值最小且m +n =ANAB =2,如图2时,m +n 的值最大且m +n =AMAB=5,6.如图,已知点P 为等边三角形ABC 外接圆上一点,点Q 是该三角形内切圆上的一点,若AP →=x 1AB →+y 1AC →,AQ →=x 2AB →+y 2AC →,则|(2x 1-x 2)+(2y 1-y 2)|的最大值为______.F6.答案 73 解析 等和线法 由等和线定理知当点P ,Q 分别在如图所示的位置时x 1+y 1取最大值,x 2+y 2取最小值,且x 1+y 1的最大值为|AP ||AM |=43,x 2+y 2的最小值为|AQ ||AM |=13.故|(2x 1-x 2)+(2y 1-y 2)|=|(2(x 1+y 1)-(x 2+y 2)| ≤43+13=73.7.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.7.答案 [1,3] 解析 等和线法 依题意,OC →=xOA →+3y (OB →3),如图,作OB ′→=OB →3,重新调整基底为OA →,OB →′,设k =x +3y ,显然,当C 在A 点时,经过k =1的等和线,当C 在B 点时,经过k =3的等和线,这两条线分别是最近与最远的等和线,所以x +3y 的取值范围是[1,3].8.如图,G 为△ADE 的重心,P 为△GDE 内任一点(包括边界),B ,C 均为AD ,AE 上的三等分点(靠近 点A ),AP →=αAB →+βAC →,则α+12β的取值范围是________.P8.答案 ⎣⎡⎦⎤32,3 解析 等和线法 如图,在线段AE 上取点F ,使AC =CF ,则AP →=αAB →+12βAF →,设12β =γ,则AP →=αAB →+γAF →,连接BF ,延长EG 交AD 于点H ,因为G 为△ADE 的重心,所以H 为AD 的中点,又B ,C 均为AD ,AE 上靠近点A 的三等分点,所以AF FE =ABBH =2,所以BF ∥HE ,过点P 作直线l ∥HE 交AD 于点M ,设α+γ=t ,则t =AMAB ,由图形知,“等值线”l 可从直线HE 的位置平移到过点D 的位置,由平面几何知识可知32=AH AB ≤AM AB ≤AD AB =3,故32≤t ≤3,即α+γ∈⎣⎡⎦⎤32,3,故α+12β的取值范围是⎣⎡⎦⎤32,3. 9.给定两个长度为1的平面向量OA 和OB ,它们的夹角为90︒,如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC xOA yOB =+.其中x ,y ∈R ,则23x y +的最大值是( )AB .3 CD .5 9.答案 A 解析 通法点C 在以O 为圆心的圆弧AB 上运动,∴可以设圆的参数方程cos x θ=,sin y θ=,[0θ∈︒,90]︒,232cos 3sin )x y θθθϕ∴+=+=+,其中cos ϕ,sin ϕ=,3513x y∴+,当且仅当sin()1θϕ+=时取等号.x y ∴+当三角函数取到1时成立.故选A .等和线法 OC →=xOA →+yOB →=2x (12OA →)+3y (13OB →)=2xOE →+3yOF →,2x +3y =k ,则k =|OD ||OM |=13.10.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP=1,若AP →=xAB →+yAD →,则3x +2y 的最大值为________.10.答案 2 解析 通法 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x + 2y )2-34(3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x=13,y =12时,3x +2y 取得最大值2. 等和线法 可转化为例2(2).11.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ), 则5λ+3μ的最大值为______. 11.答案102解析 通法 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0, 3).∵AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.等和线法 AP →=λAB →+μAD →=5λAB →)+3μAD →)=5λAM →+3μAN →,5λ+3μ=k ,则k=102.BAN12.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x -y 的取值范围是________.12.答案 [1-,1] 解析 通法 设半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,建立直角坐标系,其中1(2A;(1,0)B ;(cos ,sin )C θθ(其中(0)3BOC πθθ∠=,有若OC →=xOA →+yOB→=(cos θ,1sin )(2xθ=(1y +,0);整理得:1cos 2x y θ+=sinθ=,解得x =cos y θ=,则cos cos 2sin()6x y πθθθθ-=-+-=-,其中(0)3πθ;易知cos cos 2sin()6x y πθθθθ-==-=-,为增函数,由单调性易得其值域为[1-,1],故答案为[1-,1].等和线法13.如图,在直角梯形ABCD 中,AB AD ⊥,//AB DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x ,y ∈R ,则4x y -的最大值为( )A .3B .3C .2D .3+13.答案 B 解析 以A 为坐标原点,AB 为x 轴,AD 为y 轴建立平面直角坐标系,则(0,0)A ,(0,1)D ,(1,1)C ,(2,0)B ,直线BD 的方程为220x y +-=,C 到BD 的距离d =,∴圆弧以点C 为圆心的圆方程为221(1)(1)4x y -+-=,设(,)P m n 则(,)AP m n =,(0,1)AD =,(2,0)AB =,(1,1)BC =-,若AP xAB yBC =+,(m ∴,)(2n x y =-,)y ,2m x y ∴=-,n y =,P 在圆内或圆上,A221(21)(1)4x y y ∴--+-,设4x y t -=,则4y x t =-,代入上式整理得2280(4816)870x t x t -+++,设22()80(4816)870f x x t x t =-+++,1[2x ∈,3]2,则1()023()02f f ⎧<⎪⎪⎨⎪<⎪⎩,解得5232t+,故4x y -的最大值为3,故选B .等和线法14.如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上,且与A ,B 不重合的一个动点,OC →=xOA →+yOB →,若u =x +λy (λ>0)存在最大值,则λ的取值范围为( )A .1(, 1)2B .(1, 3)C .1(, 2)2D .1(, 3)314.答案 C 解析 通法 以O 为原点,OB 为x 轴,建立如图所示的直角坐标系,设(0)3COB πθθ∠=<<, 1OB =,则(cos ,sin )C θθ,(1,0)B ,1(2A ,由OC xOA yOB =+,得1cos 2sin y x θθ⎧=+⎪⎪⎨⎪=⎪⎩,∴cos x y θθ⎧=⎪⎪⎨⎪=-⎪⎩,cos (0)3u x y πλθλθθ∴=+=+<<,(0)u x y λλ=+>存在最大值,()u θ∴存在极值点,sin u θλθ'∴=-在(0,)3πθ∈上有零点.令0u '=,则tan θ=,(0,)3πθ∈,∴tan θ=,∴122λ<<,λ∴的取值范围为1(,2)2.故选C .等和线法15.在平面直角坐标系中,O 是坐标原点,若两定点A ,B 满足||||2OA OB ==,1OA OB =,则点集{}|, ||||2, , P OP OA OB λμλμλμ=++∈R 所表示的区域的面积是( )A. B. C. D.15.答案 D 解析2cos 1OA OB AOB =⨯∠=,1cos 2AOB ∴∠=,即60AOB ∠=︒.(1)若0λ>, 0μ>,设2OE OA =,2OF OB =,则22OP OE OF λμ=+,||||2λμλμ+=+,故当2λμ+=时,E ,F,P 三点共线,故点P表示的区域为OEF ∆,此时1sin 602OEF S ∆=⨯︒=.(2)若0λ<,0μ>,设2OE OA =-,2OF OB =,则22OP OE OF λμ=-+,||||2λμλμ+=-+,故当2λμ-+=时,P ,E,F 三点共线,故点P表示的区域为OEF ∆,此时1sin1202OEF S ∆=⨯︒=同理可得:当0λ>,0μ<时,P 点表示的区域面积为,当0λ<,0μ<时,P点表示的区域面积为综上,P 点表示的区域面积为4=.故选D .等和线法。
直线与圆中最值问题全梳理教师专用模块一、题型梳理题型一 直线与圆与平面向量相结合的最值问题例题1: 已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+的最大值是( )AB .1CD .2【分析】如图所示建立直角坐标系,设()cos ,sin P θθ,则(1)cos PA PB PC θ⋅+=-,计算得到答案.【解析】如图所示建立直角坐标系,则1,0A ,12⎛- ⎝⎭B ,1,2C ⎛- ⎝⎭,设()cos ,sin P θθ,则(1cos ,sin )(12cos ,2si (n ))PA PB PC θθθθ=--⋅--⋅+-222(1cos )(12cos )2sin 2cos cos 12sin 1cos 2θθθθθθθ=---+=--+=-≤.当θπ=-,即()1,0P -时等号成立.故选:D .【小结】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.例题2: 已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =,则PO 的最大值为( ) A .7B .6C .5D .4【分析】设(),P x y ,(),B m n ,根据3PB PA =可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值.【解析】设(),P x y ,(),B m n ,故(),PB m x n y =--,(),2PA x y =--.由3PB PA =可得363m x xn y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=,故选:C.【小结】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.题型二 直线与圆与基本不等式相结合的最值问题例题3: 直线240ax by ++=与圆224210x y x y ++++=截得的弦长为4,则22a b +的最小值是( )A .3B .2CD .1【分析】根据题意知直线过圆心得到2a b +=,再利用均值不等式计算得到答案.【解析】224210x y x y ++++=,即()()22214x y +++=,圆心为()2,1--,半径为2.弦长为4,则直线过圆心,即2240a b --+=,即2a b +=.()()()22222222a b a b ab a a b b +=+-≥+-=+,当1a b ==时等号成立.故选:B .例题4: 点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为( ) A .2B .12C .3D .1【分析】首先可确定曲线C 表示圆心为2,0,半径为5的圆;令d =2222t d a =--;d 的最大值为半径与圆心到点()6,6-的距离之和,利用两点间距离公式求得max d ,代入t 中利用最大值为b 可求得14a b ++=,将所求的式子变为()111111141a b a b a b ⎛⎫+=+++ ⎪++⎝⎭,利用基本不等式求得结果.【解析】曲线C 可整理为:()22225x y -+=,则曲线C 表示圆心为2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---,设d =d 表示圆上的点到()6,6-的距离,则max 515d ==,2max 15222t a b ∴=--=,整理得:14a b ++=,()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b++的最小值为1,本题正确结果:1 题型三 直线与圆与抛物线相结合的最值问题例题5: 已知以圆()22:14C x y -+=的圆心为焦点的抛物线1C 与圆C 在第一象限交于A 点,B 点是抛物线:2:C 28x y =上任意一点,BM 与直线2y =-垂直,垂足为M ,则BM AB -的最大值为( )A .1B .2C .1-D .8【解析】因为()22:14C x y -+=的圆心()1,0,所以,可得以()1,0为焦点的抛物线方程为24y x =,由()222414y x x y ⎧=⎪⎨-+=⎪⎩,解得()1,2A ,抛物线22:8C x y =的焦点为()0,2F ,准线方程为2y =-, 即有1BM AB BF AB AF -=-≤=,当且仅当,,(A B F A 在,B F 之间)三点共线,可得最大值1。
一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k 的取值范围是(,[1,)-∞⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,23.已知两点()1,2A -、()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦4.已知圆()222x a y a -+=平分圆()()22121x y ++-=的周长,则a 的值是( ) A .0B .3-C .25-D .525.设有一组圆()()()224*:1k C x y k k k N -+-=∈,给出下列四个命题:①存在k ,使圆与x 轴相切 ②存在一条直线与所有的圆均相交 ③存在一条直线与所有的圆均不相交 ④所有的圆均不经过原点 其中正确的命题序号是( ) A .①②③B .②③④C .①②④D .①③④6.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( ) A .1 B .2CD .7.已知直线l :(3)(2)20m x m y m ++---=,点()21A --,,(22)B -,,若直线l 与线段AB 相交,则m 的取值范围为( )A .(4][4)-∞-⋃+∞,, B .(22)-, C .3[8]2-,D .(4)+∞,8.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( ) A .32 B .32-C .32±D .12±9.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( ) ABCD10.已知直线0(0)x y a a +-=>与圆224x y +=交于不同的两点,,A B O 是坐标原点,且有||||OA OB AB +≥,那么a 的取值范围是( ) A.)+∞B .(2,)+∞C.[2,D.11.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( ) A.)1,+∞B.)1- C.()1-D.()1二、填空题13.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 15.已知直线l 经过点(2,1),且和直线30x --=的夹角等于30,则直线l 的方程是_________.16.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.17.已知方程:22(42)20,()x y m x my m m R +-+--=∈ ①该方程表示圆,且圆心在直线210x y --=上; ②始终可以找到一条定直线与该方程表示的曲线相切;③当1m =-时,该方程表示的曲线关于直线:10l x y -+=的对称曲线为C ,则曲线C 上的点到直线l 的最大距离为22+; ④若m 1≥,过点(1,0)-作该方程表示的面积最小的曲线的两条切线,切点分别为,A B ,则AB 所在的直线方程为420x y +-=.以上四个命题中,是正确的有_______________(填序号)18.当直线:(21)(1)740()l m x m y m m R +++--=∈被圆22:(1)(2)25C x y -+-=截得的弦最短时,m 的值为____________.19.已知直线1:350l x y +-=,2:310l kx y -+=.若1l ,2l 与两坐标轴围成的四边形有一个外接圆,则k =________.20.已知点M 为直线1:20l x y a +-=与直线2:210l x y -+=在第一象限的交点,经过点M 的直线l 分别交x ,y 轴的正半轴于A ,B 两点,O 为坐标原点,则当AOBS 取得最小值为1425时,a 的值为________. 三、解答题21.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆.已知动点M 到点()1,0A -与点()2,0B 的距离之比为2,记动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点()5,4P -作曲线C 的切线,求切线方程.22.已知||1t ≤,直线1:10l tx y -+=和直线2:10l x ty ++=相交于点P ,1l 和y 轴交于点A ,2l 和x 轴交于点B .(1)判断1l 与2l 的位置关系,并用t 表示点P 的坐标; (2)求||OP 的长度的取值范围,并指出取最值时点P 的位置.23.已知一个动点M 在圆2216x y +=上运动,它与定点()8,0Q 所连线段的中点为P . (1)求点P 的轨迹方程;(2)若点P 的轨迹的切线在两坐标轴上有相等的截距,求此切线方程. 24.已知圆C 与x 轴相切于点()1,0,且圆心C 在直线3y x =上, (1)求圆C 的方程;(2)若圆C 与直线y x m =+交于不同两点A ,B ,若直角坐标系的原点O ,在以线段AB 为直径的圆上,求实数m 的值.25.已知圆C :22870x y y +-+=,直线l :()20x my m m R +-=∈. (1)写出圆C 的圆心坐标和半径,并判定直线与圆的位置关系;(2)若直线l 与圆C 相交于A ,B 两点,且AB =时,求直线l 的方程. 26.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率. 【详解】倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,[1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误. 故选:C. 【点睛】关于直线的倾斜角与直线斜率之间的关系需要注意: (1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大;(3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.C解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5, 故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.3.C解析:C 【分析】作出图形,求出直线PA 、PB 的斜率,数形结合可得出直线l 的斜率的取值范围,进而可求得直线l 的倾斜角的取值范围. 【详解】 如下图所示:直线PA 的斜率为21110PA k -+==--,直线PB 的斜率为11120PB k +==-, 由图形可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-.因此,直线l 的倾斜角的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 故选:C.【点睛】关键点点睛:求直线倾斜角的取值范围的关键就是求出直线的斜率的取值范围,结合图象,利用直线PA 、PB 的斜率可得所要求的斜率的取值范围.4.B解析:B 【分析】由题可知,两圆的公共直线必过()()22121x y ++-=的圆心()1,2-,然后求出公共直线的方程,列式计算即可得解. 【详解】圆222()x a y a -+=平分()()22121x y ++-=的周长,所以两圆的公共直线过()()22121x y ++-=的圆心()1,2-,两圆方程相减,可得两圆的公共直线()1220a x y +-+=, 将()1,2-代入可得()1420a -+-+=,解得3a =-. 故选:B . 【点睛】两圆的公共弦方程过已知圆心是解题关键.5.C解析:C 【分析】取特殊值1k =,圆与x 轴相切,①正确;利用圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,可判定②③的正误;利用反证法说明④错误. 【详解】选项①中,当1k =时,圆心()1,1,半径1r =,满足与x 轴相切,正确; 选项②③中,圆心()1,k 恒在直线0kx y 上,该线与圆一定相交,故②正确,③错误;选项④中,若()0,0在圆上,则241k k +=,而*k N ∈,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,正确. 故选:C. 【点睛】本题解题关键是发现圆心()1,k 恒在直线0kx y 上,确定该线与圆一定相交,再结合特殊值法和反证法逐个击破即可.6.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.7.C解析:C 【分析】根据题意得直线l 恒过点4155C ⎛⎫ ⎪⎝⎭,,进而得直线l 的斜率k 的取值范围为:116k ≤-或37k ≥,再根据32m k m +=--,解不等式即可得答案. 【详解】直线l 方程变形得:(1)(322)0x y m x y +-+--=. 由103220x y x y +-=⎧⎨--=⎩得4515x y ⎧=⎪⎪⎨⎪=⎪⎩,∴直线l 恒过点4155C ⎛⎫ ⎪⎝⎭,,11354725ACk +==+,121154625BC k +==--, 由图可知直线l 的斜率k 的取值范围为:116k ≤-或37k ≥, 又32m k m +=--, ∴11263m m ≤--+-或3273m m -≥+-,即28m <≤或322m -≤<,又2m =时直线的方程为45x =,仍与线段AB 相交, ∴m 的取值范围为382⎡⎤-⎢⎥⎣⎦,. 故选:C.【点睛】本题解题的关键在于根据直线系方程(1)(322)0x y m x y +-+--=得直线l 恒过点4155C ⎛⎫⎪⎝⎭,.考查数形结合思想,运算求解能力,是中档题. 8.A解析:A 【分析】先根据半径和周长计算弦长23AB =即可. 【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r,故ABC 的周长为423+2423r AB +=+23AB =又直线与圆相交后的弦心距2243144k k d k k +-+==++,故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A. 【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.9.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为1d ==圆心()5,5到直线230x y -+=的距离均为2d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.10.C解析:C 【分析】设AB 的中点为C ,由||||OA OB AB +,可得||||OC AC ,则222||||4AC OC =≤+,再结合直线与圆相交列不等式,即可求出实数a 的取值范围. 【详解】设AB 的中点为C , 因为||||OA OB AB +,所以||||OC AC ,因为||OC =,所以222||||4AC OC =≤+,所以2a -或2a ,2<,所以a-<<因为0a>,所以实数a的取值范围是[2,,故选:C.【点睛】本题考查直线与圆的位置关系、平面向量的加法运算,考查点到直线的距离公式,考查学生的计算能力,属于中档题.11.D解析:D【分析】设抛物线y=x2上一点为A(x0,x02),点A(x0,x02)到直线2x-y-4=0的距离d==由此能求出抛物线y=x2上一点到直线2x-y-4=0的距离最短的点的坐标.【详解】设抛物线y=x2上一点为A(x0,x02),点A(x0,x02)到直线2x-y-4=0的距离d==∴当x0=1时,即当A(1,1)时,抛物线y=x2上一点到直线2x-y-4=0的距离最短.故选D.【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.A解析:A【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r+=有4个公共点,由此利用点到直线的距离公式加以计算,可得r的取值范围.【详解】解:作出到直线20x y--=的距离为1的点的轨迹,得到与直线20x y--=平行,且到直线20x y--=的距离等于1的两条直线,圆222x y r+=的圆心为原点,原点到直线20x y--=的距离为d∴两条平行线中与圆心O距离较远的一条到原点的距离为1d'=,又圆222(0)x y r r+=>上有4个点到直线20x y--=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离 解析:(0,3)30,3)(3)- 【分析】先画出图形,求出3),(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得3),(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :31)y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组031)x y x =⎧⎪⎨=+⎪⎩得交点为3); ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.15.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由已知可得直线的斜率所以倾斜角为因为直线与的夹角为所以直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为解析:1y =10y --= 【分析】分析可得已知直线的倾斜角为30,则直线l 的倾斜角为0或60,分类讨论并利用点斜式方程求解即可. 【详解】由已知可得直线y x =k =30, 因为直线l与3y x =30,所以直线l 的倾斜角为0或60, 当倾斜角为60时,直线l为)12y x -=-10y -+-=; 当倾斜角为0︒时,直线l 为1y =, 故答案为:1y =10y -+-=. 【点睛】本题考查直线与直线的夹角,关键点是求出直线30x --=的倾斜角得到l 的倾斜角,考查求直线方程,考查分类讨论思想.16.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.17.③④【分析】先将方程:化为:确定出圆心半径判断选项①②;将代入得圆方程可转化为该圆上的点到直线的最大距离问题求解;先求出以圆外点与圆心连线为直径的圆方程再将两圆方程相减即可得两切点连线的直线方程【详解析:③④ 【分析】先将方程:22(42)20x y m x my m +-+--=化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,确定出圆心,半径判断选项①②;将1m =-代入得圆方程,可转化为该圆上的点到直线l 的最大距离问题求解;先求出以圆外点(1,0)-与圆心连线为直径的圆方程,再将两圆方程相减即可得两切点连线的直线方程. 【详解】方程:22(42)20x y m x my m +-+--=可化为:()()22221551x m y m m m -++-=++⎡⎤⎣⎦,当25510m m ++>即m >或m <时,方程表示圆,故①错;由①知,当510m >或510m <时,该方程表示圆,且圆心()21,M m m +在直线210x y --=上移动,且半径不定,故②显然不正确;当1m =-时,方程表示圆M :()()22111x y +++=,由条件知曲线C 上的点到直线l 的最大距离即为圆M 上的点到直线l 212+=,所以③正确;当m 1≥时,22211551524r m m m ⎛⎫=++=+- ⎪⎝⎭,所以当1m =时,圆面积最小,此时圆心为()3,1M ,圆M 方程为:()()223111x y -+-=,设()1,0P -,则PM 的中点为11,2⎛⎫ ⎪⎝⎭,217PM =, 所以PM 为直径的圆方程为()22117124x y ⎛⎫-+-= ⎪⎝⎭, 两圆方程相减即得AB 所在的直线方程为420x y +-=,故④正确. 故答案为:③④ 【点睛】方法点睛:已知圆外一点引圆的两条切线,求解切点连线的直线方程,通常先求出以圆外一点与圆心连线为直径的圆方程,然后将两圆方程相减,即可得切点连线的直线方程.18.【分析】先求得直线过定点分析可知当直线与CM 垂直时直线被圆截得的弦长最短进而利用斜率的关系即可求得m 的值【详解】直线的方程可化为所以直线会经过定点解得定点坐标为圆C 圆心坐标为当直线与CM 垂直时直线被解析:34-【分析】先求得直线过定点()3,1M ,分析可知当直线l 与CM 垂直时,直线被圆截得的弦长最短 ,进而利用斜率的关系即可求得m 的值. 【详解】直线l 的方程可化为()2740x y m x y +-++-=所以直线l 会经过定点27040x y x y +-=⎧⎨+-=⎩,解得定点坐标为()3,1M ,圆C 圆心坐标为()1,2当直线l 与CM 垂直时,直线被圆截得的弦长最短211132CM k -==-- ,211l m k m +=-+ 所以121121CM l m k k m +⎛⎫⎛⎫⨯=-⨯-=- ⎪ ⎪+⎝⎭⎝⎭,解方程得34m =- 【点睛】本题考查了直线与圆的位置关系,根据斜率关系求得参数的值,属于基础题.19.【分析】由l1l2与两坐标轴围成的四边形有一个外接圆可得此四边形存在一组对角的和等于180°当直线l2的斜率大于零时根据l1⊥l2由此求得k 的值当直线l2的斜率小于零时应有∠ABC 与∠ADC 互补即t 解析:1k =±【分析】由l 1,l 2与两坐标轴围成的四边形有一个外接圆,可得此四边形存在一组对角的和等于180°.当直线l 2的斜率大于零时,根据l 1⊥l 2 ,由此求得k 的值.当直线l 2的斜率小于零时,应有∠ABC 与∠ADC 互补,即tan ∠ABC =﹣tan ∠ADC ,由此又求得一个k 值,综合可得结论. 【详解】由题意知,l 1,l 2与两坐标轴围成的四边形有一组对角互补.由于直线l 1:x +3y ﹣5=0是一条斜率等于13-的固定直线,直线l 2:3kx ﹣y +1=0经过定点A (0,1),当直线l 2的斜率大于零时,应有l 1⊥l 2 ,∴3 k ×(13-)=﹣1,解得 k =1.当直线l 2的斜率小于零时,如图所示:设直线l 1与y 轴的交点为B ,与x 轴的交点为C ,l 2 与x 轴的交点为D ,要使四边形ABCD 是圆内接四边形,应有∠ABC 与∠ADC 互补,即tan ∠ABC =﹣tan ∠ADC .再由tan (90°+∠ABC )=K BC 13=-,可得tan ∠ABC =3,∴tan ∠ADC =﹣3=K AD =3k ,解得 k =﹣1.综上可得,k =1或 k =﹣1, 故答案为±1.【点睛】本题考查两条直线垂直的条件,直线的倾斜角、斜率间的关系,存在一组对角的和等于180°的四边形一定有外接圆,属于基础题.20.【分析】先求出点的坐标然后设直线的方程得出坐标后可得三角形面积由面积的最小值可求得【详解】由得即在第一象限则设直线方程为显然令得令得所以当且仅当即时等号成立所以最大值为解得或(舍去)故答案为:【点睛解析:32【分析】先求出点M 的坐标,然后设直线AB 的方程,得出,A B 坐标后可得三角形面积,由面积的最小值可求得a . 【详解】由20210x y a x y +-=⎧⎨-+=⎩,得21525a x a y -⎧=⎪⎪⎨+⎪=⎪⎩,即212(,)55a a M -+,M 在第一象限,则12a >, 设直线l 方程为221()55a a y k x +--=-,显然k 0<, 令0x =得2(21)55B a a k y +-=-,令0y =得21255A a a x k-+=-, 所以112122(21)225555AOB A B a a a a k S x y k -++-⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭△221(2)2(2)(21)(21)()50a a a a k k ⎡⎤+=+-++--⎢⎥-⎣⎦221(2)2(2)(21)(21)()50a a a a k k ⎡+≥+-+⨯--⎢-⎢⎣2(2)(21)25a a +-=,当且仅当22(2)(21)()a a k k+=---,即221a k a +=--时等号成立.所以OAB S最大值为2(2)(21)142525a a +-=,解得32a =或3a =-(舍去).故答案为:32. 【点睛】本题考查求直线的交点坐标,考查求直线方程,三角形面积,考查用基本不等式求最值.本题考查了学生运算求解能力,属于中档题.三、解答题21.(1)()2234x y -+=;(2)50x -=或3410x y ++=. 【分析】(1)设动点M 的坐标为(),x y ,由题意得2MA MB==,化简得()2234x y -+=,即为动点M 的轨迹方程;(2)分类讨论过点P 的直线斜率不存在与存在两种情况,再利用圆心到直线的距离等于半径求解,即可得到答案. 【详解】(1)设动点M的坐标为(),x y ,则MA =,MB =由题意得2MA MB==,化简得()2234x y -+=,因此,动点M 的轨迹方程为()2234x y -+=; (2)当过点P 的直线斜率不存在时,直线方程为5x =,圆心()3,0C 到直线5x =的距离等于2,此时直线50x -=与曲线C 相切; 当过点P 的直线斜率存在时,不妨设斜率为k , 则切线方程为()45y kx +=-,即540kx y k---=,2=,解得34k =-.所以,切线方程为3410x y ++=.综上所述,切线方程为50x -=或3410x y ++=. 【点睛】方法点睛:本题考查求轨迹方程,及直线与圆相切求切线,求圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题,考查学生的转化能力与运算求解能力,属于一般题.22.(1)垂直,2211,11t t P t t ---+⎛⎫⎪++⎝⎭;(2),最小时(1,0)P -或(0,1)P ,最大时(1,1)P -.【分析】(1)可得0t =时,显然12l l ⊥,0t ≠时,由121k k =-可得12l l ⊥;联立直线方程可求得P 的坐标; (2)可得2221O t P =+,由||1t ≤即可求得取值范围. 【详解】(1)当0t =时,1:1l y =,2:1l x =-,显然12l l ⊥, 当0t ≠时,121,k t k t==-,则121k k =-,则12l l ⊥, 综上,12l l ⊥, 联立直线方程1010tx y x ty -+=⎧⎨++=⎩,解得2211,11t t x y t t ---+==++, 2211,11t t P t t ---+⎛⎫∴ ⎪++⎝⎭;(2)由(1)知222222112111t t t O t t P ---+⎛⎫⎛⎫+= ⎪ ⎪+++⎝⎭⎝⎭=, 1t ≤,201t ∴≤≤,则2112t ≤+≤,则22121t ≤≤+,即[]21,2OP ∈,则OP ⎡∈⎣,当21t =时,即1t =±时,OP 取得最小值为1,此时(1,0)P -或(0,1)P ,当20t =时,即0t =时,OP ,此时(1,1)P -. 【点睛】关键点睛:本题考查直线位置关系的判断以及取值范围的求解,解题的关键是联立直线方程求出点P 坐标,将||OP 化成关于t 的式子2221O t P =+即可求解.23.(1)22(4)4x y -+=;(2)y x =或4x y +=± 【分析】(1)设(),P x y ,()00,M x y ,用,x y 表示出00,x y ,把00(,)x y 代入已知圆方程化简后可得P 点轨迹方程;(2)截距均为0时,设切线y kx =,截距相等且不为0时,设切线(0)x y a a +=≠,由圆心到切线的距离等于半径求出参数即得切线方程. 【详解】解:(1)设(),P x y ,()00,M x y ,根据中点公式得008202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得00282x x y y=-⎧⎨=⎩.由220016x y +=,得22(28)(2)16x y -+=∴点P 的轨迹方程是22(4)4x y -+=.(2)当切线在两坐标轴上截距均为0时,设切线y kx =2=∴3k =±,所以切线方程为3y x =±,当切线在两坐标轴上截距相等且不为0时,设切线(0)x y a a +=≠2=,∴4a =±4x y +=±综上:切线方程为y x =或4x y +=± 【点睛】关键点点睛:求动点轨迹方程的方法:直接法:设曲线上动点坐标为(,)x y 后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。
平面向量与直线圆方程期末数学考试卷一.单项选择题(每小题3分,共30分)
1.平面向量的要素是()
A.大小,起点
B.方向,起点
C.大小,终点
D.大小,方向
2.已知a=(2,1),b=(2,4),则a + b等于()
A.3
B.(6,3)
C.(4,5)
D.8
3.以下各组向量垂直的是 ( )
A.a=(2,3) b=(-4,6)
B.a=(2,3) b=(-4,6)
C.a=(1,2) b=(-4,8)
D.a=(2,3) b=(-3,2)
4.已知a=(m,2),b=(3,6),a∥b,则m的值为 ( )
A.1
B.-3
C.-2
D.4
5.已知A(1,2),B(3,2),则线段AB的中点M的坐标为 ( )
A.(0,0)
B.(2,2)
C.(2,4) D(0,4)
6.过点A(-2,k)和B(2k,3k)的直线斜率为2,则k的值为( )
A.1或2
B.4
C.2或4
D.-2
7.直线L:3x+4y+12=0在y轴上的截距为 ( )
A.4
B.-4
C.3
D.-3
8.直线2x+2y+3=0与6x-4y+5=0的位置关系是 ( )
A.重合
B.平行
C.垂直
D.相交
9.原点到直线3x+4y+5=0的距离是 ( )
A.2
B.5
2 C.2 D.1
10.过平面外一点,有多少个平面与这个面平行()
A.1
B.2
C.3
D.无数个二.填空题(每题3分,共21分)
11.已知a=(1,3),b=(2,2),则3a+2b的坐标为________
12 .6
a ,b=4,夹角60°,则a•b=________
13.已知a=(-2,3),b=(6,4),则a与b的位置关系是_______
14.直线L:3x+4y-5=0,在x轴上到直线的距离为5的点坐标________
15.过点(6,2)且与直线5x-3y+2=0平行的直线方程为______________
16.过点(3,2)且与直线2x-3y+1=0垂直的直线方程为_______________
17.在空间里,直线L
1
∥L
2
,L
2
∥L
3
,则L
1
和L
3
的关系是____________
三.解答题(共49分)
18.已知向量a=(3,2),b=(m,3),u=a+2b,v=2a-b且u⊥v,求m的值(9分)
19.已知向量a =(2,k),向量b =(m,3),向量c =(1,3
11
),其中a ⊥b , (a +2b )⊥c ,求k 和m 的值。
(10分)
20.直线x+y-10=0平行,且与圆2x +2
y =9相切的直线方程(10分)
21.求以A (2,3)和B (5,2)为直径的圆的标准方程,并化为一般式(10分)
22.如图长方体ABCD-A ’B ’C ’D ’,证明平面BC ’D 与平面AB ’D ’(10分)。