当前位置:文档之家› 大数据及数据挖掘方法

大数据及数据挖掘方法

大数据及数据挖掘方法
大数据及数据挖掘方法

山东科技大学本科毕业设计(论文)

题目大数据及数据挖掘方法

学院名称数学与系统科学学院专业班级统计学10

学生姓名周广军

学号201001051633

指导教师高井贵

二0一四年六月

大数据及数据挖掘方法

摘要

随着计算机技术的革新,互联网新媒体的快速发展,人们的生活已经进入高速信息时代。我们每天的生活都要产生大量数据,因此我们获取数据的速度和规模不断增长,大量数据不断的被存入存储介质中形成海量数据。海量数据的存储、应用及挖掘已成为人们研究的重要命题。

数据挖掘是从存放在数据库、数据仓库或者其他信息库中大量的不完全的有噪声的模糊的随机的数据中提取隐含在其中的人们事先未知、但潜在有用的信息和知识过程。表现形式为:规则、概念、规律及模式等。数据挖掘是一门广义的交叉学科,从一个新的角度把数据库技术、人工智能、统计学等领域结合起来,从更深层次发掘存在于数据内部新颖、有效、具有潜在效用的乃至最终可理解的模式。在数据挖掘中,数据分为训练数据、测试数据、和应用数据。数据挖掘的关键是在训练数据中发现事实,以测试数据作为检验和修正理论的依据,把知识应用到数据中去。

本文首先说明了大数据的概念及兴起与发展历程,然后介绍各种主流的数据分析挖掘方法。

关键词:大数据数据挖掘数据分析方法

Abstract

With the development of computer technology, the rapid development of Internet and new media, people's life has entered the information era. Our everyday life is to have a large amount of data, so we get the growing data speed and scale, a large amount of data have been stored in the form of mass data storage medium.The storage, application and mining massive data has become an important proposition that people study.

Data mining is stored in the database from the data warehouse, or other information in the library a lot of incomplete, noise fuzzy random data in which the extraction of implicit previously unknown, but potentially useful information and knowledge process. Manifestation: the rules, concepts, rules and patterns. Data mining is a crossed subject, database technology, artificial intelligence, statistics and other fields together to from a new point of view, from a more deep excavation in data within a novel, effective, with potentially useful and ultimately understandable patterns. In data mining, data is divided into training data, test data, and the application of data. The key to data mining is fact finding in the training data, the test data as test and modify the theory basis, the application of knowledge to the data.

This paper firstly illustrates the concept and the rise and development of large data, and then introduce various mainstream data mining method.

Keywords: large data data mining method of data analysis

目录

大数据及数据挖掘方法 (1)

摘要 (1)

Abstract (2)

目录 (3)

1 大数据的缘起 (1)

1.1“大数据”的提出 (1)

1.2大数据概念、特征及价值 (2)

1.2.1大数据的概念 (2)

1.2.2大数据的特征 (3)

1.2.3大数据的价值 (4)

1.3大数据形成的必然性 (5)

1.4大数据发展现状 (7)

(一)政府积极介入推动 (8)

(二)资本市场也对大数据钟爱有加 (8)

(三)人才需求巨大 (8)

(四)国内情况 (9)

2大数据的处理 (10)

3数据挖掘方法 (12)

3.1神经网络 (12)

3.1.1人工神经网路基本介绍 (12)

3.1.2设计神经网路结构 (15)

3.1.3概率式学习 (17)

3.1.4神经网路方法优缺点 (17)

3.2遗传算法 (18)

3.2.1遗传算法特点 (18)

3.2.2遗传基本算法 (20)

3.2.3遗传算法优缺点 (23)

3.3决策树方法 (24)

3.3.1决策树表示法 (24)

3.3.2决策树构造思想 (25)

3.3.3决策树方法优缺点 (26)

3.4关联规则 (27)

3.4.1关联规则基本原理 (27)

3.4.2关联规则算法Apriori算法 (28)

3.5粗糙集 (30)

3.5.1粗糙集理论 (31)

3.5.2基于属性重要性算法 (31)

3.5.3粗糙集方法优缺点 (32)

4大数据面临的挑战

1大数据集成 (32)

2大数据分析(analytics ) (33)

3大数据处理与硬件的协同 (35)

参考文献 (37)

1 大数据的缘起

随着信息技术的高速发展、数据库管理系统的广泛应用,人们积累的数据量急剧增长,大量的信息给人们带来方便的同时,也带来了诸如:信息过量难以消化,信息真假难以辨识,信息安全难以保证,信息形式不一致难以统一处理等问题。如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。大数据问题成为近两年信息技术学术界与产业界热论的焦点。

1.1“大数据”的提出

大数据一词,最早出现于20世纪90年代,当时的数据仓库之父Bill Inmon,经常提及Big Data。

2011年5月,EMC公司在美国拉斯维加斯举办了第11届EMC World年度大会,设定的主题为“云计算相遇大数据”,大会正式提出了“大数据”(Big Data)概念。随后,IBM和麦肯锡等众多国外机构发布了“大数据”相关研究报告,阐述了大数据的特征,给社会经济发展带来的机遇和对当前信息技术的挑战。可以预测,大数据将成为继云计算和物联网之后,信息技术产业又一次颠覆性的技术变革。

在学术界,国际顶级期刊《Nature》和《Sciences》近期针对大数据分别出版了专刊《Big Data))和《Deal-ing with Data》,从互联网技术、互联网经济学、超级计算、环境科学、生物医药等多个方面讨论了大数据处理面临的各种问题。2012年8月12 ~16日在北京举办的第18届知识发现与数据挖掘(KDD)国际会议,大数据成为重要议题,其暑期培训班(KDD Summer School on Mining the Big

Data)和专家论坛(Panel Discus-lion)都是集中讨论大数据问题。2011年11月26日,中国软件开发联盟(CSDN)在北京成功举办了中国大数据技术大会。为推动大数据这个交叉学科的发展,中国计算机学会(CCF)成立了大数据专家委员会(CCF Big Data Task Force,简称CCF TFBD)。

大数据的机遇与挑战己经从商业领域上升到国家战略层面。2012年3月29日,美国政府发布了“大数据研究和发展倡议”。随后,美国国家科学基金委员会(NSF)、美国国家卫生研究院(NIH)、美国能源部(DOE)、美国国防部(DODO)、美国国防部高级研究计划局(DARPA)、美国地质勘探局(USGS)六个部门联合推出了大数据计划,旨在提升从大量复杂数据中获取知识和洞见的能力。

为探讨中国大数据的发展战略,由中国科学院计算技术研究所牵头,2012年5月22 ~ 24日在北京成功举办了以“网络数据科学与工程一一门新兴的交叉学科?”为主题的第424次香山科学会议,与会国内外知名专家学者为中国大数据发展战略建言献计。2012年8月14 ~15日,中国科学院启动了“面向感知中国的新一代信息技术研究”战略性先导科技专项,任务之一是研制用于大数据采集、存储、处理、分析和挖掘的未来数据系统。

信息时代万物数化,大数据的重要性己成行业共识,针对大数据技术和应用的创新,其发展趋势不可阻挡。如何对大数据进行充分和有效的分析和挖掘,使之转换为有价值的信息和知识,用于解决各种各样的科学和应用问题,成为大数据时代信息技术发展的重大挑战,同时也是信息技术创新的新的制高点。

1.2大数据概念、特征及价值

1.2.1大数据的概念

广义的大数据概念,除了大数据技术及其应用之外,还包括大数据工程和

大数据科学。大数据工程,是指大数据的规划建设运营管理的系统工程。大数据科学,主要关注大数据网络发展和运营过程中发现和验证大数据的规律及其与自然和社会活动之间的关系。从概念外延上讲,大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域,是适应信息经济时代发展需要而产生的科学技术发展趋势。

狭义的大数据概念,主要是指大数据技术及其应用,是指从各种各样类型的数据中,快速获得有价值信息的能力,一方面,强调从海量数据、多样数据里提取微价值,即具有价值(Value)特征;另一方面,强调数据获取、数据传递、数据处理、数据利用等层面的高速高效,即具有快速处理(Velocity)特征。大数据概念里的“数据”,是指具有可追踪、可分析、可量化特性的数据。大数据概念里的“大”,是指“大数据”所应具有的“大量化”(V olume)、“多样化”(Variety)两个特征。从概念内涵上说“大数据”(Big Data),一方面,反映的是规模大到无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合;另一方面,主要是指海量数据的获取、存储、管理、分析、挖掘与运用的全新技术

体系。

从根源上讲大数据的分析意义在于对这些庞大的数据进行专业化处理,挖掘数据价值,提供大数据服务才是大数据具有战略价值的关键。

1.2.2大数据的特征

在2011年10月美国拉斯维加斯举办的IOD2011大会上,IBM给出了大数据的“3V”,特征,即多样性(wariet)、体量(volume)、速度(velocity)。多样性是指数据来自多种数据源,并且数据类型包含结构化和非结构化数据。体量是指整合在一起供分析与挖掘的数据量非常庞大的。速度则是指数据生成和处

理的速

度必须很快,也包含数据内容的变化也快。

大数据的这些特征对现有的数据分析与挖掘方法、技术、算法和软件带来新的挑战,使基于传统服务器进行数据挖掘的方式产生极大的瓶颈。用户为提高大数据分析与挖掘的能力,必须提高服务器的性能,包括存储、内存和CPU,造成机器成本和能耗不断提高。当前大部分数据分析与挖掘软件不具备TB级以上大数据的复杂分析和建模能力。

随着对大数据价值认识的深入,大数据的典型特征又加入的一个价值(Value)维度,用以描述大数据的价值。在现实应用中,数据量大的数据并不一定有很大的价值。例如,很多数据在没有有效整合之前,重要的分析与挖掘无法开展,因此不具有很大的应用价值,而数据整合本身就是大数据的一大挑战。不能及时有效处理分析的数据也没有很大的应用价值,如大量的视频数据,目前还没有有效分析和挖掘大量视频数据的技术,很多应用还要靠人来监控。

1.2.3大数据的价值

大量数据的生成和累积是信息化的必然结果。现代企业在采购、仓储、运输、产品设计、生产、销售和客户服务等诸多环节都采集并积累了大量的供应商、服务提供商和客户的交易数据,生产和经营数据,产品研发数据,财务及人力资源管理数据等,因此可以说现代企业是运营在数据之上,诸多生产和经营的决策问题必须通过数据分析才能解决。

麦肯锡的研究表明,随着消费者、企业和各经济部门充分发挥大数据的潜力,由大数据驱动的创新、生产力提高、经济增长、以及新的竞争模式和价值取向变革的巨大浪潮将达到巅峰。与过去不同的是,随着一系列新技术趋势发展的加速和凝聚,大数据所带来的变化规模和范围己经达到新的拐点,将会迅

速膨胀。比如,有效利用大数据可以提高健康护理的质量和效率,潜在为美国每年创造3千亿美元的价值,其中三分之二是来自于降低健康护理的成本,相当于每年减少全国健康护理花费的8%。零售业充分利用大数据可以提高运营效益60 %。在欧洲发达国家,充分利用大数据提高政府管理效率,每年可以减少政府运营费用1

千亿欧元。相信未来大数据的产业规模将会至少以万亿美元来进行衡量,大数据将会给信息技术领域带来一个新的增长点。

大数据带来的潜在经济价值和社会价值巨大,但这些价值必须通过数据的有效整合、分析和挖掘才能释放出来。数据的整合是建立数据仓库的必要工作,对于结构化数据的整合有很多解决方案和软件工具。目前的挑战是非结构化数据的融合和整合,如:文本数据、图像数据、信号数据、音频数据、视频数据等。

1.3大数据形成的必然性

(一).数据管理理念不断变革,大数据成为信息技术发展的必然选择

大数据技术及其应用的驱动原因,在于数据管理理念的不断变革。数据管理是利用计算机硬件和软件技术对数据进行有效地收集、存储、处理和应用的过程,其目的在于充分有效地发挥数据的作用。数据管理技术的发展先后经历了四个阶段,即人工管理阶段、文件系统阶段、数据库阶段、面向应用的数据管理阶段。1996年,加特纳集团(Cart-ner Croup)提出“商业智能”概念,又称商务智能(Business Intelligence,简写为BI)。商业智能技术为企业提供迅速分析数据的技术和方法,包括收集、管理和分析数据,将这些数据转化为有用的信息,然后分发到企业各处。商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。为了将数据转化为知识,需

要利用数据仓库、联机分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是数据仓库、OLAP和数据挖掘等技术的综合运用。可以认为,商业智能是对商业信息的搜集、管理和分析过程,目的是使企业的各级决策者获得知识或洞察力,促使他们做出对企业更有利的决策。

随着现代信息传播技术手段和方式不断丰富,信息获取、信息传递、信息处理、信息再生、信息利用等功能应用日益多样化,智能化信息系统逐渐形成一个信息网络体系,人类社会的生产方式、工作方式、学习方式、交往方式、生活方式、思维方式等发生了极其深刻的变革,互动化、即时性、全媒体等成为常态性的信息生态环境,传统的数据库组织架构和信息服务模式己经难以适应信息社会现实需要,整个信息技术架构的革命性重构势在必行,大数据成为信息技术发展的必由之路。

(二)大数据源于虚拟网络的迅速发展和现实世界的快速网络化

一方面,虚拟网络社会迅猛发展,形成了海量数据的持续生成空间。虚拟社会是人们在计算机网络中展开活动,相互作用形成的社会关系体系。虚拟社会

的形成和发展,为人类生存和发展提供了新的空间,改变了社会结构,形成了与现实社会并存的社会存在的新形式;改变了人类的生存方式和活动方式,形成了人类的虚拟生活方式。

另一方面,云计算、物联网、社交网络、电子商务、网络社区、即时通讯等技术形式的涌现,推动现实世界快速向网络社会形态切换,衍生了规模巨大、类型多样的数据资源。其中两类数据尤其引人注意,一类是企业与企业、消费者之间的“大交易数据”,另一类是来自互联网、社区网、企业服务网、物联网等的“大交互数据”。

虚拟网络的迅速发展和现实世界的快速网络化,两者交互影响,最终指向海量数据的持续生成和繁杂数据的不断出现。目前,我们正处于一个信息爆炸的年代,全球每年产生的数据量是ZB级。2012年全球产生2. 4ZB的数据,相当于3 Trillion(万亿)的DVD,到2020年,数据还将增加14倍,达到40ZB。大数据概念的提出,最初正是由于需要处理的信息量过大,超出了一般电脑的数据处理能力,无法透过目前主流软件工具在合理时间内达到撷取、管理、处理并整理成为帮助企业经营决策的资讯,因此工程师们必须改进处理数据的工具,这促使新的处理技术的诞生,比如雅虎的开源Hadoop平台,这类技术使人们可以处理的数据量大大增加。

(三)大数据成了决定我们未来数字生活方式的重大技术命题

大数据概念最初起源于美国,是由思科、威睿、甲骨文、IBM等公司倡议发展起来的。大约从2009年媳“大数据”成为互联网信息技术行业的流行词汇。事实上,大数据产业是指建立在对互联网、物联网、云计算等渠道广泛、大量数据资源收集基础上的数据存储、价值提炼、智能处理和分发的信息服务业。大数据企业大多致力于让所有用户几乎能够从任何数据中获得可转换为业务执行的洞察力,包括之前隐藏在非结构化数据中的洞察力。

大数据是一个不断演变的概念,当前的兴起,是因为从IT技术到数据积累,都己经发生重大的变化。仅仅数年时间,大数据就从大型互联网公司高管嘴里的专业术语,演变成了决定我们未来数字生活方式的重大技术命题。

1.4大数据发展现状

大数据的快速发展,使它成为IT领域的又一大新兴产业。据中央财经大学中国经济管理研究院博士张永力估算,国外大数据行业约有1000亿美元的市场,

而且每年都以10%的速度在增长,增速是软件行业的两倍。我国2012年大数据市场规模大约4.7亿元,2013年增速将达到138%,达到11.2亿元,产业发展潜力非常巨大。

(一)政府积极介入推动

2009年,联合国启动“全球脉动计划”,借大数据推动落后地区发展。2012年1月,世界经济论坛年会把“大数据、大影响”作为重要议题。美国从开放政府数据、开展关键技术研究和推动大数据应用三方面布局大数据产业。美国在开放政府上非常积极,通过https://www.doczj.com/doc/3d10296814.html,开放37万个数据集,并开放网站的API 和源代码,提供上千个数据应用。除了推动本国政府数据开放,美国倡导发起全球开放政府数据运动,已有41个国家响应。美国政府还投资两亿美元促进大数据核心技术研究和应用,把大数据放在与集成电路、互联网同等重要的位置,从国家层面推进。

(二)资本市场也对大数据钟爱有加

2012年4月,大数据分析公司Splunk高调宣传大数据,引发投资者关注。12月初,为企业市场提供Hadoop解决方案的创业公司Cloudera获得6500万美元融资,估值约为7亿美元。近期,高盛联席主席斯科特.斯坦福说:“投资大数据及其运用回报率最高”。大数据领域的企业并购热度也在上升,单笔平均并购金额方面,大数据超过云计算位居IT领域榜首,在总并购额上也位居第二。

(三)人才需求巨大

据一家国际咨询公司,盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。麦肯锡公司预测美国到2018年需要深度数据

分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。

(四)国内情况

大数据的火爆,也带动了国内学术界、产业界和政府对大数据的热情。2011年以来,中国计算机学会、中国通信学会先后成立了大数据委员会,研究大数据中的科学与工程问题,科技部的《中国云科技发展“十二五”专项规划》和工信部的《物联网“十二五”发展规划》等都把大数据技术作为一项重点予以支持。其中工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。

应用方面,中国三大通信运营商都在结合自身业务情况,积极推进大数据应用工作,并取得了较好的进展。电子商务企业阿里巴巴提出要做中国数据分析第一平台,通过掌握的企业交易数据,借助大数据技术自动分析判定是否给予企业贷款,全程不会出现人工干预。据透露,截至目前阿里巴巴已经放贷300多亿元,坏账率约0.3%左右,大大低于商业银行。

研发企业方面,我国能够处理大数据的企业并不是很多。北京永洪科技在这方面做的不错。永洪科技在大数据、分布式计算、数据分析等领域具备核心竞争力、自主创新并拥有多项发明专利。推出的Z系列产品在大数据的应用分析中在国际上也是领先的。

大数据的热潮触发了一场思想启蒙运动,使得“大数据是资产,不是包袱”、

“要拿数据说话”等观念逐步深入人心,改变了以往不重视数据积累,不相信数据分析等认识。有了这种思维模式的改变,大数据的应用就有了希望。

2大数据的处理

很多人说,大数据时代,是数据为王的时代。但是,大数据不只是指海量的信息,更强调的是人类对信息的筛选、处理。有专家认为,大数据的真谛是删除,而删除的真谛是不删除,也就是保留有用的东西。所以,大数据的处理,也就是在海量数据中淘金的过程。

大数据的处理方法有很多,普遍适用的大数据处理流程,可以概括为四步,分别是采集、导入和预处理、统计和分析,最后是数据挖掘。

1采集

大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片是需要深入的思考和设计。

2导入/预处理。

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

3统计分析。

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

4挖掘。

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。

3 数据挖掘方法

数据挖掘方法是由人工智能、机器学习的方法发展而来,结合传统的统计分析方法、模糊数学以及科学计算可视化技术,以数据库为研究对象,形成的数据挖掘的方法和技术。

数据挖掘的方法和技术可以分为六大类:归纳学习方法、仿生物技术、公式发现、统计分析方法、模糊数学方法、可视化技术。

下面介绍几种具体的分析方法:

3.1神经网络

3.1.1人工神经网路基本介绍

在许多数据挖掘和决策支持应用中,由于有公认的轨迹记录,人工神经网络

已经成为一种普遍采用的方法。神经网络是一种可以容易的应用于预测,分类和

聚类的强有力工具。最有力的神经网络是生物所具有的神经网络,与此相对应的

是,计算机通常善于反复的执行明确的指令。通过在计算机上模拟人脑的神经联

系,桥接计算机与人脑的隔阂,是人工神经网络的关键。神经网络从数据中概括

和学习的能力,是模仿我们从经验中学习的能力,这种能力对数据挖掘是有用的。

以某个IRIS对三种植物的分类案例为例,神经网络有能力通过对已知的样本参数学习后,实现对三种植物的分类

由上图可见神经网络就像一个知道如何处理输入以产生输出的黑匣子,计算

相当的复杂且难以理解,却往往给出有用的结论。

人工神经网络属于人工智能中的机器学习型,它类似于人类大脑重复学习的

方法,先给出一系列的样本,进行学习和训练,从而产生区别各种样本之间的不

同特征和模式。该算法的优点是对复杂问题能进行很好的预测,对噪声数据的承

受能力比较高,以及它对未经训练的数据分类模式的处理能力。因此人工神经网

络主要被应用于数据挖掘领域中的提取分类规则以及预测。

用人工的方法模拟产生一个生物神经元的数学模型如下图所示,由一

个多输入、单输出的非线性元件表达。单个神经元是前向型的,将人工神经元的

基本模型和激励函数合在一起构成的人工神经元,就是著名的McCulloch-Pitts 模型,简称为MP模型。这种模型是对生物神经元的抽象、模拟与简化。

下图就是一个典型的MP人工神经元模型

上面所示的MP模型属于一种阂值元件模型,它是由美国Mc Culloch和Pitts 提出的最早神经元模型之一。MP模型是大多数神经网络模型的基础。该人工神经元具有许多的输入信号,针对每个输入都有一个加权系数w称为权值(Weights),权值的正负模拟了生物神经元中突触的兴奋和抑制,其大小则代表了突触的不同连接强度。而中间的神经元对所有的输入信号进行计算处理,然后将

结果输出。在神经元中,对信号进行处理采用的是数学函数:通常称为激活函数、激励函数或挤压函数。其输入、输出关系可描述为:

式中Xi (i=1,2,.....n )是从其它神经元传来的输入信号;

j 是该神经元的阀值;i j w 表示从神经元i 到神经元j 的连接权值;f 为激活函数或挤压函数。由于神经元采用了不同的激活函数,使得神经元具有不同的信息处理特性,而神经元的信息处理特性是决定神经网络整体性能的主要因素之一,因此激活函数具有重要的意义。

3.1.2设计神经网路结构

前馈神经网络的结构设计主要包括输入层和输出层节点数的选择、网络隐层

数的选择以及每个隐层节点数的选择等三个方面。其中,输入层和输出层节点数

的确定一般由实际应用的训练样本所决定。输入节点数一般等于待训练样本的矢

量维数,即样本数据的特征维数;输出层单元数在分类网络中取类别数m 。或 2log m

,其中m 为待分类的类别数;在逼近网络中取要逼近的函数输出空间维数。 因此,前馈神经网络的结构设计,在BP 神经网络中主要是解决网络隐层数以及

每个隐层节点数的选择问题;在RBF 网络设计中,就是隐层节点数多少的问题。

1.隐层数的设计

理论上已经证明:一个3层BP 神经网络,含一个隐层,只要隐层节点数足 够多,就能以任意精度逼近有界区域上的任意连续函数;这一点对于RBF 网络, 隐层必为一,也可以任意精度逼近有界区域上的任意连续函数。这就给我们确定

了设计前馈网络结构的基本原则。虽然增加隐层层数能降低网络训练误差,提

大数据挖掘常用方法

数据挖掘常用的方法 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。

(3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。 (4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信息来改善自身的营销。 (5)神经网络方法。神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的以及那些以模糊、不完整、不严密的知识或数据为特征的处理问题,它的这一特点十分适合解决数据挖掘的问题。典型的神经网络模型主要分为三大类:第一类是以用于分类预测和模式识别的前馈式神经网络模型,其主要代表为函数型网络、感知机;第二类是用于联想记忆和优化算法的反馈式神经网络模型,以Hopfield 的离散模型和连续模型为代表。第三类是用于聚类的自组织映射方法,以ART 模型为代表。虽然神经网络有多种模型及算法,但在特定领域的数据挖掘中使用何种模型及算法并没有统一的规则,而且人们很难理解网络的学习及决策过程。 (6)Web数据挖掘。Web数据挖掘是一项综合性技术,指Web 从文档结构和使用的集合C 中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

《大数据时代下的数据挖掘》试题和答案与解析

《海量数据挖掘技术及工程实践》题目 一、单选题(共80题) 1)( D )的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到 和原始数据相同的分析结果。 A.数据清洗 B.数据集成 C.数据变换 D.数据归约 2)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖 掘的哪类问题?(A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3)以下两种描述分别对应哪两种对分类算法的评价标准? (A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准。 A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘 5)当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数 据相分离?(B) A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链 6)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 哪一类任务?(C) A. 根据内容检索 B. 建模描述 C. 预测建模 D. 寻找模式和规则 7)下面哪种不属于数据预处理的方法? (D) A.变量代换 B.离散化

C.聚集 D.估计遗漏值 8)假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内? (B) A.第一个 B.第二个 C.第三个 D.第四个 9)下面哪个不属于数据的属性类型:(D) A.标称 B.序数 C.区间 D.相异 10)只有非零值才重要的二元属性被称作:( C ) A.计数属性 B.离散属性 C.非对称的二元属性 D.对称属性 11)以下哪种方法不属于特征选择的标准方法: (D) A.嵌入 B.过滤 C.包装 D.抽样 12)下面不属于创建新属性的相关方法的是: (B) A.特征提取 B.特征修改 C.映射数据到新的空间 D.特征构造 13)下面哪个属于映射数据到新的空间的方法? (A) A.傅立叶变换 B.特征加权 C.渐进抽样 D.维归约 14)假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方 法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:(D) A.0.821 B.1.224 C.1.458 D.0.716 15)一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年 级110人。则年级属性的众数是: (A) A.一年级 B.二年级 C.三年级 D.四年级

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.doczj.com/doc/3d10296814.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.doczj.com/doc/3d10296814.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.doczj.com/doc/3d10296814.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.doczj.com/doc/3d10296814.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.doczj.com/doc/3d10296814.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.doczj.com/doc/3d10296814.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

大数据时代的数据挖掘

大数据时代的数据挖掘 大数据是2012的时髦词汇,正受到越来越多人的关注和谈论。大数据之所以受到人们的关注和谈论,是因为隐藏在大数据后面超千亿美元的市场机会。 大数据时代,数据挖掘是最关键的工作。以下内容供个人学习用,感兴趣的朋友可以看一下。 智库百科是这样描述数据挖掘的“数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 数据挖掘的定义 技术上的定义及含义 数据挖掘(Data Mining )就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。 与数据挖掘相近的同义词有数据融合、人工智能、商务智能、模式识别、机器学习、知识发现、数据分析和决策支持等。 ----何为知识从广义上理解,数据、信息也是知识的表现形式,但是人们更把概念、规则、模式、规律和约束等看作知识。人们把数据看作是形成知识的源泉,好像从矿石中采矿或淘金一样。原始数据可以是结构化的,如关系数据库中的数据;也可以是半结构化的,如文本、图形和图像数据;甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现的知识可以被用于信息管理,查询优化,决策支持和过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门交叉学科,它把人们对数据的应用从低层次的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、数理统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。 这里所说的知识发现,不是要求发现放之四海而皆准的真理,也不是要去发现崭新的自然科学定理和纯数学公式,更不是什么机器定理证明。实际上,所有发现的知识都是相对的,是有特定前提和约束条件,面向特定领域的,同时还要能够易于被用户理解。最好能用自然语言表达所发现的结果。n x _s u x i a n g n i n g

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

大学数据挖掘期末考试题

:号学 题目-一 - -二 二 三四五六七八九十总成绩复核得分 阅卷教师 :名姓班 级 业专 院 学院学学科息信与学数 题试试考末期期学季春年学一320数据挖掘试卷 课程代码:C0204413课程:数据挖掘A卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。() 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。() 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。() 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似。() 5. DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。() 6. 属性的性质不必与用来度量他的值的性质相同。() 7. 全链对噪声点和离群点很敏感。() 8. 对于非对称的属性,只有非零值才是重要的。() 9. K均值可以很好的处理不同密度的数据。() 10. 单链技术擅长处理椭圆形状的簇。() 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分 离?() A. 分类 B.聚类 C.关联分析 D.主成分分析 2. ()将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A. MIN(单链) B.MAX(全链) C.组平均 D.Ward方法 3. 数据挖掘的经典案例“啤酒与尿布试验”最 主要是应用了()数据挖掘方法。 A分类B预测C关联规则分析D聚类 4. 关于K均值和DBSCAN的比较,以下说法不正确的是() A. K均值丢弃被它识别为噪声的对象,而DBSCAN —般聚类所有对 象。 B. K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 C. K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 D. K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇 5. 下列关于 Ward 'Method说法错误的是:() A. 对噪声点和离群点敏感度比较小 B. 擅长处理球状的簇 C. 对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差 D. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似 6. 下列关于层次聚类存在的问题说法正确的是:() A. 具有全局优化目标函数 B. Group Average擅长处理球状的簇 C. 可以处理不同大小簇的能力 D. Max对噪声点和离群点很敏感 7. 下列关于凝聚层次聚类的说法中,说法错误的事: () A. 一旦两个簇合并,该操作就不能撤销 B. 算法的终止条件是仅剩下一个簇 2 C. 空间复杂度为O m D. 具有全局优化目标函数 8规则{牛奶,尿布}T{啤酒}的支持度和置信度分别为:()

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则) 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。(4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信

数据挖掘经典书籍

数据挖掘入门读物: 深入浅出数据分析这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。 啤酒与尿布通过案例来说事情,而且是最经典的例子。难易程度:非常易。 数据之美一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。 数学之美这本书非常棒啦,入门读起来很不错! 数据分析: SciPy and NumPy 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。Python for Data Analysis 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!Bad Data Handbook 很好玩的书,作者的角度很不同。 数据挖掘适合入门的教程: 集体智慧编程学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。 Machine Learning in Action 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博:王斌_ICTIR)已经翻译这本书了机器学习实战(豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一! Building Machine Learning Systems with Python 虽然是英文的,但是由于写得很简单,比较理解,又有Python 代码跟着,辅助理解。 数据挖掘导论最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。Machine Learning for Hackers 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。 数据挖掘稍微专业些的: Introduction to Semi-Supervised Learning 半监督学习必读必看的书。 Learning to Rank for Information Retrieval 微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!Learning to Rank for Information Retrieval and Natural Language Processing 李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。 推荐系统实践这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。 Graphical Models, Exponential Families, and Variational Inference 这个是Jordan老爷子和他的得意门徒Martin J Wainwright 在Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。 Natural Language Processing with Python NLP 经典,其实主要是讲NLTK 这个包,但是啊,NLTK 这个包几乎涵盖了NLP 的很多内容了啊! 数据挖掘机器学习教材: The Elements of Statistical Learning 这本书有对应的中文版:统计学习基础(豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。 统计学习方法李航老师的扛鼎之作,强烈推荐。难易程度:难。 Machine Learning 去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。

数据挖掘经典方法

在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 1.分类 分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 分类的方法有:决策树、贝叶斯、人工神经网络。 1.1决策树 决策树是用于分类和预测的主要技术之一,决策树学习是以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的实例中推理出以决策树表示的分类规则。构造决策树的目的是找出属性和类别间的关系,用它来预测将来未知类别的记录的类别。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性值判断从该节点向下的分支,在决策树的叶节点得到结论。 1.2贝叶斯 贝叶斯(Bayes)分类算法是一类利用概率统计知识进行分类的算法,如朴素贝叶斯

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

数据挖掘算法摘要

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了

相关主题
文本预览
相关文档 最新文档