当前位置:文档之家› 600WM超临界锅炉汽温特性分析

600WM超临界锅炉汽温特性分析

600WM超临界锅炉汽温特性分析
600WM超临界锅炉汽温特性分析

600WM超临界锅炉汽温特性分析

【摘要】随着我国电力市场和国民经济发展的需要,为了进一步节能降耗和降低污染排放,电站机组朝着高参数、大容量的方向发展,锅炉是火电厂的三大主机之一。本文通过分析影响600mw超临界锅炉汽温的主要因素,从影响锅炉汽温变化的各个因素入手,阐述了超临界锅炉汽温调节的方法及其特性,对锅炉汽温的扰动因素做了简要分析,并针对性的提出应对方案。

【关键词】600mw超临界锅炉;主汽温度;汽温调节;水煤比

0 引言

超临界火电机组已成为国际上一项比较成熟的技术,加快建设和发展高效超临界火电机组是提高能源利用率、解决电力短缺和减少环境污染的最现实以及最有效的途径。目前,超临界压力锅炉已成为目前电站发展的主力[1]。超临界锅炉没有汽包,只有汽水分离器,汽水分离器所储存的水容量很小,所以启动速度快;下降管的数量也大大下降,所以整台锅炉的钢材耗量低,锅炉成本低。其蒸汽温度、压力性能参数高,使发电效率有很大的提高,锅炉的供电煤耗率降低明显。基于超临界锅炉具有以上优点,因此超临界锅炉是中国未来大型锅炉的发展趋势,600mw机组锅炉又是现在的超临界锅炉的主要型号,所以深入研究并掌握超临界600mw机组锅炉的控制技术是十分重要的。超临界机组运行参数高,需适应大范围调峰的要求,这将给超临界锅炉汽温控制系统设计提出了更高的要求。具体体现在以下几方面:

第12章 自然循环锅炉水动力特性(西交大 锅炉原理 考研复试)

第12章 自然循环锅炉的水动力循环 1. 如何建立自然循环锅炉的水动力基本方程,分为几种型式? 答:(1)压差法:从锅炉液位面到下集箱中心高度之间,计算的上升管压差与下降管压差相等。方程式为:xj xj ss ss P gh P gh ?-=?+ρρ,式中,h ——锅炉液位面到下集箱的中心高度;ss ρ、xj ρ——分别为上升管和下降管中工质的平均密度;ss P ?、xj P ?——分别为上升管和下降管中工质流动阻力。 (2)运动压头法:循环回路中产生的水循环动力,在稳定流动时,用于克服回路中工质流动的总阻力。方程式为:()xj ss ss xj P P gh ?+?=-ρρ (3)有效压头法:循环回路中运动压头克服上升管得流动阻力后剩余的部分水循环动力,在稳定流动时,用于克服回路中下降管的流动阻力。方程式为:()xj ss ss xj P P gh ?=?--ρρ 2. 作图示出热负荷变化对上升管压差特性曲线及回路工作点的影响。 答: 图中φ为截面含汽率,x 为质量含汽率,ss P ?为上升管流动阻力,gh ss ρ为重位压差。如图可见,随着吸热量q 的增加,φ和x 都增大,但两者的增大趋势却有很大区别。x 随q 增大是线性增加,因此,ss P ?也几乎是随q 的增加而呈线性增加。而φ随q 增大是非线性增加,当工质吸热比较少,x 较小时,φ随q 增大增加得很快,即φ的增加远大于x 的增加; 上升管压差与吸热量的关系

而在某一x 或φ值后,x 增加φ却增加得很慢。这是由于水与水蒸气的物性决定的,因为当水转变为蒸汽时,体积急剧膨胀,与此对应,gh ss ρ随q 的增大开始下降的很快,而后下降的较慢。因此,gh ss ρ和ss P ?的叠加使得ss S 和q 的关系呈现先下降后上升的形状。 简单回路压差特性及工作状态 开始在q 较少、x 较小、循环倍率K 较大处,随着q 的增加,ss S 的特性曲线下移,因此回路的工作点向右移,循环流量0G 增加。这种情况持续到一定程度,当K 小于jx K 时,q 再进一步增加,因上升管压差升高而使ss S 的特性曲线上移,工作点的位置左移,循环流量0G 减小。 3. 自然循环锅炉的自补偿能力是如何形成的? 答:开始在q 较少、x 较小、循环倍率K 较大处,随着q 的增加,φ的增加大于x 的增加,则回路的动力压头大于的增加大于宗族里的增加,此时回路中的动力大于阻力,使得循环流量0G 相应增加。当循环倍率K 大于某一界限循环倍率jx K 时,循环回路具有因上升管吸热量q 增加而使循环流量0G 随之增加的能力,称为自然循环回路的自补偿能力。 4. 简述自然循环锅炉的水循环计算方法和步骤。 答:(1)确定循环流量或流速,循环倍率,循环回路的各种压差,以及可靠性指标;

自然循环热水锅炉水动力计算

自然循环热水锅炉水动力计算例题 A1 锅炉规范 额定供热量Q sup:7.0MW 额定工作压力P: 1.0MPa 回水温度t bac.w:70℃ 供水温度t hot.w:115℃ 锅炉为双锅筒、横置式链条炉,回水进入锅筒后分别进入前墙、后墙、两侧墙和对流管束回路中,两侧水冷壁对称布置,前墙和后墙水冷壁在3.2m标高下覆盖有耐火涂料层,如图A -1所示。 图 A-1 锅炉简图 A2 锅炉结构特性计算 A2.1 前墙回路上升管划分为三个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,第Ⅱ区段为未覆盖有耐火涂料层的水冷壁管,第Ⅲ区段为炉顶水冷壁(图 A-2) A2.2 后墙回路上升管划分为二个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,剩下的受热面作为第Ⅱ区段(图A-3)。

A2.3 侧墙水冷壁回路上升管不分段(图A-4) A2.4 对流管束回路不分段,循环高度取为对流管束回路的平均循环高度,并设对 流管束高温区为上升区域(共7排),低温区为下降区(共6排)。对流管束共有347根,相应的上升管区域根数为191根,下降管区域根数为156根(图A-5)。 对流管束总的流通截面积A o 为: A o =347×0.785×0.0442 = 0.5274 m 2 下降管区域流通截面积A dc 为 : A dc =156×0.785×0.0442 = 0.2371 m 2 下降管区域流通截面积与对流管束总的流通截面积比A dc / A o 为: 4500=5274 02371 0=...o dc A A 其值在推荐值(0.44—0.48)的范围内。 图A-2 前墙水冷壁回路 图A-3 后墙水冷壁回路

锅炉管壁超温的分析

锅炉管壁超温的分析 摘要:通过对我厂200MW机组四角切圆燃烧锅炉的燃烧调整,分析了磨煤机组合燃烧方式、炉膛出口氧量、炉膛蒸汽吹灰、二次风配风方式和减温水等因素对末级过热器、再热器管壁温度的影响,找出切合实际的方法帮助解决发电厂管壁超温的现象。 关键词:四角切圆燃烧管壁温度蒸汽吹灰超温 我厂#1、#2锅炉为武汉锅炉厂制造的WGZ 670/13.7-10型超高压锅炉,直流燃烧器四角切圆燃烧,假想切圆直径为Φ828mm,炉膛深度、宽度分别为11920mm,由于四角切圆燃烧方式有以下的优点:炉内混合良好,燃烧稳定,四周水冷壁的吸热量和热负荷分布均匀,特别是气流在炉膛内形成了一个较强的旋转燃烧火焰,对强化后期燃烧十分有效。使得四角切圆燃烧锅炉在一段时期内在各电厂得到大量的应用,但由于四角切圆燃烧锅炉在炉膛内为旋转上升气流,从炉膛出口到水平烟道以后,仍存在较强的残余旋转,导致水平烟道两侧烟速和烟温的偏差,从而导致再热器和过热器的壁温偏差,甚至会造成尾部受热面的爆管。下面对我厂200 MW机组四角切圆燃烧锅炉为例,分析燃烧调整对锅炉过热器、再热器壁温的影响。 1设备概况及存在问题 我厂锅炉的基本型式为:自然循环、一次中间再热、倒U型布置、中速磨正压直吹式制粉系统、直流燃烧器四角切圆燃烧、平衡通风、固态排渣、全钢构架、紧身封闭。每台锅炉配四台ZGM-95型中速正压直吹式磨煤机,每台磨煤机带6只喷燃器采用一层半布置。制粉系统正常运行时#2、#3、#4磨煤机运行,#1磨煤机备用。 为了改善煤粉着火性能和在低负荷运行时维持火焰稳定性,每只煤粉燃烧器均采用了宽调节比喷嘴。煤粉喷嘴的煤粉气流相对于二次风气流以反向切圆的方式进行同心反切燃烧,这可使煤粉和空气之间产生强烈的混合,增加煤粉的完全燃烧,减少煤粉对水冷壁的冲刷,以减轻炉膛结焦。 我厂锅炉尾部烟道还是存在左右侧温度偏差的问题,特别是过热器(再热器)左右侧管壁温度的偏差还是很大,高过、高再管壁温度经常超温达到565℃以上,甚至可以达到571℃。因此,进行了燃烧调整以摸索有关运行参数对过热器(再热器)左右侧管壁温度偏差的影响。 2管壁超温的分析 通过对四角切园燃烧锅炉的燃烧调整,分别从磨煤机的组合运行方式,甲乙侧低再出口烟温,炉膛出口的含氧量,减温水量等方面对我厂过、再热器管壁超温分析如下。

关于600MW超临界机组锅炉运行中水冷壁超温原因分析及对策

龙源期刊网 https://www.doczj.com/doc/3d10757274.html, 关于600MW超临界机组锅炉运行中水冷壁超温原因分析及对策 作者:冯磊 来源:《中国科技博览》2017年第27期 [摘要]介绍某电厂锅炉低负荷垂直水冷壁易出现超温问题进行分析,并针对特定的工况下出现的水冷壁超温问题,结合运行调整过程中的有利控制措施,进行控制方法的阐述。 [关键词]锅炉、水冷壁、超温、过热度 中图分类号:TM621.2 文献标识码:A 文章编号:1009-914X(2017)27-0112-02 引言:600MW超临界直流锅炉容量大,蒸发受热面面积大,布置复杂,热负荷高。热负荷的不均匀性极易引起管壁超温,为了保证一定的质量流速,水冷壁内径选的较小,因此垂直管水冷壁对壁温异常较为敏感,一旦发生壁温异常可能导致水冷壁内工质的物理特性发生剧烈变化,进而产生流量偏差和吸热特性变化,严重时直接导致水冷壁管超温,严重危及锅炉安全运行。影响垂直管水冷壁超温的因素较多,本文针对鸿山热电厂的实际运行状况,全面分析这些导致水冷壁超温的原因并提出了有效解决措施,对同类机组的运行具有很强的指导意义。 1.设备概况 锅炉是由哈尔滨锅炉厂有限责任公司引进三井巴布科克能源公司技术生产的超临界参数变压运行直流锅炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。型号为:HG-1962/25.4-YM3。锅炉燃烧方式为前后墙对冲燃烧,前后墙各布置3层三井巴布科克公司生产的低NOX轴向旋流燃烧器(LNASB),每层各有5只,共30只。在最上层煤粉燃烧器上方,前后及两侧墙各布置1层燃烬风口,其中前后墙各布置5只,两侧墙各布置3只,共16只燃烬风口。用来补充燃烧后期需要的空气,同时实现分级燃烧,降低炉内平均温度,减少NOx的生成。 2.现象描述 600MW超临界直流锅炉容量大、蒸发量,高负荷工况下很少出现水冷壁超温问题,水冷壁超温现象主要集中在低负荷阶段,对此本文主要结合低负荷工况下出现的热力不均或水力不均导致的水冷壁超温问题进行分析。 当机组负荷在400MW以下,重点在负荷300—360MW且三台磨运行期间,垂直水冷壁经常出现左右墙管壁温度偏差大,发生多点金属温度局部或大面积超温,直至启动第四台磨煤机才有明显好转。

直流锅炉的水动力特性

直流锅炉的水动力特性 一. 直流锅炉的优缺点 1.直流锅炉的主要优点是: 1)原则上它可适用于任何压力,但从水动力稳定性考虑,一般在高压以上(更多是超高压以上)才采用。 2)节省钢材。它没有汽包、并可采用小直径蒸发管,使钢材消耗量明显下降。 3)锅炉启、停时间短。它没有厚壁的汽包,在启、停时,需要加热、冷却的时间短,从而缩短了启、停时间。 4)制造、运输、安装方便。 5)受热面布置灵活。工质在管内强制流动,受热面可从有利于传热及适合炉膛形状而灵活布置。 2.直流锅炉的主要缺点是: 1)给水品质要求高。锅水在蒸发受热面要全部蒸发,没有排污,水中若有杂质要沉积于蒸发管内,或随蒸汽带入过热器与汽轮机。 2)要求有较高的自动调节水平。直流锅炉运行时,一旦有扰动因素,参数变化比较快,需配备自动化高的控制系统,才能维持稳定的运行参数。 3)自用能量大。工质在受热面中的流动,全靠给水泵压头,故给水泵的能耗高。 4)启动操作较复杂,且伴有工质与热量的损失。 5)水冷壁工作条件较差。水冷壁出口工质全部汽化或微过热,沸腾换热恶化不可避免,且没有自补偿特性。必须采取一定措施予以防止。 二. 超临界参数锅炉的水动力特性 超临界参数锅炉的水动力特性不仅影响着水冷壁的传热特性和安全性,而且在很大程度上影响着汽温特性、调峰性能,甚至影响到燃烧调节性能。。 超临界参数锅炉的水动力特性主要决定于水冷壁形式、工质的热物理特性、运行方式、水冷壁热流密度的大小及其分布等因素。其中工质的热物理特性是指:超临界参数下,在拟临界温度左右的一定范围内,工质受到大比热特性的影响,比容、黏度、导热系数发生急剧变化的特性。超临界压力下工质的热物理特性显著地影响着直流锅炉水动力的稳定性和下辐射区水冷壁出口工质的温度,进一步影响到自动调节性能。 超临界参数变压运行锅炉,当机组从额定负荷到低负荷时,炉膛水冷壁管圈的运行压力范围将从超临界压力降至亚临界压力,水冷壁管圈内工质将有两种工作状态,即单相流动和两相流动。故在分析超临界压力变压运行直流锅炉炉膛水冷壁水动力特性时不仅是分析超临界压力下的特性,同时还要分析亚临界压力下的特性,特别是负荷快速变化下的特性。超临界压力直流锅炉的蒸发受热面,尤其是启动及变压运行时(运行于亚临界压力下),带内置式启动系统的直流锅炉的蒸发受热面(即水冷壁),都可能存在着流动不稳定性、热偏差和脉动等水动力问题。 三. 亚临界和超临界压力下的流动不稳定性 直流锅炉蒸发受热面出现不稳定流动的根本原因是汽和水的比容差以及水冷壁进口有热水段存在,在一定条件下实际运行的直流锅炉蒸发受热面就会发生这种流动不稳定的工况。水动力不稳定性发生在同时具有蒸发段和热水段的管屏上,水动力多值性不会发生在只有蒸发段的管屏上。 燃料投入速度及减温水量会对水动力的稳定性有一定的影响。在升温升压的过程中,随着燃料量的增加,尤其是直吹式系统启动磨煤机时,一方面炉内燃烧放热量增大,引起热敏

锅炉汽温调整的方法和注意事项

锅炉汽温调整的方法和注意事项汽温是机、炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生搬硬套。 一、机组正常运行中的汽温调节 汽温调节可以分为烟气侧调整、蒸汽侧的调整,烟气侧的调节过程惯性大,通常情况下需要3-5分钟左右温度才会开始变化;而蒸汽侧的调节相对比较灵敏。因此正常运行过程中,应保持减温水调整门具有一定的开度,一般应大于7%;如果减温器已经关完或开度很小时,由于阀门的特性原因它的调节能力减弱,也就是减温水流量变化相对较小,此时应观察同侧另一级减温水流量是否偏大,并及时对其的减温水流量进行重新分配,另外还可以对燃烧进行调整(在炉膛氧量允许时可适当加大风量,或调整风门使火焰中心上移),使汽温回升、减温器开启。如果各级减温器开度均比较大时(若大于60%),

同时也应从燃烧侧调整,或对炉膛进行吹灰,以达到关小各级减温器,使其具有足够的调节余量。 总之,在机组正常运行时,各级减温后的蒸汽温度在不同工况下是不相同的。应加强对各级减温器后蒸汽温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考。建议在负荷发生变化时应将减温水且为手动调整,避免汽温大幅度波动。 二、变工况时汽温的调节。 变工况时汽温波动大,影响因素众多,值班员应在操作过程中分清主次因素,对症下药,及早动手,提前预防.必要时采取过调手段处理,不可贻误时机,酿成超温事故。变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越快。目前机组在投入BLR方式下运行时,机组负荷变化频繁且幅度较大。下面对几种常见情况分析如下: 1、正常加减负荷时的汽温调节。 正常加负荷时,在汽轮机调门开度增加,锅炉压力下降自调系统开始增加燃料量、风量。而汽温的变化要滞后于燃烧侧的热负荷的增加。对于过热器来说,由于蒸发量的增加,对过热汽温有一定的补偿能力,所以过热汽温的变化是滞后与负荷变化速度的(它随着负荷的增加燃料量、蒸汽压力、蒸汽流量的增加而增快的)。也就是说负荷

影响过热汽温、再热汽温因素

控制循环或自然循环锅炉影响汽温的运行因素 一、影响过热汽温的主要运行因素 1、给水温度 当给水温度降低时,汽包内的水与较低温度的给水混合后,干度下降。在燃料量不变的情况下,汽包产汽量下降,即进入过热器的蒸汽量减少,引起过热汽温上升。增加燃料恢复产汽量后,汽温更上升。 2、过量空气系数 当过量空气系数变化时,直接影响锅炉的排烟损失,同时影响对流受热面与辐射受热面的吸热比例。当过量空气系数增加时,除排烟损失增加,锅炉效率降低外,炉膛辐射吸热减少,烟道对流传热增加,具有对流特性的过热器吸热量有所增加,末级过热器出口汽温上升。具有辐射特性的过热器,汽温可能下降。 3、火焰中心高度 火焰中心温度上移时,炉膛出口烟气温度上升,引起过热汽温上升;反之,过热汽温下降。 4、受热面结渣 当炉膛水冷壁结渣时,水冷壁吸热量降低,汽包产汽量减少;同时,炉膛出口烟气温度上升,过热汽温升高。若过热器结渣或积灰时,过热汽温明显下降。 二、影响再热汽温的主要运行因素 1、给水温度 当给水温度降低时,在燃料量不变的条件下,锅炉蒸发量降低。如果保持给水温度降低前的锅炉蒸发量,必须增加燃料量。对于汽包锅炉,由于燃料量增加,相应的烟气量增加,对流布置的再热器吸热量就会随之增加,再热汽温上升。 2、过量空气系数 过量空气系数增加时,对流再热器吸热量增加,出口汽温上升。过量空气系数减少 时,对流再热器吸热量减少,出口汽温降低。 3、火焰中心高度 火焰中心高度变化的影响与过量空气系数变化的影响相似,但对辐射再热器的锅炉 调温作用更为明显。火焰中心上移,辐射式或对流式再热器吸热量增加,再热汽温 上升。 4、受热面结渣 当炉膛水冷壁结渣时,水冷壁吸热量降低,炉膛出口烟气温度上升,再热汽温升高。 当再热器结渣或积灰时,再热汽温明显下降。 5、烟气流量 利用烟道挡板改变两侧烟道的烟气量,可以改变两侧烟道内受热面的吸热量,达到 调温度的目的。某侧烟气量增大,则该侧受热面的吸热量增大,出口汽温提高。

炉水冷壁超温情况的分析与建议

石洞口二厂1号炉水冷壁超温情况的 分析与建议 沈玉华 (华能上海石洞口第二电厂) 摘要:简要分析了石洞口二厂1号炉在低负荷运行时出现的超温情况,并对其主要原因作了分析,同时针对超温情况提出了合理的建议,从而改善和避免水冷壁超温。 关键词:水冷壁超温分析建议https://www.doczj.com/doc/3d10757274.html, 秦皇岛网https://www.doczj.com/doc/3d10757274.html,/ 秦皇岛论坛 我厂两台600MW超临界压力机组从国外引进。1号机组于1992年6月投运,自1995年锅炉进行酸洗,复役后低负荷运行时,后墙水冷壁严重超温,严重威胁机组安全运行和影响机组调峰能力。虽然1号炉于2000年再次酸洗,低负荷时水冷壁超温情况未出现过,但同比2号炉其后墙水冷壁出口汽温还是偏高。针对1号炉低负荷时严重过热与超温问题,根据相关情况收集及现场运行工况进行了调查研究及分析试验,分析认为:#1机组在低负荷水冷壁超温除与锅内问题有先天性不足之处,其炉内问题也很重要。现就以下两个方面进行分析、讨论。 一、锅炉后墙水冷壁悬吊管扭曲变形 二台锅炉的后墙水冷壁悬吊管都发生扭曲变形,其中尤以1号炉更为严重,其原因主要有:锅炉设计时后墙系统过于复杂,尤其是折焰角部分采取了双联箱,悬吊管比其它平行的管束更长一些,因而它的水阻也比较大,造成系统阻力偏大,使悬吊管流量分配不均,导致超温变形。根据多次试验,发现在汽水分离器在35%MCR负荷由湿态转为干态时或者由干态转为湿态时,以及在相当于这个负荷下保持运行时,在后墙各根悬吊管之间产生极大的温差,最大可达到170℃,而设计时允许的最大温差为50℃,这就是导致后墙水冷壁悬吊管扭曲变形的主要原因。同时,这个温差随着通过转态过程次数的增加,每板悬吊管都有机会发生扭曲变形,因而温差的分布是随机的。此外,由于#1机系国内第一台超临界机组调试初期热工保护误动较多,引起1号机组频繁跳机,根据1993年1月底以前的统计总共发生了122次MFT:其中#1机组72h试运前发生85次,72h试运后发生37次,这也是引起后墙水冷鄙悬吊管扭曲变形的一个重要原因。为防止类似问题的出现,建议: (1)利用机组检修的机会对锅炉后墙水冷壁悬吊管进行更换; (2)利用已有的温度测点,在现有炉温监测及分析系统中编制一个控制最大温差的软件,当最大 129

影响锅炉汽温的因素及汽温的控制措施

仅供参考[整理] 安全管理文书 影响锅炉汽温的因素及汽温的控制措施 日期:__________________ 单位:__________________ 第1 页共8 页

影响锅炉汽温的因素及汽温的控制措施 锅炉运行中,如果汽温过高,将引起过热器、再热器、蒸汽管道以及汽轮机汽缸、阀门、转子部分金属强度降低,导致设备使用寿命缩短,严重时甚至造成设备损坏事故。从以往锅炉受热面爆管事故统计情况来看,绝大多数的炉管爆破是由于金属管壁严重超温或长期过热造成的,因而汽温过高对设备的安全是一个很大的威胁。蒸汽温度低的危害大家也是知道的,它将引起机组的循环效率下降,使煤耗上升,汽耗率上升,新蒸汽温度过低时,带来的后果就不仅仅是经济上的问题了,严重时可能引起蒸汽带水,给汽轮机的安全稳定运行带来严重的危害,所以规程上规定机组额定负荷下新蒸汽温度变化应在+5℃~-5℃之间。 一、影响过热汽温变化的因素 1、燃料性质的变化:主要指燃料的挥发份、含碳量、发热量等的变化,当煤粉变粗时,燃料在炉内燃烬时间长,火焰中心上移,汽温将升高。当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增加。 2、风量及其配比的变化:炉内氧量增大时,由于低温冷风吸热,炉膛温度降低,使炉膛出口温度升高。在总风量不变的情况下,配风的变化也会引起汽温的变化,当下层风量不足时,部分煤粉燃烧不完全,使得火焰中心上移,炉膛出口烟温升高。 3、燃烧器及制粉系统运行方式的变化:上层制粉系统运行将造成汽温升高,燃烧器摆角的变化,使火焰中心发生变化,从而引起汽温的变化 4、给水温度的变化:给水温度升高,蒸发受热面产汽量增多,从 第 2 页共 8 页

第三章--螺旋桨基础理论及水动力特性

第三章螺旋桨基础理论及水动力特性 关于使用螺旋桨作为船舶推进器的思想很早就已确立,各国发明家先后提出过很多螺旋推进器的设计。在长期的实践过程中,螺旋桨的形状不断改善。自十九世纪后期,各国科学家与工程师提出多种关于推进器的理论,早期的推进器理论大致可分为两派。其中一派认为:螺旋桨之推力乃因其工作时使水产生动量变化所致,所以可通过水之动量变更率来计算推力,此类理论可称为动量理论。另一派则注重螺旋桨每一叶元体所受之力,据以计算整个螺旋桨的推力和转矩,此类理论可称为叶元体理论。它们彼此不相关联,又各能自圆其说,对于解释螺旋桨性能各有其便利处,然亦各有其缺点。 其后,流体力学中的机翼理论应用于螺旋桨,解释叶元体的受力与水之速度变更关系,将上述两派理论联系起来而发展成螺旋桨环流理论。从环流理论模型的建立至今已有六十多年的历史,在不断发展的基础上已日趋完善。尤其近二十年来,由于电子计算机的发展和应用,使繁复的理论计算得以实现,并促使其不断完善。 虽然动量理论中忽略的因素过多,所得到的结果与实际情况有一定距离,但这个理论能简略地说明推进器产生推力的原因,某些结论有一定的实际意义,故在本章中先对此种理论作必要介绍,再用螺旋桨环流理论的观点分析作用在桨叶上的力和力矩,并阐明螺旋桨工作的水动力特性。至于对环流理论的进一步探讨,将在第十二章中再行介绍。 §3-1 理想推进器理论 一、理想推进器的概念和力学模型 推进器一般都是依靠拨水向后来产生推力的,而水流受到推进器的作用获得与推力方向相反的附加速度(通常称为诱导速度)。显然推进器的作用力与其所形成的水流情况密切有关。因而我们可以应用流体力学中的动量定理,研究推进器所形成的流动图案来求得它的水动力性能。为了使问题简单起见,假定: (1)推进器为一轴向尺度趋于零,水可自由通过的盘,此盘可以拨水向后称为鼓动盘(具有吸收外来功率并推水向后的功能)。 (2)水流速度和压力在盘面上均匀分布。 (3)水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器理论。它可用于螺旋桨、明轮、喷水推进器等,差别仅在于推进器区域内的水流断面的取法不同。例如,对于螺旋桨而言,其水流断面为盘面,对于明轮而言,其水流断面为桨板的浸水板面。 设推进器在无限的静止流体中以速度V A前进,为了获得稳定的流动图案,我们应用运动 260

火电厂再热蒸汽温度控制系统的设计

摘要 锅炉蒸汽温度自动控制包括过热蒸汽温度控制和再热蒸汽温度控制。再热蒸汽温度是锅炉运行质量的重要指标之一,再热蒸汽温度过高或过低都会显著地影响电厂的安全性和经济性。再热循环可以降低汽轮机尾部叶片处的蒸汽湿度,降低汽耗,提高电厂的热循环效率,所以单元机组普遍采用中间再热技术[1-2]。本次毕业设计以再热蒸汽温度为被控对象,设计相应的控制器使再热器出口蒸汽温度在允许范围内,并且保护再热器,使管壁温度不超过允许的工作温度。 火电厂对再热蒸汽汽温控制若采用常规串级控制系统,具有很大的迟延性,对此,本文采用模糊控制和PID相结合的控制方式。实验结果显示,系统的控制特性在超调量、快速性、抗干扰方面都有了很大的改善,对大范围工况变化具有较强的鲁棒性和适应性,对大型发电机组的锅炉再热蒸汽汽温控制具有实用价值。 关键词:再热蒸汽;模糊控制;串级控制系统

Abstract Boiler steam temperature control includes control of superheated steam temperature and reheat steam temperature control. Reheat steam temperature is one of the important indicators of the quality of boiler operation, reheat steam temperature which is too high or too low will significantly affect plant safety and economy. Reheat cycle can reduce steam turbine moisture at the end of the leaves, reduce gas consumption and increase power plant thermal cycle efficiency, so reheat units commonly is used in the unit. The graduation project make the reheat steam temperature as controlled object, the corresponding controller is designed to reheat outlet steam temperature in the allowed range, to protect the reheater, the wall temperature does not exceed the allowable operating temperature. If steam temperature control uses a conventional cascade control system ,it has a great delay.therefore,this paper combines fuzzy control with PID control to improve . Experimental results show that the control characteristics of the system in the overshoot, fast and interference aspects have substantial improvement , it has significantly robustness and adaptivity when conditions change on a wide range , it has a practical value for large-scale generating units reheat steam boiler Steam temperature control. Keywords: reheat steam; fuzzy control; cascade control system 2

管子内壁氧化皮测厚和寿命诊断技术的应用

管子内壁氧化皮测厚和寿命诊断技术的应用 李治发 华能珞璜电厂 摘 要:较为简要地介绍了高温锅炉管的内壁氧化皮测厚和寿命诊断的步骤和方法,肯定了该方法在电厂中的实用价值。 关键词:高温锅炉管、过热、寿命诊断、内壁氧化皮、拉伸性能、当量金属温度、蠕变断裂。 1 引 言 锅炉的“四管”泄漏是火力发电厂机组非计划停运的主要原因之一,且在目前煤炭质量日益下降的情况下,该现象显得尤为突出,因为媒质的下降而引起锅炉燃烧的不稳定以及受热面管磨损的加剧,从而造成锅炉运行中的爆管。 锅炉运行中的爆管事故的原因主要集中在磨损、腐蚀、疲劳、应力裂纹、过热、异物砸伤等六个方面。针对不同的原因可以采取不同的预防措施,而对于因过热所导致的爆管,则可以通过快速、无损的锅炉管寿命诊断技术来积极主动地预防。 2 锅炉管寿命诊断步骤介绍 锅炉高温受热面管(高温过热器、高温再热器和屏式过热器的统称)寿命诊断采用现场检验与实验室检验相结合的综合诊断方法。其主要方法和步骤如下: 2.1 现场检验 1)宏观检验:对高温锅炉管的表面状况进行外观检查;  2)金属壁厚测量:对高温锅炉管不同标高部位的金属管壁厚度采用新的超声示波测量方法进行精确测量;  3)内壁氧化皮厚度测量:对高温锅炉管不同标高部位的管内壁氧化皮厚度采用新的超声示波测量方法进行精确测量,以评定管段当量金属温度和超温状况; 4)管子外径测量:对高温受热面管的管子外径进行抽样测量,以评定管段蠕变胀粗状况,应力状况及腐蚀状况; 5)管子硬度测量:对高温锅炉管硬度进行抽样测量,以评定管段组织状态及力学性能; 6取样:依据现场检验的初步结果,割取有代表性的管样,用作实验室精确检验与测试分析。  2.2 实验室检验与测试 实验室检验的目的是为了精确全面地测试管段材料老化和性能劣化的各项特征参数,确定其变化程度和变化速度,以便进行更精确的状态评估及寿命评定。通过现场检验和实验室检验,综合分析现场普查和实验室典型管样检查的全部数据,从而确定部件的实际使用状态及测定的每根管子的剩余寿命。 取样的高温锅炉管在实验室检验与测试的主要内容包括:  1) 化学成分检验; 2)金相组织检验; 3)金属氧化特征微观检验; 4)显微硬度检验(包括向火面、背火面);

锅炉汽温的控制与调整

锅炉汽温的控制与调整 锅炉汽温的控制与调整 在电力工业的长期发展过程中,蒸汽参数不断提高,这提高了电厂热力循环的效率。但是蒸汽温度的进一步提高受到必须采用价格昂贵、抗热强度及工艺性能差的高温钢材的限制,故目前绝大多数电站锅炉的过热汽温和再热汽温在.540℃~555℃的范围内,本锅炉的过热汽温和再热汽温均选择541℃。 锅炉正常运行过程中,过热汽温和再热汽温偏离额定值过大时,会对锅炉和汽轮机的安全或经济运行带来不良的影响。 汽温过高时,将引起过热器、再热器、蒸汽管道及汽轮机汽缸、阀门、转子部分金属强度,降低,导致设备寿命缩短,严重时甚至造成设备损坏事故。从以往锅炉受热面爆管事故的统计情况来看,绝大多数的炉管爆漏是由于金属管壁严重超温或长期过热造成的。因而汽温过高对设备的安全是一个很大的威胁。 蒸汽温度过低时,则会使汽轮机最后几级叶片的蒸汽湿度增加,严重时甚至还有可能发生水击,造成汽轮机叶片断裂损坏。此外,汽温过低时还将造成汽轮机转子所受的轴向推力增大。凡此种种,均将严重威胁汽轮机的安全运行。当蒸汽压力不变时如发生汽温降低,还将造成蒸汽焓下降,蒸汽作功能力降低,使汽轮机的汽耗增加,机组热力循环效率下降。所以汽温过低,不仅严重影响设备的安全性,而且还

将对机组运行的经济性带来不良的后果。 过热汽温和再热汽温如发生大幅度变化,除使锅炉管材及有关部件产生较大的热应力和疲劳外,还将引起汽轮机转子与汽缸间的差胀变化,严重时甚至可能发生叶轮与隔板的动静摩擦,造成汽轮机的强烈振动。汽温两侧偏差过大时,将使汽轮机汽缸两侧受热不均,热膨胀不均,威胁机组的安全运行。 因此,锅炉运行中,在各种内、外扰动因素影响下,如何通过运行分析调整,用最合理的方法保持汽温稳定,是汽温调节的首要任务。一、锅炉受热面的传热特性 锅炉的受热面,按传热方式一般可分为辐射受热面、半辐射受热面和对流受热面三种类型。水冷壁蒸发受热面,前屏及包复管受热面等,由于辐射换热量占主要成份,一般属辐射受热面;后屏过热器一方面吸收烟气的对流传热,另一方面又吸收炉膛中和管间烟气的辐射传热,属半辐射受热面;省煤器及对流烟道中的过热器、再热器等受热面由于对流换热量占主要成份,一般属对流受热面。随着锅炉负荷的变化,炉内辐射传热量和对流传热量的分配比例将发生变化。当锅炉负荷增加时,对流受热面的传热份额将增加,辐射受热面的传热份额相对减少,而半辐射受热面则影响较小,见图4-2-1。 锅炉负荷增加时,炉膛温度及炉膛出口烟气温度均将升高,由于炉膛温度的提高,总辐射传热量将增加;但是炉膛出口烟温的升高,又表示了每千克燃料在炉内辐射传热量的相应减少。所以锅炉负荷增加时,

火力发电厂锅炉过热器管爆漏分析与对策

火力发电厂锅炉过热器管爆漏分析与对策 发表时间:2017-10-20T16:13:04.740Z 来源:《基层建设》2017年第17期作者:杨科 [导读] 摘要:通过对兰州西固热电有限责任公司13号锅炉一级过热器管排弯管及穿墙管发生爆漏情况的分析,提出了有效的处理对策,提高了机组安全稳定运行。 兰州西固热电有限责任公司 摘要:通过对兰州西固热电有限责任公司13号锅炉一级过热器管排弯管及穿墙管发生爆漏情况的分析,提出了有效的处理对策,提高了机组安全稳定运行。 关建词:一级过热器弯管穿墙管爆漏 1 概述 13号锅炉系俄供E-420-13.7-560KT型锅炉,(E:自然循环;420:额定蒸发量;13.7:过热蒸汽压力;560℃:过热蒸汽温度;K:锅炉;T:固态排渣)。锅炉为单汽包、膜式冷壁,自然循环立式水管锅炉,固态排渣,生产高压蒸汽,布置型式为“П”型,钢结构,悬吊支架。 1.1锅炉外形尺寸: 轴向炉体宽:24m,轴向炉体深:28m,汽包中心线标高:45.09m,锅炉金属重:3450T。 1.2一级过热器结构: 一级过热器共108排,每排有4列3根管圈组成;材质为20号锅炉钢和12Cr1MoV高压锅炉无缝钢管,规格为φ38×4mm,其穿出顶棚后与进口集箱连接部分的弯管材质为12Cr1MoV。管子间距横向100mm,纵向68mm。管间固定采用“管卡”固定形式,并设置有防磨措施。 2 一级过热器管爆漏后解体检查情况 重点检查内容:磨损、过热、蠕胀。 检查部位:管排向火侧外管圈及弯头磨损、过热、蠕胀;炉顶穿墙管处的磨损;管排吊卡、梳形定排卡子、管卡子处的磨损。 一级过热器解体检查情部况如下: 2.1向火侧第一根管B侧向A侧数第2、3、6排距顶棚约400mm处有烟气灰粒撞击坑深度约1.5mm,面积约15×10mm,共3根。 2.2穿墙直管后向前数第三根管B侧向A侧数第6、15、19、20、28、29、32、35、71、83、84、86、87、92、95、96、98、101、106、107、108排磨损1.5-2 mm,共21根。 2.3上弯头后数第一列大弯头弯内侧第4、5、12、14、17、18、32、38、83、84、85、90、102、103、104、106排磨损1.5-2 mm,共16个弯头。 2.4下弯头磨损检查情况:后向前数第二列大弯头A侧向B侧数第2、7、9、15、19、21、22、23、28、34、35、41、102排磨损1.5-2 mm,共13个弯头;后向前数第一列大弯头第11、12、14、19、20、21、54、56、57、77排超温、过热蠕胀严重,共10个弯头;第23、24、25、26、72、73、74、75排三列大弯头氧化、腐蚀严重,共8个弯头。 3 爆漏原因分析 3.1磨损 磨损一般发生在一级过热器上、下部弯头位置,飞灰的浓度增大,灰粒的冲击次数增多,因灰粒的冲击和切削作用对受热面管子产生磨损。通过检查迎烟气侧上、下弯头部位、过热器管卡部位、顶棚穿墙直管部位、管排靠近炉墙两侧部位等均有不同程度的磨损。主要表现是管排较乱,管排固定卡烧坏脱落严重,管排间距不均;过热器下弯头防磨护瓦磨损变形严重有些部位脱落;管排梳型卡因过去抢修未恢复;穿墙管处防磨护瓦磨损脱落等现象。分析原因主要是过热器下弯头正处于炉膛出口斜护板处积灰严重形成烟气走廊,烟气转向受阻长期冲刷磨坏防磨护瓦造成。过热器上弯头及穿墙直管主要是烟气转向冲刷造成。管排中间直管磨损主要是管排不平整烟气冲刷造成。管排吊卡部位是因管排发生振动,固定件与管屏内圈发生摩擦,使管壁磨损减薄,在内压力的作用下发生爆管。 3.2超温、过热 温度在540℃时,随着运行时间的增加,钢的工作温度下蠕变极限和持久强度也相应降低。随着运行温度的提高、时间的延长、应力的变化都会加剧。长期过热是指管壁温度长期处于设计温度以上而低于材料的下临界温度,超温幅度不大但时间较长,锅炉管子发生碳化物球化,管壁氧化减薄,持久强度下降,蠕变速度加快,使管径均匀胀粗,最后在管子的最薄弱部位导致脆裂的爆管现象。这样,管子的使用寿命便短于设计使用寿命。超温程度越高,寿命越短。在正常状态下,长期超温爆管主要发生在高温过热器的外圈的向火面。 3.3高温下的氧化和腐蚀 当燃用含有一定量硫、钠和钾等化合物的燃料时,在550~700℃的金属管壁上还会发生高温腐蚀,在过热器受热面中易发生的主要是高温腐蚀。锅炉受热面的高温腐蚀发生于烟温大于700℃的区域内。当燃用K, Na, S等成分含量较多的煤时,灰垢中K2 S04和Na2S04;在含有SO2的烟气中会与管子表面氧化铁作用形成碱金属复合硫酸盐K2Fe(S04) 5及Na5Fe(S04)5,这种复合硫酸盐在550~710℃范围内熔化成液态,具有强烈腐蚀性,在壁温600~700℃时腐蚀最严重。管内壁积垢、外壁氧化。锅炉管内壁结垢,使过热器壁温升高,外壁氧化皮,又使管壁减薄,因此爆管频繁。 3.4管子弯头椭圆度和管壁减薄问题 检查发现个别弯头椭圆度大于8%,不符合国家标准《水管锅炉受压元件强度计算》规定的弯头椭圆度。另外,实测数据表明,有个别管子弯头的减薄量达23%~28%,小于直管的最小需要壁厚。 3.5焊接质量和异种金属焊接问题 检查有些焊口焊接接头裂纹未熔合、咬边,焊缝外形尺寸不合格等。顶棚穿墙管处因两种金属的蠕变强度不匹配,以及焊缝界面附近的碳近移,使异种金属焊接界面断裂失效,而发生漏泄。 3.6检修人员责任心问题 检修人员没有按检修规程规定严格执行检修工序工艺标准,质量意识淡薄,工作作风不严谨,责任心不强,出现管材缺陷(管材金属不合格或错用管材),焊接缺陷等。没有真正做到“应修必修,修必修好”的原则。

强迫流动锅炉水动力特性资料

强迫流动锅炉水动力 特性

第13章强迫流动锅炉水动力特性 1.直流锅炉的水平蒸发管中为什么会发生水动力多值性? 答:产生多值性的原因是:管内有水有气。具体地说就是:当热负荷一定时,由于蒸发管内同时存在加热水段和蒸发段,水和蒸汽的比容差别极大,使得工质的平均比容随流量的变化而急剧变化,从而产生了水动力特性的多值性。 2.试述水平蒸发管中发生水动力多值性的影响因素及其影响作用,防止发生水 动力多值性的措施有哪些? 答:(1). 影响因素及影响作用 a.压力——一般来说随着压力的增加,水动力特性趋向稳定。这是由于随着压力的升高,饱和水和蒸汽的物性接近。两者的比容差值减小,当流量变化时,工质的平均比容变化减小。 b.入口水的欠焓——进口水的欠焓越小,水动力特性曲线越趋于稳定。这是由于当热负荷一定时。欠焓减小,蒸发段增长,蒸汽产量增加,使工质的平均比容随流量的增加不剧烈。 c.加热水段结构特性——增大加热段的阻力可以减小水动力特性的多值性。这是由于增大加热段阻力相当于增加了流量对压差的影响,总压降中蒸发段阻力的比例相应减小后,减弱了汽水混合物的比容对压差的影响,使得特性曲线趋于单值性。 d.热负荷——提高热负荷相当于减小了工质欠焓的影响,能使管中产生更多的蒸汽,削弱了平均比容变化的影响,因此阻力上升较快。 (2). 防治措施 a.减小蒸发管进口水的欠焓;b. 在进口欠焓不变的条件下,增大加热水段的阻力(一般采用加节流圈或在加热段采用较小的管径蒸发段采用较大的管径)。

3. 重位压降对强制垂直流动蒸发管的水动力特性有什么影响? 答: (1)当工质垂直向上流动时,重位压差起到了截流圈的作用,改善了水动力特性,可以部分或完全消除多值性; (2)当工质垂直向下流动时,重位压差恶化了水动力特性,使不计重位压差时的单值性流动阻力曲线叠加后出现多值性。 4.管组发生整体脉动的原因是什么? 整体脉动是所有并联蒸发管的流量和蒸发量同时发生周期性波动,一般可分为两种形式: 一种形式的整体脉动是由于燃料量、蒸汽量、给水流量以及锅炉压力的急剧波动引起的。这种脉动的水流量变化没有严格的周期性,振幅也是变化的,并且是衰减型的,当扰动消除后脉动就会停止。 另一种形式的整体脉动与给水泵的特性曲线(压差与流量的关系曲线)有关,表现为随着水泵压头的增加,其流量减小,但不同型式水泵的特性曲线的斜率是有差别的。直流锅炉或强制循环锅炉的给水泵工作时,当工况变化使压力增加时,送入锅炉的给水量减少,相应又使蒸发段的蒸汽量减少而压力降低,这样又使给水量增多,给水量的增加又使压力增高,如是形成周期性的脉动。 5.试述水平蒸发管组发生持续性管间脉动的条件、特点、成因及其影响因素。 图13-11是水平管组脉动时各参数的变化示意图。管组的进出口压差为ΔP0=P1-P2,加热段与蒸发段的长度和流动阻力分别为L jr、L zf和ΔP jr、ΔP zf在稳定流动过程中,其进口水质量流量G与出口蒸汽量D相等,如图(a)所示。若有一扰动,例如始沸点附近的热负荷突然增大,该处蒸汽量将增多,局部压力P jb升高,相应使加热段的压力增高,而P1并未改变,故该部分管的G减小δG,则其加热段缩短,ΔP jr减小了δΔP jr,始沸点的界面移向进口端,而其余管子中的水流量增加;同时蒸发段的长度增加和压差增大,使出口蒸汽量D增加δD,则ΔP zf增加了δΔP zf,此时管子中各参数的如图(b)所示。

锅炉丨二次再热机组再热汽温控制方案研究

锅炉丨二次再热机组再热汽温控制方案研究 再热汽温是表征锅炉运行工况的重要参数之一。汽温过高,会使锅炉受热面及蒸汽管道金属的蠕变速度加快,影响锅炉使用寿命;汽温过低将会引起机组热效率降低,使汽耗率增大,还会使汽轮机末级叶片处蒸汽湿度偏大,造成汽轮机末级叶片侵蚀加剧。再热汽温对象具有大延迟、大惯性的特点,而且影响再热汽温变化的因素很多,如机组负荷变化、煤质变化、减温水量、受热面结焦、风煤配比、燃烧工况以及过剩空气系数等,汽温对象在各种扰动作用下反映出非线性、时变等特性,使其控制难度增大。随着电网规模不断增大以及大容量机组在电网中的比例不断增加,电网要求发电机组具有更高的负荷调整范围和调整速率,快速的负荷变化极易导致再热器超温,而大量使用喷水减温又会严重降低机组热效率。如何保证再热汽温自动调节系统正常投用,同时兼顾机组运行的安全性和经济性,是一个长期而复杂的课题。 随着近年来火力发电技术的不断发展,二次再热超超临界发电技术逐渐成熟,国内已有多台二次再热机组在建或即将开建。而二次再热机组锅炉增加了一级二次再热循环,锅炉的受热面布置更加复杂,锅炉汽温控制的复杂性和难度也相应增加,其中最主要的在于两级再热汽温的控制。因此,合理

的再热汽温控制是二次再热机组安全性、经济性、可靠性的有力保证。 二次再热机组锅炉特点 二次再热机组锅炉相比一次再热增加了一级再热器,主要的蒸汽参数也有很大差异,下表是典型的二次再热π型锅炉与常规的一次再热π型锅炉的主要参数对比。 表1 二次再热锅炉与常规一次再热锅炉的主要参数对比 从表1 可以看出,二次再热锅炉具有以下特征: (1) 增加了一级二次再热循环,主汽流量减少,主汽与再热汽之间的吸热比例发生变化。 (2) 蒸汽温度调节对象由一次再热的主汽温度、再热汽温度变为主汽温度、一次再热汽温度、二次再热汽温度三个,调节方式和系统耦合将更加复杂。 (3) 再热汽温度和给水温度提高,空预器入口的烟温将会提高,导致排烟温度的控制难度增大。 二次再热机组锅炉通过合理调整过热器、再热器的受热面布置,配以合适的汽温调节方式尤其是合适的再热汽温调节方式,适应二次再热机组参数匹配要求。 再热汽温典型控制方案 二次再热机组再热器受热面采用了两级布置,出现了两个再热汽温控制点,调温方式和受热面吸热特性耦合难度增大,合理的锅炉受热面设计以及合适的调温方式成为关键。从国

相关主题
文本预览
相关文档 最新文档