平面向量与直线圆方程
- 格式:doc
- 大小:111.00 KB
- 文档页数:2
解析几何第5版介绍解析几何是数学中一个重要的分支,主要研究在一个平面上的几何形状的性质和关系。
解析几何第5版是一本经典的教材,通过系统的理论解释和大量的实例,帮助读者深入理解解析几何的基本概念和方法。
本文将对该教材进行全面、详细、完整的探讨,帮助读者深入了解解析几何。
第一章:平面解析几何基本概念1.1 平面直角坐标系平面直角坐标系是解析几何的基础,通过引入坐标轴和坐标点的概念,将几何图形转化为数学问题。
平面直角坐标系包括原点、横坐标轴、纵坐标轴等基本要素,通过坐标点的表示方法,可以准确描述平面上的点的位置。
1.2 平面向量及其运算平面向量是解析几何中另一个重要的概念,它由大小和方向共同确定。
平面向量的运算包括加法、减法、数量乘法等,这些运算法则可以简化解析几何问题的求解过程。
平面向量的性质和运算规律是解析几何中的基本知识点,读者应该牢固掌握。
1.3 平面直线及其方程平面直线是解析几何中的另一个重要概念,它可以由一个或两个方程来描述。
通过对平面直线的方程进行研究,可以准确地描述直线的性质,如斜率、截距等。
平面直线的方程是解析几何中的基础知识,对于解析几何问题的解答至关重要。
1.4 平面曲线及其方程平面曲线是解析几何中较为复杂的概念,它包括圆、椭圆、抛物线、双曲线等形状。
每种曲线都有特定的方程形式,通过研究这些方程,可以揭示曲线的性质和变化规律。
平面曲线的方程是解析几何中的进阶知识,读者需要具备一定的数学基础才能深入理解。
第二章:直线与圆相关性质2.1 直线的位置关系在解析几何中,直线的位置关系是一个重要的研究方向。
直线可以相交、平行或重合,这种关系对于解析几何问题的求解有着重要的指导作用。
本节将详细介绍直线的位置关系及其性质。
2.2 圆的位置关系圆在解析几何中也是一个重要的研究对象,它可以相交、相切或包含等。
圆的位置关系不仅涉及圆心的位置,还涉及半径、切线等概念。
本节将详细介绍圆的位置关系及其性质。
直线和圆及平面向量在高考中的特点直线和圆、平面向量是高中数学中比较基础的两章.数形结合、转化思想在这两章达到完美体现,它们在高考中往往起到基础或工具作用,纵观历年高考试卷,这两部分试题分值占较大的比例,约占20﹪;题型多为中档题,以考查三基为主,概括起来它们有以下几个特点:特点1:考查直线斜率(范围)这个最典型的概念,体现高考考试是考查数学基础的考试。
直线的倾斜角、斜率、截距和方程是直线和圆一章的基本量,它们的考查多以客观题形式出现,问题中主要渗透数形结合、分类讨论等思想,具有重方法选择,轻运算之特点。
例1、设直线l过点(-2,0),且与圆x2+y2=1相切,则l的斜率是()a)±1 b)±c)± d)±分析1、设直线的斜率为k,建立直线方程,根据圆心到直线的距离等于半径,易求得k=±;故选(c)分析2、如右图=1,=2,∴∠bao=30°∴k=±;故选(c)温馨提示:本题考查了数形结合思想,直线和圆的对称性,方法选择上体现优化数学解法的重要性。
特点2:线性规划主要考查不等式组表示平面区域等基础内容,是个难点,它体现了高考考查的应用性。
线性规划部分是数学应用的体现,它着重考查不等式(组)表示平面区域,利用截距的意义,从运动变化的观点,研究目标函数的最值,题型新、动静结合达到了很好的体现。
例2:在坐标平面上,不等式组所表示的平面区域的面积为(a)(b)(c)(d)2分析:如右图,显然a(0,1) d(0,-1)通过联立方程组可求b(-1,-2 c(,-)观察可得 s△abc=s△abd+s△adc=(+)=×2×(1+)=故选(b)温馨提示:人们常说数学是一门具有方法论的学科,作出不等式组表示的区域并不难,但三角形的面积如何求是个难点,因此我们平常应加强方法教学(分割法、补形法)。
特点3:平面向量的运算(数量积、加法、减法和数乘)是本章的重点知识,向量平行和垂直的应用是热点,而高考的考查则坚持考重点和热点的原则。
高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。
第6讲 平面向量等和线定理求系数和问题【考点分析】考点一:平面向量等和线问题 ①平面向量共线定理已知OA OB OC λμ=+,若1λμ+=,则,,A B C 三点共线;反之亦然。
①平面向量等和线问题平面内一组基底,OA OB 及任一向量OP ,(,)OP OA OB R λμλμ=+∈,若点P 在直线AB 上或者在平行于AB的直线上,则k λμ+=(定值),反之也成立,我们把直线AB 以及与直线AB 平行的直线称为等和线。
注意:1.当等和线恰为直线AB 时,1k =;2.当等和线在O 点和直线AB 之间时,(0,1)k ∈;3.当直线AB 在点O 和等和线之间时,(1,)k ∈+∞;4.当等和线过O 点时,0k =;5.若两等和线关于O 点对称,则定值k 互为相反数; 【典型例题】题型一: 平面向量等和线求系数和问题【例1】如图,在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若满足AP mAB nAD =+,则n m +的最大值为( )A .3B .22C .5D .2OABCP P 1【答案】A【解析】法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系, 则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C ,动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,2BC =,1CD =,BD ∴∴1122BC CD BD r =,r ∴=,∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为1θ+2)θ+,AP AB AD λμ=+,1θ∴+2)(1θλ+=,0)(0μ+,2)(λ=,2)μ,∴1θλ+=22θμ+=,2sin()2λμθθθϕ∴+=++=++,其中tan 2ϕ=,∵1)sin(1≤+≤-ϕθ,∴31≤+≤μλ,故λμ+的最大值为3,故选A .法二:由等和线性质知:APAPAD AN n m 1==+,所以当1P 在如图所示位置时,n m +取得最大值,33==+rr n m 【例2】如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB y AC =+,则22x y +的最大值为( )A .83B .2C .43D .1【答案】A 【详解】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F , 设AP AE AF λμ=+,则1λμ+=, ∵BC//EF ,∴设AE AF k AB AC ==,则4[0,]3k ∈ ∴,AE k AB AF k AC ==,AP AE AF k AB k AC λμλμ=+=+ ∴,x k y k λμ==∴22x y=+8223k k λμ+=≤()故选:A.【例3】在ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN AB AC λμ=+(λ,μ∈R ),则λμ+的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .[0,1]D .[1,2]【答案】C 【解析】 【分析】设AN t AM =,()01t ≤≤,当0=t 时, 可得0λμ==,从而有0λμ+=;当01t <≤时,有B A A M AC ttλμ=+,根据M 、B 、C 三点共线,可得1t t,进而可得(]0,1t λμ+=∈,从而即可求解.【详解】解:由题意,设AN t AM =,()01t ≤≤,当0=t 时,0AN =,所以0AB AC λμ+=, 所以0λμ==,从而有0λμ+=;当01t <≤时,因为AN AB AC λμ=+(λ,μ∈R ), 所以B t A A A M C λμ=+,即B A A M AC ttλμ=+,因为M 、B 、C 三点共线,所以1t t,即(]0,1t λμ+=∈.综上,λμ+的取值范围是[0,1]. 故选:C.【例4】如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD 与BA 平行,若OP xOB yOA =+,当12x =-时,y 的取值范围是( )A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】根据向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OA 与OB 的反向延长线为两邻边,当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,得到y 的取值范围. 【详解】∵//OD AB ,OP xOA yOB =+,由向量加法的平行四边形法则,OP 为平行四边形的对角线, 该四边形应是以OA 与OB 的反向延长线为两邻边,∴当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,13,22CE OA CF OA ==,∴y 的取值范围为1322⎡⎤⎢⎥⎣⎦,.故选:D.【例5】在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+,则3x y +的取值范围是_________. 【答案】[]1,3 【解析】 【分析】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.向量坐标化进行坐标运算,利用三角函数求出3x y +的取值范围. 【详解】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.则()11,0,2OA OB ⎛== ⎝⎭.不妨设()cos ,sin ,03OC πθθθ⎛⎫=≤≤ ⎪⎝⎭. 因为OC xOA yOB =+,所以1cos 2sin x y yθθ⎧=+⎪⎪⎨⎪=⎪⎩,解得:cos x y θθθ⎧=⎪⎪⎨⎪=⎪⎩,所以s 3co 3in x y θθ+=. 因为cos y θ=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,sin y θ=-在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,所以s 3co 3in x y θθ+=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减.所以当0θ=时33x y +=最大;当3πθ=时cos1333332x y ππ===+最小. 所以3x y +的取值范围是[]1,3. 故答案为:[]1,3. 【题型专练】1.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+,则λμ+的最大值为( )A .4 BC .2 D【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标表示M ,结合三角函数最值的求法,求得λμ+的最大值. 【详解】依题意在直角ABC 中,AB AC ⊥,2AB AC ==, 以A 为原点建立如图所示平面直角坐标系,()()0,2,2,0C B ,设D 是BC 的中点,则()1,1D .BC =(),M x y 满足()()22211x y -+-=,设11x y αα⎧=+⎪⎨=+⎪⎩(α为参数,π3π44α-≤≤),依题意AM AB AC λμ=+,即()()()1,12,00,2ααλμ=+,()()1,12,2ααλμ=,λμ⎧⎪⎪⎨⎪⎪⎩,π22sin π4sin 124αλμα⎛⎫++ ⎪⎛⎫⎝⎭+===++ ⎪⎝⎭, 所以当πππ,424αα+==时,λμ+取得最大值为2. 故选:C2.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A .3 B .CD .2【答案】A 【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.3.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心Q 在线段CD (含端点)上运动,P 是圆Q 上及其内部的动点,设向量AP mAB nAF =+(m ,n 为实数),则m +n 的最大值为______.【答案】5 【解析】 【分析】根据||||||AC AQ AD ≤≤及||1||||1AQ AP AQ -≤≤+得到1||5AP ≤≤,根据平面向量知识得到22||4()12AP m n mn =+-,利用2()4m n mn +≤可求出结果.【详解】在边长为2的正六边形ABCDEF 中,AC CD ⊥,||224AD =⨯=, 所以||||4AQ AD ≤=,当且仅当Q 与D 重合时,等号成立,又||||1AP AQ ≤+,即||415AP ≤+=,当||5AP =时,P 是AD 的延长线与圆Q 的交点,此时,由AP mAB nAF =+可知,m n =.因为AP mAB nAF =+,且2π,3AB AF <>=, 所以22222||||2||||||AP m AB mn AB AF n AF =⋅+⋅⋅+⋅22144222()2m n mn =++⋅⋅⋅-22444m n mn =+- 24()12m n mn =+-,所以2211()||312mn m n AP =+-,结合图形可知,0,0m n >>,由2()0m n -≥,得2m n mn +≥,即2m n mn +≥,即2()4m n mn +≤,当且仅当m n =时等号成立,所以22211()()||3124m n m n AP ++-≤,所以||m n AP +≤,又||5AP ≤,时,等号成立, 所以5m n +≤,当且仅当m n =时,等号成立. 即m +n 的最大值为5. 故答案为:5.4.已知ABC 的外接圆圆心为O ,120A ∠=,若AO x AB y AC =+(x ,y R ),则x y +的最小值为( )A .12 B .23C .32D .2【答案】D 【解析】 【分析】设OA 与BC 交点为E ,则AE AB AC λμ=+其中1λμ+=,由于()RAO xAB y AC AB AC R OEλμ=+=+-,得()R R x y R OE R OE λμ+=+=--,因为2ROE R ≤< 故x y +的最小值可得.【详解】设OA 与BC 交点为E ,设OE m =,圆的半径为R ,D 为BC 中点,如图所示:则RAO AE R m=-,设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+= 所以()R AO xAB y AC AB AC R m λμ=+=+-,故()R Rx y R m R mλμ+=+=-- 因为120A ∠=︒,则60COD ∠=︒所以1cos602OD R R =︒=则2R m R ≤< ,故22R RR R m R ≥=-- 所以x y +的最小值为2 故选:D 【点睛】设AE AB AC λμ=+,因为,,B C E 三点共线,则1λμ+=,得()R Rx y R m R mλμ+=+=--是解题的关键. 5.给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π,如图所示点C 在 以O 为圆心的圆弧AB 上运动,若OC xOA yOB =+,其中x ,y R ∈,则x y +的取值范围为( )A .(1,2]B .[1,2]C .[1,2)D .[2-,2]【答案】B解析:由等和线性质知:连接AB ,当C 点在B A 或点时,()1min =+y x ;作AB 的平行线,当与AB 相切时,当C 点在切点时,()2max =+y x6.已知O 是ABC ∆内一点,且0OA OB OC ++=,点M 在OBC ∆内(不含边界),若AM AB AC λμ=+,则2λμ+的取值范围是A .51,2⎛⎫ ⎪⎝⎭B .()1,2C .2,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 【答案】B【解析】根据0OA OB OC ++=可知O 为ABC ∆的重心;根据点M 在OBC ∆内,判断出当M 与O 重合时,2λμ+最小;当M 与C 重合时,2λμ+的值最大,因不含边界,所以取开区间即可.【详解】因为O 是ABC ∆内一点,且0OA OB OC ++=所以O 为ABC ∆的重心M 在OBC ∆内(不含边界),且当M 与O 重合时,2λμ+最小,此时 ()21113233AM AB AC AB AC AB AC λμ⎡⎤=+=⨯+=+⎢⎥⎣⎦ 所以11,33λμ==,即21λμ+= 当M 与C 重合时,2λμ+最大,此时AM AC =所以0,1λμ==,即22λμ+=因为M 在OBC ∆内且不含边界所以取开区间,即()21,2λμ+∈所以选B【点睛】本题考查了向量在三角形中的线性运算,特殊位置法的应用,属于难题. 7.在直角ABC 中,A ∠为直角,1,2AB AC ==,M 是ABC 内一点,且12AM =,若AM AB AC λμ=+,则23λμ+的最大值为_________. 【答案】54【解析】【分析】由12AM =得出22144λμ+=,即224+161λμ=,且由0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭,然后利用辅助角公式可求出23λμ+的最大值.【详解】 2A π∠=,1AB =,2AC =,AM AB AC λμ=+,则0AB AC ⋅=,且12AM =, 则()222222221244AM AB AC AB AB AC AC λμλλμμλμ=+=+⋅+=+=, 点M 在ABC 内,则0λ>,0μ>,设1cos 2λθ=,1sin 042πμθθ⎛⎫=<< ⎪⎝⎭, ()3523cos sin sin 44λμθθθϕ∴+=+=+,其中4tan 3ϕ=, 因此,4λμ+的最大值为54. 故答案为:54. 8.如图,扇形的半径为1,且0OA OB ⋅=,点C 在弧AB 上运动,若OC xOA yOB =+,则2x y +的最大值是__________【解析】【分析】根据题意将OC xOA yOB =+,两边同时平方可得221x y =+,再三角代换cos sin [0,]2x y πααα==∈,,,利用三角函数的性质即得.【详解】由题意得,0OA OB ⋅=,1OA OB ==,1OC =,由OC xOA yOB =+,等式两边同时平方,得2OC =22222x OA y OB xy ++OA OB ⋅, 所以221x y =+,令AOC α∠=,则cos sin [0,]2x y πααα==∈,,,则22cos sin )x y αααθ+=+=+,其中sin cos [0,]2πθθθ==∈, 因为2πθαθθ≤+≤+,sin()1αθ≤+≤,所以1)αθ≤+≤即2x y +。
高中数学重要公式定律1.指数(1)分数指数幂①nm nm a a =()1,,,0*>∈>n Nn m a 且②n m n m nm aa a 11-==()1,,,0*>∈>n Nn m a 且③0的正分数指数幂等于0;0的负分数指数幂没有意义。
(2)运算的性质:设Qs ,r ,b<a>∈,00①s r s r a a a +=sr s r aa a +=②r-s s r a aa =③()rssr a a =④()r r r b a ab =⑤rb r a rb a =⎪⎭⎫⎝⎛2.对数(1)性质:①()101log ≠>=,a a a a ②()1001log ≠>=,a a a (2)常用对数:N N lg log 10=;自然对数:N N e In log =(3)运算性质:设1000≠>>>,a ,a ,N M 那么:①()N M MN a a a log log log +=②N M Ma a alog log log -=③()R n M n M a a ∈=log log n (4)常用公式设0011000≠≠≠≠>>>,n ,m ,b ,a ,b ,a N①对数恒等式:N a N a =log ②换底公式:bN N a a b log log log =③ab b a log 1log =3.空间几何体公式(1)侧面积公式:①πrl S 2圆柱侧=②πrl S =圆锥侧③()l r r πS '+=圆台侧(2)表面积公式:①()l r πr S +=2圆柱②2圆锥πr πrl S +=③()rl l r r r πS ''+++=22圆台④2R 4πS =球(3)体积公式:①Sh V =棱柱②hπr V 2圆柱=③ShV 1棱柱=()''S SS S h V ++=1棱台④h πr V 2圆锥31=()22圆台31r'rr r πh V '++=⑤3球34πR V =4.直线与平面之间的平行与垂直(1)空间两直线平行的判定:①c a c b b a //////⇒⎭⎬⎫②b a b a //⇒⎭⎬⎫⊥⊥αα③ba b a //⇒⎭⎬⎫=⊂βαβ ④a//bb βγa αγ⇒⎭⎬⎫== (2)空间两直线垂直的判定:①b a b a a ⊥⇒⎪⎭⎪⎬⎫⊂⊥ααα//②b l a l b a ⊥⇒⎪⎭⎪⎬⎫⊥////βα(3)直线与平面平行的判定:①ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄②βαβα////a a ⎭⎬⎫⊂(4)直线与平面平行的性质:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βααβ(5)直线与平面垂直的判定:①ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⊂⊂l n l m l B n m n m ,, ②αα⊥⇒⎭⎬⎫⊥b a b a //(6)直线与平面垂直的性质:b a b a //⇒⎭⎬⎫⊥⊥αα(7)平面与平面平行的判定:①βαααββ////,//,⇒⎪⎭⎪⎬⎫=⊂⊂A b a b a b a ②βαβα//⇒⎭⎬⎫⊥⊥a a ③βαγβγα//////⇒⎭⎬⎫(8)平面与平面平行的性质:b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα (9)平面与平面垂直的判定:①βαβα⊥⇒⎭⎬⎫⊥⊂a a ②二面角的平面角90=θ(10)平面与平面垂直的性质:①βαβαβα⊥⇒⎭⎬⎫⊥⊂=⊥a b a a b ,, ②αββαα⊂⇒⎭⎬⎫⊥⊥∈∈a a A a A ,,5.直线、圆与方程(1)直线的斜率公式:()211212x x x x y y k ≠--=(2)直线方程:①点斜式:()00x x k y y -=-②斜截式:b kx y +=③两点式:121121x x x x y y y y --=--④截距式:()01≠=+ab bya x ⑤一般式:()0022≠+=++B A C By Ax (3)两条直线的位置关系:①()()2121222111且平行b b k k b x k y l b x k y l ≠=+=+=:与②()()1垂直21222111-=+=+=k :k b x k y 与l b x k y l ③2121212222111100C CB B A A :)C y B x (A l )C y B x (A l ≠==++=++平行与④000212122221111=+=++=++B B A :A )C y B x (A l )C y B x (A l 垂直与(4)距离公式:①两点间距离:()()21221221y y x x P P -+-=②点到直线的距离:2200B A CBy Ax d +++=③两平行线间的距离:2212B A C C d +-=(5)圆的方程:①圆的标准方程:()()222r b y a x =-+-,其中圆心为()b a ,,半径为r②圆的一般方程:FE D r E DF E D F Ey Dx y x 421,2,2,04,0222222-+=⎪⎭⎫⎝⎛-->-+=++++半径为圆心为其中(6)空间直角坐标系:①空间中的点与原点的距离公式:222z y x OP ++=②空间中任意两点的距离公式:()()()22122122121z z y y x x P P -+-+-=③空间的中点坐标公式:⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x 6.概率与统计(1)概率:①古典概型的概念公式:()nmA A P ==基本事件总数包含的基本事件数事件②几何概型的概率公式:()()()体积积或面的区域长区试验的全部结果所构成体积积或面的区域长区构成事件A A P =(2)统计①离散型随机变量的数学期望:()nn i i p x p x p x p x X E ++++=2211性质:()()()是常数b a b X aE b aX E ,+=+若X 服从两点分布,则()p X E =;若X 服从二项分布,即()p n B X ,~,则()npX E =②离散型随机变量的方差:()()()ini i p X E x X D ∑=-=12性质:()()()是常数b a X D a b aX D ,2=+若X 服从两点分布,则()()p p X D -=1若X 服从二项分布,即()p n B X ,~,则()()p np X D -=17.三角函数(1)弧度与角度的换算关系:①rad rad 017453.01==π②'18573.571801=≈⎪⎭⎫ ⎝⎛=πrad (2)弧长公式:rl α=扇形的面积公式:2211r lr S α==(3)同角三角函数的基本关系:①1cos sin 22=+αα②⎪⎭⎫⎝⎛∈+≠=z ,k πkπαααα2cos sin tan (4)三角函数的诱导公式:公式一:()απαsin 2sin =⋅+k ()απαcos 2cos =⋅+k ()()z k απk α∈=⋅+其中tan 2tan 公式二:()ααπsin sin -=+()ααπcos cos -=+()ααπtan tan =+公式三:()ααsin sin -=-()ααcos cos =-()ααtan tan -=-公式四:()ααπsin sin =-()ααπcos cos -=-()ααπtan tan -=-公式五:ααπcos 2sin =⎪⎭⎫⎝⎛-ααπsin 2cos =⎪⎭⎫⎝⎛-公式六:ααπcos 2sin =⎪⎭⎫⎝⎛+ααπsin 2cos -=⎪⎭⎫⎝⎛+8.平面向量(1)向量的坐标运算:设()()则,,,,,2211R y x b y x a ∈==λ①()2121,y y x x b a ±±=±②()()1111,,y x y x a λλλλ== ③2121cos y y x x b a b a +=⋅=⋅θ (2)平面向量的重要定理、公式:①平面向量基本定理:2211e e aλλ+=②两个向量平行的充要条件:()0//1221=-⇔=⇔≠y x y x b a b b aλ③两个非零向量垂直的充要条件:002121=+⇔=⋅⇔⊥y y x x b a b a④长度公式:()()⎧-+-=+=22122122y y x x y x a ⑤角度公式:()之间的夹角与为非零向量b a y x y x y y x x b a b aθcos 222221212121+⋅++=⋅⋅=θ9.三角恒等变换(1)两角和与差的三角函数:()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =±()βαβαβαtan tan 1tan tan tan ±=±()()πϕϕϕϕααα20cos ,sin ;sin cos sin 222222≤≤+=+=++=+ba a ba b b a b a 其中(2)二倍角公式:αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=(3)积化和差与和差化积公式:()()βαβαβα-++=sin sin cos sin 2()()βαβαβα--+=sin sin sin cos 2()()βαβαβα-++=cos cos cos cos 2()()βαβαβα--+=-cos cos sin sin 22cos 2sin 2sin sin βαβαβα-+=+sincos 2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+2sin2sin 2cos cos βαβαβα-+-=-(4)半角公式:2cos 1sinαα-±=2cos 1cosαα+±=αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=10.解三角形(1)正弦定理:()的外接圆外接为2sin sin sin ΔABC R R CcB b A a ===(2)余弦定理:Abc c b a cos 2222-+=Bac c a b cos 2222-+=Cab b a c cos 2222-+=推理:bca cb A 2cos 222-+=acb c a B 2cos 222-+=abc b a C 2cos 222-+=(3)三角形的面积公式Cab B ac A bc S sin 21sin 21sin 21===∆11.数列(1)等差数列:通项公式:()dn a a n 11-+=中项公式:()成等差列,,2b A a b a A +=前n 项和公式:()()dn n na a a n S n n 21211-+=+=(2)等比数列:通项公式:11-=n n q a a 中项公式:abG =2()成等比数列,,b G a 前n 项和公式:()()()⎪⎩⎪⎨⎧=≠--=--=11111S 111n q na q q q a a q q a n n (3)n a 与n S 的关系:()()⎩⎨⎧=≥-=-1211n S n S S a n nn (4)常用求和公式:①()211+=∑=n n k nk ②()()612112++=∑=n n n k nk ③()2131⎥⎦⎤⎢⎣⎡+=∑=n n k nk 12.基本不等式(1)()时等号成立当且仅当b a ab b a =≥+222(2))时等号成立当且仅当b a ab ba =≥+(3)()()时等号成立当且仅当b a b a b a ba ab ba =>+≤+≤≤+0,,221122213.圆锥曲线与方程(1)椭圆:标准方程:()012222>>=+b a b y a x 离心率:()222,10b a c e ace -=<<=(2)双曲线:标准方程:()0,012222>>=-b a b y a x 离心率:()222,1b a c e ace +=>=(3)抛物线:标准方程:()022>=p px y 准线:2p x -=离心率:1=e 14.空间向量与立体几何(1)空间向量运算的坐标表示:设()()为实数,则,,,,,,222111λz y x b z y x a ==()212121,,z z y y x x b a +++=+()212121,,z z y y x x b a ---=-()111,,z y x a λλλλ=212121z z y y x x b a ++=⋅222222212121212121,cos z y x z y x z z y y x x ba b a b a ++⋅++++=⋅⋅=(2)空间向量的平行和垂直:()λλ===⇔=⇔≠2121210//z z y y x x b a b b a2121210z z y y x x b a b a ++⇔=⋅⇔⊥(3)空间两点的距离:()()()212212212z z y y x x -+-+-=15.导数及其应用(1)几种常见函数的导数:①()为常数0'c c =②()()0,1'≠∈=-n Q n nx x n n 且③()x x cos sin '=④()x x sin cos '-=⑤()x x e e ='⑥()()1,0'≠>=a a Ina a a x x 且⑦()()01'>=x x Inx ⑧()()1,0,01log '≠>>=a a x x a 且(2)导数的运算①()[]()[]()()x g x f x g x f '''±=±②()()[]()()()()x g x f x g x f x g x f '''+=⋅③()()()()()()()[]()()02'''≠-=⎥⎦⎤⎢⎣⎡x g x g x g x f x g x f x g x f (3)定积分的基本性质:①()()()为常数k dx x f k dx x kf ba b a ⎰⎰=②()()[]()()⎰⎰⎰±=±b a b a b a dx x f dx x f dx x f x f 2121③()()()()b c a dx x f dx x f dx x f bc c a b a <<+=⎰⎰⎰其中16.数系的扩充与复数的引入(1)复数:()R b a bi a z ∈+=,,其共轭复数为bia z -=(2)复数的代数运算12-=i i i -=314=i d b c a di c bi a ==⇔+=+,()()()()i d b c a di c bi a ±+±=+±+()()()()i ad bc bd ac di c bi a ++-=++()02222≠++-+++=++di c i ad bc bd ac bi a 17.记数原理(1)排列数公式:()()()()()n m N m n m n n m n n n n A m n ≤∈-=+---=且、,!!121* (2)组合数公式:()()()()()n m N m n m n m n m m n n n n A A C m m m n m n ≤∈-=+---==且、,!!!!121* (3)组合数与排列数的关系:()n m A C A m m m n m n≤⋅=(4)二项式定理()()*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+-- 通项公式:()n r b a C T r r n r nr ≤≤=-+01二项式系数的性质:①m n n m n C C -=②n n n n nC C C 210=+++ ③131202-=++=++n n n n nC C C C 特例:1!0=10=n C。
平面向量的向量方程和参数方程在向量代数中,平面向量是研究平面上的向量运算和方程的工具之一。
平面向量既可以用向量方程的形式表示,也可以用参数方程的形式表示。
本文将探讨平面向量的向量方程和参数方程,并分析它们的应用。
1. 向量方程向量方程是用向量表示的平面上的一个点集合。
对于平面上的任意一点P(x, y),可以用向量a和b来表示,即P = a + b。
其中,a和b为平面上的两个向量。
向量方程的一般形式为:P = O + ra + sb其中,P为表示平面上的点的向量,O为平面上的一个已知点的向量,a和b为平面上的两个已知向量,r和s为任意常数。
向量方程中的ra和sb表示与向量a和b的长度成比例的向量。
向量方程的应用非常广泛。
例如,在几何学中,可以用向量方程表示平面上的直线和曲线。
在物理学和工程学中,向量方程常用于描述平面上的力、速度和位移等物理量。
2. 参数方程参数方程是用参数表示的平面上的一个点集合。
对于平面上的任意一点P(x, y),可以用参数t来表示,即P = P(t)。
参数方程的一般形式为:x = f(t),y = g(t)其中,x和y为平面上的坐标,f(t)和g(t)为与参数t有关的函数。
参数方程中的函数f(t)和g(t)描述了平面上的x坐标和y坐标与参数t的关系。
参数方程的优势在于可以表示复杂的曲线和图形。
通过调整参数t 的取值范围,可以得到曲线上的所有点。
参数方程常用于计算机图形学和数学建模等领域。
3. 向量方程与参数方程的关系向量方程和参数方程可以相互转化。
给定一个向量方程,可以通过分解向量得到对应的参数方程。
具体而言,对于向量方程P = O + ra + sb,可以将其分解为:x = Ox + ra1x + sb1xy = Oy + ra1y + sb1y其中,Ox和Oy为点O的x坐标和y坐标,a1x、a1y、b1x和b1y 为向量a和b的分量。
相反地,给定一个参数方程x = f(t),y = g(t),可以通过构造向量得到对应的向量方程。
专题6.2 平面向量的基本定理及坐标表示(知识点讲解)【知识框架】【核心素养】1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养. 3.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.【知识点展示】(一)平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (二)平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a | (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.(三)平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中a ≠0,b ≠0,a ,b 共线⇔x 1y 2-x 2y 1=0. (四)平面向量数量积的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 结论 几何表示 坐标表示模 |a |=a ·a |a |=x 21+y 21数量积 a ·b =|a ||b |cos θ a ·b =x 1x 2+y 1y 2 夹角 cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22a ⊥ba ·b =0 x 1x 2+y 1y 2=0 |a ·b |与|a ||b |的关系|a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22设非零向量a =(x 1,y 1),b =(x 2,y 2).数量积 两个向量的数量积等于__它们对应坐标的乘积的和__,即a·b =__x 1x 2+y 1y 2__两个向量垂直a ⊥b ⇔__x 1x 2+y 1y 2=0__12211212(六)常用结论1.若a 与b 不共线,且λa +μb =0,则λ=μ=0.2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22.3.已知△ABC 的重心为G ,若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33【常考题型剖析】题型一:平面向量基本定理的应用例1.(2015·四川·高考真题(理))设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3,2BM MC DN NC ==,则AM NM ⋅=( )A .20B .15C .9D .6【答案】C 【解析】 【分析】根据图形得出3344AM AB BC AB AD =+=+,2233AN AD DC AD AB =+=+,AM NM ⋅ 2()AM AM AN AM AM AN =⋅-=-⋅,结合向量的数量积求解即可.【详解】因为四边形ABCD 为平行四边形,点M 、N 满足3,2BM MC DN NC ==,∴根据图形可得:3344AM AB BC AB AD =+=+, 2233AN AD DC AD AB =+=+,NM AM AN ∴=-,2()AM NM AM AM AN AM AM AN ⋅=⋅-=-⋅,22239216AM AB AB AD AD =+⋅+, 22233342AM AN AB AD AD AB ⋅=++⋅, 6,4AB AD ==, 22131239316AM NM AB AD ∴⋅=-=-=, 故选C.例2.(2017·天津·高考真题(文))在ABC 中,60A ∠=︒,3AB =,2AC =. 若2BD DC =,()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________.【答案】311【解析】 【详解】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则 122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.【总结提升】平面向量基本定理的实质及解题思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二:平面向量的坐标运算例3.(2022·全国·高考真题(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+=a b .故选:D例4.(2022·全国·高考真题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例5.(2018·全国·专题练习)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为( )A .3B .CD .2【答案】A【解析】 【详解】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径5r =C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+, 设12x z y =-+,即102x y z -+-=,点(),Px y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.例6.(2018·江苏·高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 【答案】3 【解析】 【详解】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭,由0AB CD ⋅=得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【总结提升】平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 题型三:平面向量共线的坐标表示例7.(2021·全国·高考真题(文))已知向量()()2,5,,4a b λ==,若//a b ,则λ=_________.【答案】85【解析】 【分析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值. 【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=, 解方程可得:85λ=.故答案为:85.例8.(2021·江苏·沛县教师发展中心高三阶段练习)已知()1,3A ,()2,2B -,()4,1C . (1)若AB CD =,求D 点的坐标;(2)设向量a AB =,b BC =,若ka b -与3a b +平行,求实数k 的值. 【答案】(1)4(5,)D - (2)13k =-【解析】 【分析】(1)根据题意设(,)D x y ,写出,C AB D 的坐标,根据向量相等的坐标关系求解;(2)直接根据向量共线的坐标公式求解即可. (1)设(,)D x y ,又因为()()()1,3,2,2,4,1A B C -, 所以=(1,5),(4,1)AB CD x y -=--, 因为=AB CD ,所以4115x y -=⎧⎨-=-⎩,得54x y =⎧⎨=-⎩,所以4(5,)D -. (2)由题意得,(1,5)a =-,(2,3)b =, 所以=(2,53)ka b k k ----,3(7,4)a b +=, 因为ka b -与3a b +平行,所以4(2)7(53)0k k ----=,解得13k =-.所以实数k 的值为13-.【总结提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若1122()()a x y b x y =,,=,,则//a b 的充要条件是1221x y x y =”解题比较方便. 题型四:平面向量数量积的运算例9.【多选题】(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】 【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误. 【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP ==,2||(cos 1OP==,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin|2AP α===,同理2||(cos 2|sin|2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC例10.(2019·天津·高考真题(文)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A∠=︒ ,点E 在线段CB 的延长线上,且AEBE =,则BD AE ⋅=__________.【答案】1-. 【解析】 【分析】建立坐标系利用向量的坐标运算分别写出向量而求解. 【详解】建立如图所示的直角坐标系,则B ,5)2D . 因为AD∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BEy x=-,直线AE的斜率为y =.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-, 所以1)E -. 所以35(,)(3,1)122BD AE =-=-.例11.(2020·北京·高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+,则||PD =_________;PB PD ⋅=_________.【答案】 1-【解析】 【分析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立平面直角坐标系,求得点P 的坐标,利用平面向量数量积的坐标运算可求得PD 以及PB PD ⋅的值. 【详解】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+=, 则点()2,1P ,()2,1PD ∴=-,()0,1PB =-,因此,(PD =-()021(1)1PB PD ⋅=⨯-+⨯-=-.1-. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解. 2.总结提升:公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解. 题型五:平面向量的模、夹角例12.(2022·四川省内江市第六中学模拟预测(理))已知向量()1,2a =,5a b ⋅=,8a b +=,则b =( ) A .6 B .5 C .8 D .7【答案】D 【解析】 【分析】先求出||a ,再将8a b +=两边平方,结合数量积的运算,即可求得答案. 【详解】由()1,2a =得:2||12a =+,由8a b +=得2222251064a b a a b b b +=+⋅+=++=, 即得249,||7b b ==,故选:D例13.(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π3,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .√3−1 B .√3+1 C .2 D .2−√3 【答案】A 【解析】设a =(x,y),e =(1,0),b =(m,n),则由⟨a,e ⟩=π3得a ⋅e =|a|⋅|e|cos π3,x =12√x 2+y 2,∴y =±√3x , 由b 2−4e ⋅b +3=0得m 2+n 2−4m +3=0,(m −2)2+n 2=1, 因此|a −b|的最小值为圆心(2,0)到直线y =±√3x 的距离2√32=√3减去半径1,为√3−1.选A.【思路点拨】先确定向量a,b 所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.例14.(2021·湖南·高考真题)已知向量(1,2)a =-,(3,1)b =-,则|2|a b +=___________【分析】利用向量模的坐标表示,即可求解.【详解】()21,3a b +=,所以2213a b +=+=例15.(2019·全国·高考真题(文))已知向量(2,2),(8,6)a b ==-,则cos ,a b =___________.【答案】【解析】【分析】根据向量夹角公式可求出结果.【详解】22826cos ,102a ba b a b ⨯-+⨯<>===-+.例16.(2017·山东·高考真题(理))已知1e ,2e 是互相12e - 与1e +λ2e 的夹角为60°,则实数λ的值是_ _.【解析】【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设1e =(1,0),2e =(0,1),12e -=1), 1e +λ2e =(1,λ);又夹角为60°,12e -)•(1e +λ2e )=λ=2cos60°,λ=解得λ=【总结提升】 1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系;(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法(1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解.题型六:两个向量垂直问题例17.(2016·全国·高考真题(理))已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8B .−6C .6D .8【答案】D【解析】【分析】由已知向量的坐标求出a b +的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-,又()a b b +⊥,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .例18.(2022·全国·高考真题(文))已知向量(,3),(1,1)a m b m ==+.若a b ⊥,则m =______________.【答案】34-##0.75- 【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-. 故答案为:34-. 例19.(2022·全国·高三专题练习)已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()20a c b c -⋅-=,则c 的最大值是_________.【解析】【分析】由题意可设,a b 的坐标,设(,)c x y =,利用()()20a c b c -⋅-=求得(,)c x y =的终点的轨迹方程,即可求得答案.【详解】因为,a b 是平面内两个互相垂直的单位向量,故不妨设(1,0),(0,1)a b ==,设(,)c x y =,由()()20a c b c -⋅-=得:(1,)(2,12)0x y x y --⋅--=,即2(1)(12)0x x y y ----=,即22115()()2416x y -+-=,则c 的终点在以11(,)24故c 的最大值为=例20.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【解析】 由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.. 【规律方法】1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值(涉及向量垂直问题为高频考点)根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.3.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.。
平面向量与直线圆方程期末数学考试卷一.单项选择题(每小题3分,共30分)
1.平面向量的要素是()
A.大小,起点
B.方向,起点
C.大小,终点
D.大小,方向
2.已知a=(2,1),b=(2,4),则a + b等于()
A.3
B.(6,3)
C.(4,5)
D.8
3.以下各组向量垂直的是 ( )
A.a=(2,3) b=(-4,6)
B.a=(2,3) b=(-4,6)
C.a=(1,2) b=(-4,8)
D.a=(2,3) b=(-3,2)
4.已知a=(m,2),b=(3,6),a∥b,则m的值为 ( )
A.1
B.-3
C.-2
D.4
5.已知A(1,2),B(3,2),则线段AB的中点M的坐标为 ( )
A.(0,0)
B.(2,2)
C.(2,4) D(0,4)
6.过点A(-2,k)和B(2k,3k)的直线斜率为2,则k的值为( )
A.1或2
B.4
C.2或4
D.-2
7.直线L:3x+4y+12=0在y轴上的截距为 ( )
A.4
B.-4
C.3
D.-3
8.直线2x+2y+3=0与6x-4y+5=0的位置关系是 ( )
A.重合
B.平行
C.垂直
D.相交
9.原点到直线3x+4y+5=0的距离是 ( )
A.2
B.5
2 C.2 D.1
10.过平面外一点,有多少个平面与这个面平行()
A.1
B.2
C.3
D.无数个二.填空题(每题3分,共21分)
11.已知a=(1,3),b=(2,2),则3a+2b的坐标为________
12 .6
a ,b=4,夹角60°,则a•b=________
13.已知a=(-2,3),b=(6,4),则a与b的位置关系是_______
14.直线L:3x+4y-5=0,在x轴上到直线的距离为5的点坐标________
15.过点(6,2)且与直线5x-3y+2=0平行的直线方程为______________
16.过点(3,2)且与直线2x-3y+1=0垂直的直线方程为_______________
17.在空间里,直线L
1
∥L
2
,L
2
∥L
3
,则L
1
和L
3
的关系是____________
三.解答题(共49分)
18.已知向量a=(3,2),b=(m,3),u=a+2b,v=2a-b且u⊥v,求m的值(9分)
19.已知向量a =(2,k),向量b =(m,3),向量c =(1,3
11
),其中a ⊥b , (a +2b )⊥c ,求k 和m 的值。
(10分)
20.直线x+y-10=0平行,且与圆2x +2
y =9相切的直线方程(10分)
21.求以A (2,3)和B (5,2)为直径的圆的标准方程,并化为一般式(10分)
22.如图长方体ABCD-A ’B ’C ’D ’,证明平面BC ’D 与平面AB ’D ’(10分)。