计算机组成原理重点总结(详版)
- 格式:doc
- 大小:201.50 KB
- 文档页数:55
计算机组成原理【考查目标】1. 理解单处理器计算机系统中各部件的内部工作原理、组成结构以及相互连接方式,具有完整的计算机系统的整机概念。
2. 理解计算机系统层次化结构概念,熟悉硬件与软件之间的界面,掌握指令集体系结构的基本知识和基本实现方法。
3. 能够运用计算机组成的基本原理和基本方法,对有关计算机硬件系统中的理论和实际问题进行计算、分析,并能对一些基本部件进行简单设计。
一、计算机系统概述(一)计算机发展历程第一台电子计算机ENIAC(Electronic Numerical Integrator And Computer)诞生于1946年的美国宾夕法尼亚大学。
ENIAC用了18000电子管、1500继电器、重30吨、占地170m3、耗电140kw、每秒计算5000次加法。
冯•诺依曼(VanNeumann)首次提出存储程序的概念,将数据和程序一起放在存储器中,使得编程更加方便。
50多年来,虽然对冯•诺依曼机进行了很多改革,但结构变化不大,仍然称为冯•诺依曼机。
一般把计算机的发展分为四个阶段:第一代(1946-50‘s后期):电子管计算机时代;第二代(50‘s中期-60’s后期):晶体管计算机时代;第三代(60‘s中期-70’s前期):集成电路计算机时代;第四代(70‘s初-):大规模集成电路计算机时代。
(二)计算机系统层次结构1. 计算机硬件的基本组成计算机硬件主要指计算机的实体部分,通常有运算器、控制器、存储器、输入和输出五部分。
CPU是指将运算器和控制器集成到一个电路芯片中。
2. 计算机软件的分类计算机软件按照面向对象的不同可分两类:系统软件:用于管理整个计算机系统,合理分配系统资源,确保计算机正常高效地运行,这类软件面向系统。
应用软件:是面向用户根据用户的特殊要求编制的应用程序,这类软件通常实现用户的某类要求。
3. 计算机的工作过程(1)计算机的工作过程就是执行指令的过程指令由操作码和操作数组成:操作码指明本指令完成的操作地址码指明本指令的操作对象(2)指令的存储指令按照存储器的地址顺序连续的存放在存储器中。
计算机组成原理知识点总结第一章一、数字计算机的五大部件(硬件)及各自主要功能(P6)计算机硬件组成:存储器、运算器、控制器、输入设备、输出设备。
1、存储器(主存)主要功能:保存原始数据和解题步骤。
包括:内存储器(CPU 直接访问),外存储器。
2、运算器主要功能:进行算术、逻辑运算。
3、控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。
包括:计算程序和指令(指令由操作码和地址码组成)。
4、输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。
5、输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。
注:1、冯诺依曼结构:存储程序并按地址顺序执行。
2、中央处理器(CPU):运算器和处理器的结合。
3、指令流:取指周期中从内存读出的信息流,流向控制器。
数据流:在执行器周期中从内存读出的信息流,由内存流向运算器。
二、数字计算机的软件及各自主要功能(P11)1、系统软件:包括服务性程序、语言程序、操作程序、数据库管理系统。
2、应用程序:用户利用计算机来解决某些问题而设计。
三、计算机的性能指标。
1、吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量。
2、响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。
3、利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示。
4、处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。
5、总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数。
6、存储器容量:存储器中所有存储单元(通常是字节)的总数目,通常用KB、MB、GB、TB来表示。
7、存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s(字节/秒)表示。
8、主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么(从什么时候开始、多长时间完成),主时钟不断产生固定频率的时钟信号。
计算机组成原理知识点总结一、存储系统(一)存储器的基本概念1.分类a)作用(层次):CACHE 主存辅存b)存储介质:磁半导体光c)存取方式●随机存取:RAM ROM●串行访问●顺序存取:磁带●直接存取:磁盘d)信息可保存性--易失性破坏性读出非2.性能指标a)存储容量字b)单位成本每位成本c)存储速度(数据传输率主存带宽)3.层次化结构a)Cache-主存层次:硬件实现,解决速度不匹配问题b)主存-辅存层次:硬件+操作系统实现,解决容量问题,逐渐形成虚拟存储系统(二)半导体存储器1.存储器芯片的基本结构a)译码驱动电路(译码器:扩充容量)b)存储矩阵c)读写电路d)地址线,数据线,片选线,读写控制线2.半导体存储器RAM(易失性存储器)a)SRAM:触发器存储信息,速度快成本高集成度低,用于高速缓存b)DRAM:电容存储信息,需要刷新,速度慢成本低,集成度高,用于主存SDRAMc)DRAM的刷新:集中刷新,分散刷新,●异步刷新●不需要CPU控制●行为单位,仅需要行地址●存储器中所有芯片同时刷新d)RAM的读写周期3.ROM(非易失性存储器)a)特点:结构简单,位密度比RAM高,非易失性,可靠性高b)类型:MROM,PROM,EPPROM,FLASH MEMORY,SSD(三)存储器与CPU的协同工作(提高存储系统的工作速度)1.主存与CPU的连接a)字扩展b)位扩展●线选法●译码片选法●译码器的使用●分析地址空间c)字位同时扩展●选择存储器芯片●与CPU进行连接2.双口RAM和多模块存储器a)多模块存储器●单体多字●多体并行●低位交叉编址●高位交叉编址b)双端口RAM3.高速缓冲存储器a)CACHE局部性原理和性能分析●局部性原理●空间局部性●时间局部性●性能分析●命中率和失效率●CACHE----主存体系的平均访问时间b)CACHE工作原理●地址映射方式●全相联●直接相联●组相联●替换算法●RAND随机●FIFO先入先出●LRU最近最少使用●LFU最不经常使用●写策略●命中●全写法●写回法●不命中●写分配法●非写分配法4.虚拟存储器(主存和辅存共同构成)(增加存储系统的容量)a)基本概念:虚地址(逻辑地址)映射到实地址(物理地址)b)解决问题:进程并发问题和内存不够用问题c)类型●页式●段式●段页式d)虚实地址转换(提高速度)●快表TLB●慢表Page二、指令系统(一)指令格式1.操作码和地址码组成一条指令2.操作码a)定长操作码和扩展操作码b)操作码类型(二)指令寻址方式1.指令寻址(通过PC)a)顺序寻址b)跳跃寻址2.数据寻址a)隐含寻址b)立即寻址:给寄存器赋初值c)直接寻址d)间接寻址:扩大寻址范围,便于编制程序e)寄存器寻址:指令执行速度更快f)寄存器间接寻址g)偏移寻址(各寄存器内容+形式地址):基址寻址,变址寻址(处理数组,编制循环程序),相对寻址h)堆栈寻址(三)CISC和RISC1.CISC复杂指令系统计算机(用微程序控制器)a)更多更复杂,一般为微程序控制,用于计算机系统2.RISC精简指令系统计算机(用硬布线控制器)a)指令数目少,字长固定,寻址方式少,寄存器数量多,一般为组合逻辑控制,用于手机三、中央处理器(一)CPU的功能和基本结构1.CPU的功能:指令控制,操作控制,时间控制,数据加工,中断处理2.运算器a)功能:对数据进行加工b)基本结构:●算术逻辑单元ALU●暂存寄存器●通用寄存器组●累加寄存器ACC●程序状态字寄存器PSW●移位器,计数器3.控制器a)功能:取指令,分析指令,执行指令b)控制器的基本结构●程序计数器PC●指令寄存器IR●指令译码器,时序系统,微操作信号发生器●存储器地址寄存器MAR●存储器数据寄存器MDR4.数据通路的基本结构a)专用通路b)内部总线(二)指令执行过程1.指令周期a)构成:机器周期、CPU周期——CPU时钟周期、节拍b)类型:取指周期,间址周期,执行周期,中短周期c)标志触发器FE,IND,EX,INT:区别工作周期2.数据流a)取指周期:根据PC取出指令代码存放在IRb)间址周期:根据IR中指令地址码取出操作数的有效地址c)执行周期:根据指令字的操作码和操作数进行相应操作d)中断周期:保存断点,送中断向量,处理中断请求3.执行方案a)单指令周期:串行,指令相同执行时间b)多指令周期:串行,指令不同执行时间c)流水线方案:隔一段时间启动一条指令,多条指令处于不同阶段,同事并行处理(三)数据通路的功能和基本结构(连接路径)1.CPU内部总线a)单总线b)多总线2.专用数据通路:多路选择器和三态门3.了解各阶段微操作序列和控制信号(四)控制器的功能和工作原理1.控制器的结构和功能a)计算机硬件系统连接关系b)控制器的功能:取指令,分析指令,执行指令c)控制器的输入和输出2.硬布线控制器a)硬布线控制单元图:组合逻辑电路+触发器b)设计步骤(了解)●分析每个阶段的微操作序列●选择CPU的控制方式●安排微操作序列●电路设计3.微程序控制器a)基本结构●微地址形成部件●微地址寄存器CMAR●控制存储器CM●微指令寄存器CMDRb)微指令的格式●水平型:并行操作●字段直接编码方式●直接编码方式●字段间接编码方式●垂直型:类似机器指令c)微指令的地址形成方式●下地址字段指出:断定方式●根据机器指令的操作码形成d)基本概念●微命令和微操作●微指令和微周期●主存储器和控制存储器●程序和微程序●寄存器:MAR和CMAR,IR和CMDRe)硬布线和微程序的比较(微操作控制信号的实现形式)(五)指令流水线1.指令流水线的概念a)指令执行过程划分为不同阶段,占用不同的资源,就能使多条指令同时执行b)表示方法●指令流程图:分析影响流水线的因素●时空图:分析性能2.性能指标a)吞吐率TPb)加速比Sc)效率E3.影响流水线的因素a)结构相关(资源冲突)b)数据相关(数据冲突)c)控制相关(控制冲突)4.流水线的分类a)按使用级别:部件功能级,处理机级,处理机间b)按完成功能:单功能,多功能c)按连接方式:动态,静态d)按有无反馈信号:线性,非线性5.多发技术a)超标量流水线技术b)超流水线技术c)超长指令字技术四、总线(一)总线概念和分类1.定义:一组能为多个部件分时共享的公共信息传送线路2.分类a)按数据传输格式●串行,并行b)按功能●片内总线●系统总线●数据总线,地址总线,控制总线●通信总线c)按时序控制方式●同步,异步3.总线结构a)单总线结构——系统总线b)双总线结构(通道)●主存总线●IO总线c)三总线结构●主存总线●IO总线●DMA总线(二)总线的性能指标1.总线传输周期(总线周期)2.总线带宽3.总线宽度(位宽)4.总线复用:一种信号线传输不同信息(三)总线仲裁1.集中仲裁方式a)链式查询方式b)计数器定时查询方式c)独立请求方式2.分布仲裁方式(四)总线操作和定时1.总线传输的四个阶段a)申请分配阶段●传输请求●总线仲裁b)寻址阶段c)传输阶段d)结束阶段2.定时a)同步定时方式(同步通信)b)异步定时方式(异步通信)●不互锁●半互锁●全互锁c)半同步通信d)分离式通信(五)总线标准五、IO系统(一)IO系统基本概念1.演变过程a)早期:分散连接,CUP与IO串行,程序查询方式b)接口模块和DMA阶段:总线连接,cpu与io并行,中断方式及DMA方式c)具有IO通信结构的阶段d)具有IO处理机的阶段2.IO系统的基本组成a)IO软件——IO指令和通道指令b)IO硬件——外设,设备控制器和接口,IO总线等3.IO方式简介a)程序查询方式:IO与CPU串行,CPU有“踏步等待”现象(由程序控制)b)程序中断方式:IO准备数据时CPU继续工作,在指令执行结束时响应中断(由程序控制)c)DMA方式:主存与IO交换信息时由DMA控制器控制,在存取周期结束时响应DMA请求(由硬件控制)d)通道方式:通过IO指令启动通道,通道程序放在主存中(由硬件控制)(二)外部设备1.输入设备——键盘,鼠标2.输出设备a)显示器●分类●阴极射线管(CRT)●液晶(LCD)●发光二极管(LED)●参数●屏幕大小,分辨率,灰度级,刷新频率●显示存储器(VRAM)●容量=分辨率*灰度级位数●带宽=容量*帧频●打印机3.外存储器a)磁盘存储器●组成●存储区域:磁头,柱面,扇区●硬盘存储器:磁盘驱动器,磁盘控制器,盘片●工作过程:寻址,读盘,写盘对应的控制字,串行读写●性能指标●容量●记录密度●平均存取时间●数据传输率b)磁盘阵列RAID——利用磁盘廉价的特点提高存储性能,可靠性和安全性c)光盘存储器d)固态硬盘SSD——采用FLASH Memory记录数据(三)IO接口1.主要功能a)设备选址功能:地址译码和设备选择b)传送命令c)传送数据:实现数据缓冲和格式转换d)反应IO设备的工作状态2.基本结构a)设备选择电路,命令寄存器和命令译码器,数据缓冲寄存器DBR,设备状态标记,控制逻辑电路b)内部接口和外部接口3.编址a)统一编址——与存储器共用地址,用访存命令访问IO设备b)独立编址:单独使用一套地址,有专门的IO指令4.分类a)数据传送方式:并行接口,串行接口b)主机访问IO设备的控制方式●程序查询接口●中断接口●DMA接口c)功能选择的灵活性●可编程接口●不可编程接口(四)IO方式1.程序查询方式:CPU与IO串行工作,鼠标,键盘2.程序中断方式a)中断系统●中断的基本概念●工作流程●中断请求●分类●中断请求标记触发器INTR●中断响应●中断响应的条件●中断判优●软件:查询程序●硬件:排队器●优先级的设置●中断处理●中断隐指令●关中断●保存断点PC●引出中断服务程序●中断服务程序●单重中断与多重中断●中断服务程序的具体步骤●中断屏蔽技术●屏蔽字●程序执行轨迹b)程序中断方式●工作流程●CPU占用情况●中断响应(隐指令)●中断服务程序3.DMA方式a)DMA控制器●组成●主存地址计数器:存放要交换数据的主存地址●传送长度计数器:记录传送数据的长度●数据缓冲寄存器:暂存每次传送的数据●DMA请求触发器:设备准备好数据后将其置位●控制/状态逻辑:由控制和时序电路及状态标志组成●中断机构:数据传送完毕后触发中断机构,提出中断请求●主要功能●传送前:接受外设的DMA请求,向CPU发出总线请求,接管总线控制权●传送时:管理总线,控制数据传送,确定主存单元地址及长度,能自动修改对应参数●传送后: 向CPU报告DMA操作的结束b)传送过程●预处理:CPU完成寄存器初值设置等准备工作●数据传送:CPU继续执行主程序,DMA控制器完成数据传送●后处理:CPU执行中断服务程序做DMA结束处理。
可编辑修改精选全文完整版第一章计算机系统概论1. 什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3计算机系统:由计算机硬件系统和软件系统组成的综合体。
计算机硬件:指计算机中的电子线路和物理装置。
计算机软件:计算机运行所需的程序及相关资料。
硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。
5. 冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8●计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;●指令和数据以同同等地位存放于存储器内,并可以按地址访问;●指令和数据均用二进制表示;●指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;●指令在存储器中顺序存放,通常自动顺序取出执行;●机器以运算器为中心(原始冯•诺依曼机)。
7. 解释下列概念:主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、存储容量、机器字长、指令字长。
解:P9-10主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。
CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。
主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;由存储体、各种逻辑部件及控制电路组成。
存储单元:可存放一个机器字并具有特定存储地址的存储单位。
存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。
存储字:一个存储单元所存二进制代码的逻辑单位。
存储字长:一个存储单元所存二进制代码的位数。
存储容量:存储器中可存二进制代码的总量;(通常主、辅存容量分开描述)。
机器字长:指CPU一次能处理的二进制数据的位数,通常与CPU的寄存器位数有关。
指令字长:一条指令的二进制代码位数。
冯.诺依曼机的基本特点:计算机由运算器、控制器、存储器、输入设备和输出设备五部分组成。
采用存储程序的方式,程序和数据放在同一存储器中,由指令组成的程序可以修改。
数据以二进制码表示指令由操作码和地址码组成。
指令在存储器中按执行顺序存放,由指令计数器指明要执行的指令所在的单元地址,一般按顺序递增。
机器以运算器为中心,数据传送都经过运算器。
1、计算机系统的层次结构:高级语言层,汇编语言层,操作系统软件层,指令系统层,微体系结构层,数字逻辑层2、软件和硬件逻辑上的等价性计算机系统以硬件为基础,通过软件扩充其功能,并以执行程序方式体现其功能。
硬件完成最基本的功能,而复杂的功能则通过软件实现。
计算机是一个软件和硬件结合的整体系统。
在机器中,许多功能既可由硬件实现,也可由软件实现。
3、为什么计算机使用二进制?(1)基本符号个数最少,物理上容易实现(2)二进制码表示数值数据运算规则简单(3)与二值逻辑的真、假两个值对应简单基数:进位计数制中所具有的数字符号的个数及进位规律。
位权:数码在不同位置上的倍率值。
真值:数据的数值通常以正、负号后跟绝对值来表示,称为“真值”。
机器数:在计算机中使用的连同数符一起数码化的数值称为机器数。
码字:若干位二进制代码组成的一个字称为“码字”。
码制:包含若干种码字的集合称为“码制”。
码距:一种码制中各码字间的最小距离定为这种码制的“码距”。
4、浮点数加、减运算的步骤:(1)对阶操作:低阶向高阶补齐,使阶码相等。
(2)尾数运算:阶码对齐后直接对尾数运算。
(3)结果规格化:对运算结果进行规格化处理(使补码尾数的最高位和尾数符号相反)。
如溢出则需右规;如不是规格化时应左规。
(4)舍入操作:丢失位进行0舍1入或恒置1处理。
(5)判断溢出:判断阶码是否溢出,下溢则将运算结果置0(机器0),上溢则中断。
5、运算器的结构组成(5个):算术逻辑运算单元,数据寄存器,累加器,多路转换器和数据总线等部件。
《计算机组成原理》考试重点整理不完整的自己添加!!!1.2 如何理解计算机系统的层次结构?解:(1)第一级:实际机器M1 (机器语言机器),机器语言程序直接在M1上执行;(2)第二级:虚拟机器M2(汇编语言机器),将汇编语言程序先翻译成机器语言程序,再在M1上执行;(3)第三级:虚拟机器M3(高级语言机器),将高级语言程序先翻译成汇编语言程序,再在M2、M1(或直接到M1)上执行;(4)第零级:微程序机器M0(微指令系统),由硬件直接执行微指令。
(5)实际上,实际机器M1和虚拟机器M2之间还有一级虚拟机,它是由操作系统软件构成,该级虚拟机用机器语言解释操作系统。
(6)虚拟机器M3还可以向上延伸,构成应用语言虚拟系统。
1.5 冯·诺依曼计算机的特点是什么?(1)计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;(2)指令和数据以同等地位存放于存储器内,并可以按地址访问;(3)指令和数据均用二进制表示;(4)指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;(5)指令在存储器中顺序存放,通常自动顺序取出执行;(6)机器以运算器为中心(输入输出设备与存储器间的数据传送通过运算器完成。
1.6 画出计算机硬件组成框图,说明各部件的作用及计算机硬件的主要技术指标。
解:现代的计算机组成框图如图1.1所示:输入设备控制器运算器输出设备存储器控制线反馈线数据线计算结果计算步骤和原始数据各部件的功能:(1)运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内;(2)存储器用来存放数据和程序;(3)控制器用来控制、指挥程序和数据的输入,运行以及处理运算结果。
(4)输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式,常见有键盘、鼠标等。
(5)输出设备可以将机器运算结果转换为人们熟悉的信息形式,如打印机输出,显示器输出。
硬件的主要技术指标:(1) 机器字长:指CPU一次能处理数据的位数,通常与CPU的寄存器位数有关。
一.冯·诺依曼计算机的特点1945年,数学家冯诺依曼研究EDVAC机时提出了“存储程序”的概念1.计算机由运算器、存储器、控制器、输入设备和输出设备五大部件组成2.指令和数据以同等地位存放于存储器内,并可按地址寻访。
3.指令和数据均用二进制数表示。
4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。
5.指令在存储器内按顺序存放。
通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序。
6.机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成。
二.计算机硬件框图1.冯诺依曼计算机是以运算器为中心的2.现代计算机转化为以存储器为中心各部件功能:1.运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内。
2.存储器用来存放数据和程序。
3.控制器用来控制、指挥程序和数据的输入、运行以及处理运算结果4.输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式(鼠标键盘)。
5.输出设备可将机器运算结果转换为人们熟悉的信息形式(打印机显示屏)。
计算机五大子系统在控制器的统一指挥下,有条不紊地自动工作。
由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,两大不见往往集成在同一芯片上,合起来统称为中央处理器(CPU)。
把输入设备与输出设备简称为I/O设备。
现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器。
CPU与主存储器合起来又可称为主机,I/O设备又可称为外部设备。
主存储器是存储器子系统中的一类,用来存放程序和数据,可以直接与CPU交换信息。
另一类称为辅助存储器,简称辅存,又称外村。
算术逻辑单元简称算逻部件,用来完成算术逻辑运算。
控制单元用来解实存储器中的指令,并发出各种操作命令来执行指令。
ALU和CU是CPU的核心部件。
I/O设备也受CU控制,用来完成相应的输入输出操作。
计算机组成原理部分1.1计算机系统硬件(Hardware)计算机的实体部分,可以实现计算机最基本的操作行为。
软件(Software)使计算机实现各种功能的程序集合。
包括系统软件、应用软件两大类。
高级语言计算机系统层次结构三级层次结构的计算机系统将高级语言程序先翻译成汇编语言程序第三级(高级语言程序)1.3计算机的基本组成运算器:实现数据处理的部件完成最基本的算术逻辑运算ALU (Arithmetic and Logic Unit)+Registers+DataPath运算器与机器字长(字的概念)的关系性能指标:MIPS简单运算器结构图存储器:实现数据存储的部件保存程序和数据(二进制信息)存储单元:地址的概念:每一个字节单元拥有一个唯一的地址(索引)存储器的工作方式:读、写存储器结构简图1.3计算机的基本组成控制器:实现控制功能的部件提供各部件工作所需的控制信号,控制计算机其他部件协同工作指令部件(Instruction Register,Instruction Decoder)指令顺序控制(Program Counter)时序逻辑部件(Clock,Timer,Sequencing Logic)控制信号生成部件(Control Signal Generator or Control Memory)控制器结构简图1.3计算机的基本组成输入输出:实现数据交换的部件实现计算机内部与外界(其他系统或人类)的信息交换实现数据交换的设备:输入设备、输出设备接口标准与接口部件计算机整体结构简图SRAMT 5DRAMCsC保持状态:字选线低电平,内部保持稳定状态。
但电容有漏电流,状态不能长久保持新(再生)。
DRAMDRAMD线上的电压在读出过程中的变化情况预充电二维地址结构(AAA二维地址结构(DRAM存储器芯片结构总结SRAM普遍采用全地址线方式,即芯片地址管脚安排了内部所需要的全部行地址和列地址。
芯片采用片选信号CS。
计算机组成原理知识点汇总x《计算机组成原理知识点汇总》一、算术逻辑单元1、算术逻辑单元(ALU)的功能算术逻辑单元(ALU)是一个对存储在寄存器中的数据进行算术和逻辑操作的硬件单元,它执行CPU中算术逻辑操作的所有活动。
主要有:加减乘除运算以及位操作(AND,OR,NOT)等。
2、算术逻辑单元的组成算术逻辑单元(ALU)由控制单元(CU)、累加器(Accumulator)、比较器(comparator)、移位器(Shift)、全加器(Full-Adder)、多位加法器(Multiple Adders)、多位乘法器(Multiple Multipliers)、掩码器(Mask)、屏蔽器(Shifter)等组成。
3、算术逻辑单元的运算过程(1)算术运算:它包括加减乘除运算,算术运算主要是把操作数从输入总线传到累加器中,进行算术运算以后,将结果存放在累加器中,然后传输到输出总线上。
(2)位操作:它包括AND,OR,NOT,异或等,位操作是把操作数从输入总线传到屏蔽器中,通过屏蔽器进行位操作,将结果存放在累加器中,同样传输到输出总线上。
(3)比较:算术逻辑单元还可以进行比较运算,以及移位,比较运算是把两个操作数从输入总线传到比较器中,比较两个操作数的大小,将结果存放在标志位中,寄存器中存放比较结果。
二、指令周期1、指令周期的概念指令周期是指中央处理器(CPU)执行指令所需要完成的时间,也就是说,指令从被CPU读取到完成执行的时间段称为指令周期。
它也可以简单的理解为一条指令完成执行的时间。
2、指令周期的分类指令周期可以分为主周期和子周期两种,主周期是指一条指令完成执行所需的最少时间,而子周期是指每一步执行完成的时间。
3、指令周期的作用指令周期是指系统的处理速度,它是用来评价计算机的运行速度的重要指标。
在进行计算机系统设计时,可以根据指令周期调整处理器的结构,以提高计算机的处理速度。
计算机组成原理【考查目标】1. 理解单处理器计算机系统中各部件的内部工作原理、组成结构以及相互连接方式,具有完整的计算机系统的整机概念。
2. 理解计算机系统层次化结构概念,熟悉硬件与软件之间的界面,掌握指令集体系结构的基本知识和基本实现方法。
3. 能够运用计算机组成的基本原理和基本方法,对有关计算机硬件系统中的理论和实际问题进行计算、分析,并能对一些基本部件进行简单设计。
一、计算机系统概述(一)计算机发展历程第一台电子计算机ENIAC(Electronic Numerical Integrator And Computer)诞生于1946年的美国宾夕法尼亚大学。
ENIAC用了18000电子管、1500继电器、重30吨、占地170m3、耗电140kw、每秒计算5000次加法。
冯•诺依曼(VanNeumann)首次提出存储程序的概念,将数据和程序一起放在存储器中,使得编程更加方便。
50多年来,虽然对冯•诺依曼机进行了很多改革,但结构变化不大,仍然称为冯•诺依曼机。
一般把计算机的发展分为四个阶段:第一代(1946-50…s后期):电子管计算机时代;第二代(50…s中期-60‟s后期):晶体管计算机时代;第三代(60…s中期-70‟s前期):集成电路计算机时代;第四代(70…s初-):大规模集成电路计算机时代。
(二)计算机系统层次结构1. 计算机硬件的基本组成计算机硬件主要指计算机的实体部分,通常有运算器、控制器、存储器、输入和输出五部分。
CPU是指将运算器和控制器集成到一个电路芯片中。
2. 计算机软件的分类计算机软件按照面向对象的不同可分两类:系统软件:用于管理整个计算机系统,合理分配系统资源,确保计算机正常高效地运行,这类软件面向系统。
应用软件:是面向用户根据用户的特殊要求编制的应用程序,这类软件通常实现用户的某类要求。
3. 计算机的工作过程(1)计算机的工作过程就是执行指令的过程指令由操作码和操作数组成:操作码指明本指令完成的操作地址码指明本指令的操作对象(2)指令的存储指令按照存储器的地址顺序连续的存放在存储器中。
(3)指令的读取为了纪录程序的执行过程,需要一个记录读取指令地址的寄存器,称为指令地址寄存器,或者程序计数器。
指令的读取就可以根据程序计数器所指出的指令地址来决定读取的指令,由于指令通常按照地址增加的顺序存放,故此,每次读取一条指令之后,程序计数器加一就为读取下一条指令做好准备。
(4)执行指令的过程在控制器的控制下,完成以下三个阶段任务:1)取指令阶段按照程序计数器取出指令,程序计数器加一2)指令译码阶段分析操作码,决定操作内容,并准备操作数3)指令执行阶段执行操作码所指定内容(三)计算机性能指标1. 吞吐量、响应时间(1) 吞吐量:单位时间内的数据输出数量。
(2) 响应时间:从事件开始到事件结束的时间,也称执行时间。
2. CPU时钟周期、主频、CPI、CPU执行时间(1) CPU时钟周期:机器主频的倒数,Tc(2)主频:CPU工作主时钟的频率,机器主频Rc(3)CPI:执行一条指令所需要的平均时钟周期(4)CPU执行时间:T CPU=In×CPI×T CIn执行程序中指令的总数CPI执行每条指令所需的平均时钟周期数T C时钟周期时间的长度3. MIPS、MFLOPS(1)MIPS:MIPS(Million Instructions Per Second)MIPS = In/(Te×106)= In/(In×CPI×Tc×106)= Rc/(CPI×106)Te:执行该程序的总时间In:执行该程序的总指令数Rc:时钟周期Tc的到数MIPS只适合评价标量机,不适合评价向量机。
标量机执行一条指令,得到一个运行结果。
而向量机执行一条指令,可以得到多个运算结果。
(2) MFLOPS:MFLOPS(Million Floating Point Operations Per Second)MFLOPS=Ifn/(Te×106)Ifn:程序中浮点数的运算次数MFLOPS测量单位比较适合于衡量向量机的性能。
一般而言,同一程序运行在不同的计算机上时往往会执行不同数量的指令数,但所执行的浮点数个数常常是相同的。
二、数据的表示和运算(一)数制与编码1. 进位计数制及其相互转换1)进位计数制进位计数制是指按照进位制的方法表示数,不同的数制均涉及两个基本概念:基数和权。
基数:进位计数制中所拥有数字的个数。
权:每位数字的值等于数字乘以所在位数的相关常数,这个常数就是权。
任意一个R进制数X,设整数部分为n位,小数部分为m位,则X可表示为:X=a n-1r n-1 + a n-2r n-2 + ┅ + a0r0 + a-1r-1 + a-2r-2 + ┅ + a-m r-m(X)r =2)不同数制间的数据转换(1)二、八、十六进制数转换成十进制数利用上面讲到的公式:(N)2=∑Di•2i、(N)8=∑Di•8i、 (N)16=∑Di•16i、进行计算。
(2)十进制数转换成二进制数通常要对一个数的整数部分和小数部分分别进行处理,各自得出结果后再合并。
◆ 对整数部分,一般采用除2取余数法,其规则如下:将十进制数除以2,所得余数(0或1)即为对应二进制数最低位的值。
然后对上次所得商除以2,所得余数即为二进制数次低位的值,如此进行下去,直到商等于0为止,最后得的余数是所求二进制数最高位的值。
◆ 对小数部分,一般用乘2取整数法,其规则如下:将十进制数乘以2,所得乘积的整数部分即为对应二进制小数最高位的值,然后对所余数的小数部分部分乘以2,所得乘积的整数部分为次高位的值,如此进行下去,直到乘积的小数部分为0,或结果已满足所需精度要求为止。
(3)二进制数、八进制数和十六进制数之间的转换八进制数和十六进制数是从二进制数演变而来的:由3位二进制数组成1位八进制数;由4位二进制数组成1位十六进制数。
对于一个兼有整数和小数部分的数以小数点为界,小数点前后的数分别分组进行处理,不足的位数用0补足。
对整数部分将0补在数的左侧,对小数部分将0补在数的右侧。
这样数值不会发生差错。
2. 真值和机器数真值:数据的数值通常以正(+)负(-)号后跟绝对值来表示,称之为❽真值❾。
机器数:在计算机中正负号也需要数字化,一般用0表示正号,1表示负号。
把符号数字化的数成为机器数。
3. BCD码在计算机中采用4位二进制码对每个十进制数位进行编码。
4位二进制码有16种不同的组合,从中选出10种来表示十进制数位的0~9,用0000,0001,…,1001分别表示0,1,…,9,每个数位内部满足二进制规则,而数位之间满足十进制规则,故称这种编码为❽以二进制编码的十进制(binary coded decima1,简称BCD)码❾。
在计算机内部实现BCD码算术运算,要对运算结果进行修正,对加法运算的修正规则是:如果两个一位BCD码相加之和小于或等于(1001)2,即(9)10,不需要修正;如相加之和大于或等于(1010)2,或者产生进位,要进行加6修正,如果有进位,要向高位进位。
4. 字符与字符串在计算机中要对字符进行识别和处理,必须通过编码的方法,按照一定的规则将字符用一组二进制数编码表示。
字符的编码方式有多种,常见的编码有ASCII码、EBCDIC码等。
1)ASCII码ASCII码用7位二进制表示一个字符,总共128个字符元素,包括10个十进制数字(0-9)、52个英文字母(A-Z和a-z)、34专用符号和32控制符号。
2)EBCDIC码为Extended Binary Coded Decimal Interchange Code的简称,它采用8位来表示一个字符。
3)字符串的存放向量存储法:字符串存储时,字符串中的所有元素在物理上是邻接的。
串表存储法:字符串的每个字符代码后面设置一个链接字,用于指出下一个字符的存储单元的地址。
5. 校验码数据校验码是一种常用的带有发现某些错误或自动改错能力的数据编码方法。
其实现原理,是加进一些冗余码,使合法数据编码出现某些错误时,就成为非法编码。
这样,可以通过检测编码的合法性来达到发现错误的目的。
合理地安排非法编码数量和编码规则,可以提高发现错误的能力,或达到自动改正错误的目的。
码距:码距根据任意两个合法码之间至少有几个二进制位不相同而确定的,仅有一位不同,称其码距为1。
1)奇偶校验码它的实现原理,是使码距由1增加到2。
若编码中有1位二进制数出错了,即由1变成0,或者由0变成1。
这样出错的编码就成为非法编码,就可以知道出现了错误。
在原有的编码之上再增加一位校验位,原编码n位,形成新的编码为n+1 位。
增加的方法有2种:奇校验:增加位的0或1要保证整个编码中1的个数为奇数个。
偶校验:增加位的0或1要保证整个编码中1的个数为偶数个。
2)海明校验码它的实现原理,是在数据中加入几个校验位,并把数据的每一个二进制位分配在几个奇偶校验组中。
当某一位出错就会引起有关的几个校验组的值发生变化,这不但可以发现出错,还能指出是哪一位出错,为自动纠错提供了依据。
假设校验位的个数为r,则它能表示2r个信息,用其中的一个信息指出❽没有错误❾,其余2r-1个信息指出错误发生在哪一位。
然而错误也可能发生在校验位,因此只有k=2r-1-r个信息能用于纠正被传送数据的位数,也就是说要满足关系:2r>=k+r+13)CRC校验码CRC校验码一般是指k位信息之后拼接r位校验码。
关键问题是如何从k位信息方便地得到r位校验码,以如何从位k+r信息码判断是否出错。
将带编码的k位有效信息位组表达为多项式:M(x)=C k-1x k-1+ C k-2x k-2 + ┅ + C i x i + C1x + C0式Ci中为0或1.若将信息位左移r位,则可表示为多项式M(x).xr。
这样就可以空出r位,以便拼接r位校验位。
CRC码是用多项式M(x).xr除以生成多项式G(x)所得的余数作为校验码的。
为了得到r位余数,G(x)必须是r+1位。
设所得的余数表达式为R(x),商为Q(x)。
将余数拼接在信息位组左移r位空出的r位上,就构成了CRC码,这个码的可用多项式表达为:M(x)·xr+R(x)=[Q(x)·G(x)+R(x)]+R(x)=[Q(x)·G(x)]+[R(x)+R(x)]=Q(x)·G(x)因此,所得CRC码可被G(x)表示的数码除尽。
将收到的CRC码用约定的生成多项式G(x)去除,如果无错,余数应为0,有某一位出错,余数不为0.(二)定点数的表示和运算1. 定点数的表示1)无符号数的表示无符号数就是指正整数,机器字长的全部位数均用来表示数值的大小,相当于数的绝对值。