当前位置:文档之家› 发电厂节能减排之烟气余热利用

发电厂节能减排之烟气余热利用

发电厂节能减排之烟气余热利用
发电厂节能减排之烟气余热利用

发电厂节能减排之烟气余热利用

众所周知,火力发电厂主要有两大热损失,分别是汽轮机系统的冷端排汽冷凝热损失以及锅炉系统尾部排烟热损失。影响火电厂锅炉排烟热损失的主要因素是排烟温度,目前,我国燃煤电站锅炉排烟温度大多在120——140℃,锅炉效率约90%——94%。在各种热损失中,排烟热损失占锅炉热损失的一半以上,如果能有效降低电站锅炉的排烟温度至70——90℃,锅炉效率将提高2%——5%,供电煤耗将下降2——5g/kWh,二氧化碳的排放量也相应有大幅度的减少。因此,随着近些年来能源价格的不断攀升以及节能减排要求的日益严格,电站锅炉尾部烟气余热的回收利用受到广泛重视。降低锅炉排烟温度可以有多种设计方案:一是通过燃烧优化调整来降低排烟温度;二是增加锅炉受热面来降低排烟温度;三是增加锅炉空气预热器受热面来降低排烟温度;四是在锅炉尾部烟道增加低温省煤器,利用凝结水或其它介质吸收排烟余热来降低排烟温度。但经过多次的试验研究以及现场论证,利用低温省煤器回收烟气的余热是最直接、最简便、也是最有效可行的余热回收的方法。

低温省煤器的运用可以有效地回收烟气余热,提高高温烟气的利用效率,减少排放损失。其用途主要有以下几方面:

1、利用回收烟气热量通过暖风器加热空气

为了防止或减轻空气预热器低温腐蚀和堵灰,需要加装暖风器来提高空预器入口风温。

此以气水换热暖风器替代常规的蒸汽暖风器,以循环水作为热媒,把在烟气侧吸收热的热量释放给一、二次冷风,将进入空气预热器前的冷风预加热,从而实现烟气热量的回收利用,并且减少了常规蒸汽暖风器的辅助蒸汽用量。

2、利用低温省煤器加热回热系统的凝结水

利用低温省煤器加热冷凝水的方式有两种:一是让烟气和凝结水直接进行热交换,这种方式优点是一级换热,换热效率高,缺点是若换热管一旦泄漏,会直接污染凝结水,影响机组安全运行;二是设置水水换热器,让烟气和凝结水间接进行热交换,这种方式优点是二级换热,换热效率较一级换热低,优点是系统安全,便于调节。低温省煤器在热力系统中的连接方式直接影响到其经济效果和分析计算的方法以及运行的安全、可靠性。就其本质而言,低温省煤器联入热力系统就只有两种连接系统:一是低温省煤器串联于热力系统中,简称串联系统,如图1所示;二是低温省煤器并联于

热力系统中,简称并联系统,如图2所示。低温省煤器-低压加热器系统的设计要兼顾经济性和安全性两个方面。对于低温省煤器的切入点选择,也即低温省煤器串联或并联在哪一级或哪几级低压加热器上,可通过具体的经济性分析来决定。

3、利用回收的热量进行供暖或用于生产过程

利用低温省煤器回收烟气的余热进行供暖或用于生产系统是最直接、也是最简便可行的余热回收的方法。通过设置低温省煤器,利用循环介质(水或其他有机介质)进行热量的远距离传输,为用户提供热量或生产用蒸汽,实现了热量的回收利用。低温省煤器-供暖/生产系统同样是独立运行的循环系统,不需要改变其他设备、系统等就可以改造完成,达到锅炉排烟余热回收利用,降低排烟温度,提高锅炉效率的目的。即使低温省煤器本身在使用过程中出现故障,仅仅停修故障设备即可,并不影响机组的正常运行。

利用烟气余热来加热凝结水的方式有两种:

一是设置低温省煤器,让烟气和凝结水直接进行换热,这种方式的的优点是一级换热,换热效率较高,缺点是一旦换热管泄露,凝结水会泄漏到烟气侧影响机组运行,同时换热器管侧需受凝结水系统较高的压力(约为4MPa),增加了换热设备的制造成本;

二是设置低温省煤器和水水换热器,让烟气和凝结水间接进行热交换,这种方式优点是系统安全,便于调节,由于低温省煤器水侧不需承受高的压力,大大减少了加热器本身的制造成本。其缺点是二级换热系统复杂,增加相应的闭式水系统,同时换热效率较一级换热低,且此方式增加一台水水换热器以及相应的循环水泵、膨胀水箱等设备投资费用较高。

低温省煤器视其位置不同,设置可分为以下三种情况:

1、低温省煤器设置于空气预热器出口,除尘器入口前的烟道上。

在降低锅炉排烟温度的同时,减小了飞灰比电阻,提高了除尘效率,减少了污染物的排放。但是由于控制烟温在酸露点之上,因此烟气余热不能够充分利用,同时烟气温度的降低增加了除尘器防腐蚀的难度,增加了除尘器内堵灰的可能性。

2、低温省煤器设置于引风机出口及脱硫塔入口前。

低温烟气冷却到合适的温度后直接进入脱硫塔,不存在对引风机等设备造成的低温腐蚀的危害,可以最大程度地利用烟气余热。低温省煤器设置于脱硫塔前,减少了烟气蒸发水耗量,起到了一定的节水效果。同时,换热管的磨损和堵灰的问题也比较轻。但由于进入低温省煤器的烟气没有经过除尘,含尘浓度较高,低温省煤器的

工作环境较恶劣,磨损大,寿命短。另外,也会引起电除尘、引风机、烟道等的酸腐蚀,增加了设备的防腐成本。

3、低温省煤器布置按串联两级布置

将低温省煤器分为串联的两级,第一级布置在除尘器的入口,第二级布置在吸收塔的入口,这种布置方式既可以提高电除尘效率和布袋除尘器的使用寿命,又可以充分吸收利用烟气热能。但其系统较为复杂,工程造价也相应提高。

低温省煤器的优缺点如下:

低温省煤器主要的是要综合利用烟气热量,尽可能地提高烟气余热回收的品质,提高利用价值,从而有效降低机组供电煤耗,主要优点有以下几点。

1、吸收余热,并将余热用于加热供暖热网水、生活热水、生水、凝结水等介质,提高锅炉效率,并带来一定的经济效益;

2、降低排烟温度,使烟气在进入脱硫塔时达到最佳脱硫效率状态,大大减少了脱硫塔中的冷却水耗,节约了宝贵的水资源。

3、对于布置在除尘器前的低温省煤器还可以通过降低排烟温度而使烟气中的粉尘比电阻降低、烟气的体积流量减少,从而提高了电除尘的效率,降低了粉尘的排放。

4、如果排烟余热加热的是汽轮机热力系统中的凝结水,那么在凝结水在低温省煤器系统中吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。将节省部分汽轮机的回热抽汽,在汽轮机进汽量不变的情况下,节省的抽汽继续膨胀做功,因此,在发电量不变的情况下,可节约机组的能耗。

机组加装低温省煤器虽然提高了机组发电效率,降低发电能耗,但也存在一定的不利因素,一般认为有以下方面:

1、加装低温省煤器后,烟气阻力有所上升,引风机电耗增加,在增加了一定的设备投资增加了厂用电量。

2、加装烟气回热热器将增加设备的检修维护量及机组事故率。

3、通过低温省煤器降低排烟温度后,烟气温度接近露点温度,存在发生低温腐蚀的风险。

锅炉烟气余热回收是时代发展的大趋势,2010年底已列入国家节能推荐产品目录。随着材料科学的发展,克服低温腐蚀的方案已经成熟,国内外也已经有了成功运行的经验,低温省煤器利用方案在技术上是可行有效可靠的。

火电厂余热资源介绍

火力发电厂烟气余热介绍 一、烟气流程 经过电除尘、引风机,温度不 图1 锅炉排烟工艺流程以及参数(近似额定负荷状况,1000MW)图1是在1000MW工况下某发电厂锅炉的烟气工艺流程以及参数,从图中可以看出,烟气排到烟囱之前要经过脱硝、空预器加热、电除尘等环节,经过空预器换热之后,烟气温度大大降低。研究资料表明,为使烟温达到最佳脱硫效率状态,减少脱硫塔的冷却水耗量,脱硫塔(FGD)入口烟温降低到85℃左右较佳。 在938MW工况下,某发电厂的烟囱烟气流量为2006km3/h(体积流量)。 二、目前火电行业烟气排放现状 火力发电厂消耗我国煤炭总产量的50%,其排烟热损失是电站锅炉各项热损失中最大的一项,一般在5%~8%,占锅炉总热损失的80%或更高。排烟热损失的主要影响因素是锅炉排烟温度,一般情况下,排烟温度每升高10℃,排烟热损失增加0.6%~1.0%,发电煤耗增加2g/kWh左右。我国现役火电机组中,锅炉排烟温度普遍维持在125~150℃左右水平,褐煤锅炉为170℃为左右,排烟温度高是一个普遍现象,由此造成巨大的能量损失。 对于已经投运的锅炉,经过燃烧优化来降低排烟温度的幅度非常

有限,省煤器和空气预热器的改造因受到空间的限制,降低排烟温度的幅度也很小,同时尾部受热面的低温腐蚀也限制了排烟温度的大幅降低。因此,独立于原有锅炉系统之外的排烟余热回收系统成为节能降耗的首选。 三、火电厂烟气回收技术 1、技术原理 电站锅炉排烟余热深度回收利用系统安装在除尘器之后、脱硫塔之前的烟道中,可以最大程度地降低烟气温度,使烟气温度再降低40~50℃。在一些采用湿烟囱或烟塔合一等最新烟气排放技术的电厂,脱硫塔入口烟温可降低到85℃左右,使烟温达到最佳脱硫效率状态,大大减少脱硫塔的冷却水耗。 排烟余热回收系统所吸收的能量可以用来加热凝结水,或通过暖风器加热空气提高送风温度,从而减少低压加热器或者暖风器的抽汽量,增加汽轮机做功,提高机组效率。 2、关键技术 (1)烟余热回收装置即烟气冷却器的设计 (2)排烟余热回收装置即烟气冷却器的防腐 (3)排烟余热利用系统即低压给水加热器或者暖风器的设计 (4)热力系统优化设计和控制 3、工艺流程 工艺流程见图2,循环介质(水)在循环水泵5的作用下,通过入口集箱3进入烟气冷却器2,吸收尾部烟道1中的烟气余热后温度升高,经出口集箱4流出。当环境温度较高时(例如在夏季),导向阀13切换到加热给水状态,空气加热器闸阀8全关,给水加热器闸阀6全开。经出口集箱4流出的高温循环介质(水)进入给水加热器14,把在烟气冷却器2中吸收的热量释放给低压给水后开始下一个循环。凝结水经过分水调节阀10、11、12进入给水加热器14,吸收循环介质(水)

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

火力发电厂烟气余热利用的分析及运用

POWER SUPPLY TECHNLLOGIES AND APPLICATIONS 火力发电厂烟气余热利用的分析及运用 郭洪远 (宁夏京能宁东发电有限责任公司宁夏灵武750400) 【摘要】由于目前水资源、能源紧缺、环境日益恶化等等状况,合理有效的利用电厂的烟气余热,提高火电机组的效率,减少煤耗是节能的主要且重要的措施之一。在火力发电厂中,锅炉的排烟余热问题一直是困扰人们的一个问题。本文对发电厂烟气余热利用的途径进行了分析,重点研究了利用烟气余热来加热凝结水的系统。研究表明,设置烟气余热系统,可大大提高火力发电厂热效率,降低煤耗,增加发电量,具有一定的经济效益和社会效益。因此在电厂优化设计中,合理有效的利用火电厂的烟气余热,提高机组运行效率,节约用水,减少煤耗,是节能的关键。 【关键词】烟气余热;优化设计;提高效率;节能 引言 由数据统计可知,在火力发电厂中,锅炉的排烟热损失大约占锅炉热损失的70%,随着锅炉运行时间的增加,受热面污染程度也随之增加,排烟温度要比设计温度高大约25℃,在我们国家,存在着很多锅炉投运时间较长、排烟温度较高甚至达到200℃的火电机组。如果能够合理的利用工艺和新技术来降低锅炉排烟温度,回收利用排出的烟气余热,将较大程度上降低火力发电厂的煤耗,达到节约能源的目的。 1.烟气余热利用的状况 目前,国外已经把火电机组的排烟温度设计为大约100℃,比之前的排烟温度值大大降低,在近几年来国外建立火电厂的共同特点有: (1)烟气的最终排放并不是通过常见的专用烟囱,而是通过自然风冷却塔排人大气之中。 (2)增添了烟气热量回收的环节,即在烟气脱硫装置和除尘器之间的烟道上安装了烟气冷却器,回收的热量用于凝结水的加热。

烟气余热回收装置的利用(2021年)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 烟气余热回收装置的利用(2021 年)

烟气余热回收装置的利用(2021年)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅

浅谈热电厂余热回收利用

浅谈热电厂余热回收利用 发表时间:2014-12-15T09:51:33.980Z 来源:《工程管理前沿》2014年第12期供稿作者:杜庆军 [导读] 火电厂余热的综合利用技术的推广和应用,不仅可以获得良好的经济和环境效益,同时能够提高火电厂的节能减排能力 杜庆军 东南大学建筑设计研究院有限公司江苏南京 210096 摘要:面对能源和水资源紧缺、环境日益恶化以及因原煤价格上涨而引起的发电亏损现状,作为能耗和排放大户的火力发电厂,如何合理地利用烟气余热,成为火电厂提高机组效率、减少煤耗而达到节能降耗的主要举措之一。基于此,文章介绍了通过加大对锅炉连排水和烟气余热进行综合利用的节能技术,并通过应用实例对该节能技术的经济、环保效益进行了分析。 关键词:火电厂;烟气;余热;综合利用;节能 1 火电厂低温余热利用技术 1.1 汽水系统余热利用技术 目前在锅炉汽水系统的余热回收利用上主要有两个方面:一是将连排水直接引入到加热器中用于加热锅炉给水,这种方式为常规的余热利用方式,利用效率较低;二是利用火电厂锅炉连排水中剩余的高品位热能进行做功,再驱动发电机生产电能,输出的水汽混合物再送至热水站,用于生产供居民使用的热水或供暖,这种方式能够使余热得到充分回收利用。这里的发电装置是利用连排水余热加热螺杆膨胀动力机,再通过联轴器带动发电机发电的热能利用系统。螺杆膨胀动力机构造及工作原理如图1所示: 做功完后排出的高温水汽混合物首先进入机内阴阳螺杆齿槽A,使螺杆发生转动,随着螺杆的转动,齿槽A逐渐旋转至B、C、D位置,在此过程中由螺杆封闭的容积逐渐增大,热水得以降压、降温而膨胀做功,最后从后端齿槽E排出,而做功产生的旋转动力由阳螺杆通过联轴器输出给发电机,带动发电机发电。 1.2 锅炉排烟系统的余热利用技术 我国正在运行的火电厂中,锅炉排烟温度一般都在125℃~150℃之间,排烟温度偏高而导致的热能损失已经成为火电厂面临的困境之一。而目前对这部分余热的回收大多采用的是在排烟系统中安装烟气冷却器,通过空气或水等导热介质将余热传输至锅炉给水系统或进气系统,对助燃空气、冷凝水进行加热而达到节能的目的。但是由于烟气冷却之后会使烟气中的部分SO2等酸性腐蚀性气体结露而对管壁等造成腐蚀,因而在实际应用中仍有很多问题需要解决。经过该冷却器的高温烟气和其内部翅片管束中的冷水进行热置换,使水得到加热。该冷却器主要分为高低温设置于除尘器的前后,具体布置如图2所示。这种将冷却器按照高、低温段分开布置,并将高温段布置在除尘器之前,将低温段布置在除尘器之后的方式,能够通过布置于除尘器之前的高温段冷却器将烟气温度降至120℃左右,从而提高其后面除尘器的效率,使其除尘效果更好、能耗更低,并且对使用布袋式除尘器的装置而言,由于进入的烟气温度降低可以延长其使用寿命;而位于除尘器之后的冷却器则可以对烟气进行深度冷却,并将余热充分利用。 1.锅炉; 2.暖风机; 3.空气预热器; 4.烟气冷却器; 5.静电除尘器; 6.烟气冷却器; 7.脱硫塔; 8.耐酸泵; 9.湿烟囱 图2 分高低温布置在除尘器前后的冷却器示意图 采用这种冷却器布置策略的余热回收装置主要使用于以下三种情况:一是除尘器采用布袋式除尘器而对烟气温度较敏感的新建工程中;二是除尘器进气温度在130℃~150℃之间或更高,而且增压风机有400Pa上下裕量的改造工程中;三是烟气温度在130℃上下,在除尘器后方安装高低温一体型冷却器空间不够,且增压风机有400Pa上下裕量的改造工程中。 2 余热利用技术应用实例分析 2.1 汽水系统的余热利用实例 以某火电厂2×200MW机组为例,其额定蒸发量为670t/h,2台锅炉的设计连排流量为12t/h,实际运行流量为8~10t/h。对其采用螺杆膨胀动力发电装置改造之后,初期运行一台锅炉,并利用汽包排污阀来控制连排流量,使其达到装置设计要求,这样发电装置发电功率达到200kW。通过运行测试确定该装置的投入未对汽轮机发电机组造成不良影响,且机组运行安全可靠,实现了无人值守。应用效果得到验证后对另一台锅炉开展改造,投运后2台锅炉正常运行时,发电装置发电功率可达300kW的满负荷额定容量运行。 应用效果分析:在2台锅炉正常运行情况下按发电功率为300kW计算,刨去发电装置自损耗1.1kW,按锅炉全年运行6500h,上网电价按0.35元/(kW·h)的情况下,采用该系统可以增加发电量(300-1.1)×6500=194.285万度,可获收益68.0万元,而且同时还向社会提供了大量的热水。这样按机组的发电煤耗率为3209/(kW·h)计算,年可节省标煤621.71t。若按每吨煤燃烧要排放CO21.98t计算,每年可以

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

发电厂节能减排之烟气余热利用

发电厂节能减排之烟气余热利用 众所周知,火力发电厂主要有两大热损失,分别是汽轮机系统的冷端排汽冷凝热损失以及锅炉系统尾部排烟热损失。影响火电厂锅炉排烟热损失的主要因素是排烟温度,目前,我国燃煤电站锅炉排烟温度大多在120——140℃,锅炉效率约90%——94%。在各种热损失中,排烟热损失占锅炉热损失的一半以上,如果能有效降低电站锅炉的排烟温度至70——90℃,锅炉效率将提高2%——5%,供电煤耗将下降2——5g/kWh,二氧化碳的排放量也相应有大幅度的减少。因此,随着近些年来能源价格的不断攀升以及节能减排要求的日益严格,电站锅炉尾部烟气余热的回收利用受到广泛重视。降低锅炉排烟温度可以有多种设计方案:一是通过燃烧优化调整来降低排烟温度;二是增加锅炉受热面来降低排烟温度;三是增加锅炉空气预热器受热面来降低排烟温度;四是在锅炉尾部烟道增加低温省煤器,利用凝结水或其它介质吸收排烟余热来降低排烟温度。但经过多次的试验研究以及现场论证,利用低温省煤器回收烟气的余热是最直接、最简便、也是最有效可行的余热回收的方法。 低温省煤器的运用可以有效地回收烟气余热,提高高温烟气的利用效率,减少排放损失。其用途主要有以下几方面: 1、利用回收烟气热量通过暖风器加热空气 为了防止或减轻空气预热器低温腐蚀和堵灰,需要加装暖风器来提高空预器入口风温。 此以气水换热暖风器替代常规的蒸汽暖风器,以循环水作为热媒,把在烟气侧吸收热的热量释放给一、二次冷风,将进入空气预热器前的冷风预加热,从而实现烟气热量的回收利用,并且减少了常规蒸汽暖风器的辅助蒸汽用量。 2、利用低温省煤器加热回热系统的凝结水 利用低温省煤器加热冷凝水的方式有两种:一是让烟气和凝结水直接进行热交换,这种方式优点是一级换热,换热效率高,缺点是若换热管一旦泄漏,会直接污染凝结水,影响机组安全运行;二是设置水水换热器,让烟气和凝结水间接进行热交换,这种方式优点是二级换热,换热效率较一级换热低,优点是系统安全,便于调节。低温省煤器在热力系统中的连接方式直接影响到其经济效果和分析计算的方法以及运行的安全、可靠性。就其本质而言,低温省煤器联入热力系统就只有两种连接系统:一是低温省煤器串联于热力系统中,简称串联系统,如图1所示;二是低温省煤器并联于

烟气余热回收装置的利用(新编版)

烟气余热回收装置的利用(新 编版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0521

烟气余热回收装置的利用(新编版) [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电

厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1.0%。因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

烟气余热利用方案说明

烟气节能器方案简要说明 xx公司在xx新建一条生产线,该生产线的一部分工艺采用天然气作为燃料进行加热,产生的废气目前通过烟道排出,浪费了部分能源。由于新厂地处东北,冬季气温低需要进行供暖,目前使用4台额定功率523kW的燃气常压热水锅炉提供热水满足供暖。为了充分利用能源,减少排放和生产成本,拟对生产线废气余热进行部分回收,以降低燃气常压热水锅炉的燃气消耗。 一、 概况 铁岭新厂共有两条生产线,均用天然气作为燃料进行供热。每条生产线使用后的废气流量为3000m3/h,温度约175℃,通过500×600mm的矩形烟道排放,烟道位置和走向如下图。 箭头所示位置可安装烟气节能器,上下距离约2000mm。 新厂车间供暖面积10000m2,办公区供暖面积2000m2,使用4台功率523Kw、天然气耗量53.5m3/h、进/回水温度85/60℃的燃气常压热水锅炉并联在供热管网的循环管路上进行供暖和供热,整个管网用一台流量187m3/h、扬程44m的离心泵驱动。

二、 烟气节能器 烟气热水器回收废气一部分余热,将一部分供暖循环水从60℃加热到85℃,用来代替部分天然气。换热器形式为管壳式,采用双金属复合管作为传热元件,水平装配。烟气从热水器的下方进入,从热水器的上方流出,供暖循环水从热水器的上方进入,从热水器的下方流出,形成逆向流动。烟气节能器的设计参数如下表: 节能器吊挂在烟道中间,烟侧进出口与烟道焊接在一起。节能器的上方有压缩气体吹扫口,在节能器下方的烟气入口处安装可抽出的规格为50目的单层不锈钢滤网。 三、 实施步骤

1.在厂房的主横梁上焊接水平梁,然后向上焊接斜拉梁,向 下焊接吊挂梁; 2.断开烟道,将节能器吊装到烟道中间,并与烟道焊接,同 时节能器的吊耳与吊挂梁进行焊接; 3.从供暖循环水主管引水管到节能器的进水和出水口,并用 法兰连接; 4.引一压缩空气管道连接到节能器附近并与吹扫口连接。 四、 节约燃气预测 序号项目单位数值 1 节能器换热功率kW 480 2 节能器每年工作时间h 2200 3 节能器年回收热量kJ 3.8×109 4 节约天然气量m313.35×104 2台节能器每年可节约天然气大约26.7×104立方米。 五、 经济效益简单预估 1.项目收益估算 注:采暖季按3个月计算,在东北通常是4个月 2.项目静态投资回收期估算

烟气余热回收利用装置

钻井柴油机烟气余热回收利用装置 申请号/专利号:200920139896 本实用新型公开了一种钻井柴油机烟气余热回收利用装置,包括水罐以及盘管热交换器,盘管热交换器具有进气端与出气端,进气端与柴油机的排气管相连通;盘管热交换器还具有进水口与出水口,进水口与出水口之间连接着装有循环泵的循环水管路,循环水管路从油罐中穿过,水罐连接在循环水管路上。本实用新型结构简单,易于制造,利用柴油机排出的烟气余热加热油罐中的存油,达到了在冬季用0#柴油替代-35#柴油、节能减排的目的,同时提高了井队冬季开钻工作效率,降低了井队运行成本。 申请日:2009年02月24日 公开日: 授权公告日:2010年01月06日 申请人/专利权人:新疆塔林石油科技有限公司 申请人地址:新疆维吾尔自治区克拉玛依市白碱滩区门户路100号 发明设计人:杜其江;何龙;李树新;田成建;林宣义;吕伟;姚庆元;尚玉龙;李建华;马伟;王琪 专利代理机构:乌鲁木齐新科联专利代理事务所有限公司 代理人:李振中 专利类型:实用新型专利 分类号:F02M31/16;F02G5/02;F01N5/02 点此查看跟该专利相关的主附图\公开说明书\授权说明书 烟气余热回收装置的利用 2010年第10期沿海企业与科技一一NO.10.2010l堂箜12堇塑!£Q△曼坠坠量烈!垦!丛:墅墨竖趔坠錾!量丛堡E鱼匹垦丛丛Q!!E蔓羔!垡丛婴坚!坐i!曼!!塑Q:12主!烟气余热回收装置的利用梁著文〔摘要〕文章主要介绍锅炉排烟余热回收的必奏巨和利用方向。当今国内外烟气回收蓑王的应用情况。从设计角度提出设置

烟气余热回收装王(烟气冷却器)需要考虑的问题。并列举工程设计方案及其预期的节能效果。〔关键词〕烟气余热回收;低温腐蚀;节能〔作者简介】粱著文,广东省电力设计研究院,广东广州。510000〔中圈分类号〕TM621.2〔文献标识码〕A〔文章编号〕1007-7723(2010)10-0111-0003一、引言2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150。C的热烟气由迸料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝结水进行热交换,然后再将热量带入主凝结水系统,图l为系统流程图。在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180—2200C左右;中型锅炉排烟温度在110—180℃。一般来说,排烟温度每升高15.20。C,锅炉热效率大约降低1.o%。因此,锅炉排烟是—个潜力很大的余热资源。二、烟气余热的利用方向烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风。将进人预热器前的冷风预加热。以减少常规蒸汽暖风器辅助蒸汽用量。硝装置电功tn水牟龠圈1系统流程万方数据三、烟气余热回收装置在国内外的应用情况1.德国黑泵(Schwa眺Pumpe)电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水。2.德国科隆Nidemusseml000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。3.日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电除尘器上游,烟气被冷却后进人低温除尘器(烟气温度在90—100℃左右)。4.外高桥电厂三期2×1000MW机组进行了低温省煤器改造,低温省煤器布置在引风机后脱硫吸收塔前,根据性能考核报告,其节能效果明显。目前国内较多应用。器传热管的金属安全壁温Ta。由于以上烟气酸露点的计算采用的是经验公式,但实际煤质及具体的运行情况会通常偏差较大,按锅炉厂的常规经验设计,一般会加5~lO℃的温度裕量作为金属安全壁温。如果在实际运行中通过取样检测能够获得较准确的烟气露点温度,可以相应调整烟气冷却器的金属安全壁温ta。(三)传热管的堵灰问题低温受热面的积灰不仅会污染传热管表面,影响传热效率,严重时还会堵塞烟气流动通道,增加烟气流动阻力,甚至影响锅炉安全运行,而导致不得不停炉清灰。为保证烟气余热回收装置不发生堵塞,应保持传热管的积灰为干灰状态。因此,在电站锅炉烟气余热回收装置运行过程中,保证传热管金属温度高于烟气水蒸汽露点温度、传热管上不会造成水蒸汽结露至关重要。对于干灰的清理,可采取以下几方面的措施:1.烟道内烟气流动顺畅,在结构设计上不出现大量积灰源,同时保证吹灰器能吹到所有的管束,不留吹灰死角。2.烟气流动速度均匀,设计烟气流速高于lOm/s,使烟气在流动中具有一定的自清灰功能。3.采用成熟可

烟气余热回收技术方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW 锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在 160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理: 1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家钎焊式模块 化非对称流量板式换热器的专业生产制造商,凭借 独到的设计理念,雄厚的产品开发能力和多年行业 丰富的实践经验使AIREC成为在非对称流量换热领 域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真 空和高温的环境下,板片用铜或镍焊接在一起,具 有很高的机械强度,更大的传热面积,更高的效率,

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

北京2018年投7亿建热电厂余热回收项目

北京投7亿建热电厂余热回收项目!每年可省燃气1.8亿m32018-07-12 21:10 近日,从北京市发改委获悉,北京将建一批余热回收项目,建成后可增加供热面积超过2000万平方米,每年可节约燃气约1.8亿立方米,相当于135万户普通居民生活全年用量。 项目将分4年建成 近日,北京市发改委会同北京市城管委制定出台了《北京市中心热网热源余热利用工作方案(2018-2021年)》。按照安排,北京将分4年时间建成一批余热回收项目。 据悉,今年和明年将要进行余热利用改造的热电厂包括太阳宫燃气热电厂、华能二期、华能三期、京能草桥、大唐高井和郑常庄燃气热电厂等。 据介绍,北京市政府将对这批余热回收项目加快审批流程。方案重点任务中的余热利用项目,将列入各区当年重点推进项目,按照审批权限由项目所在区加快办理各项前期手续。 同时,对于这些余热回收项目,北京市政府加大了资金支持。其中,市政府固定资产投资对热源和一次管网给予30%的资金补助,同步配套建设的水蓄热项目享受同比例的资金支持。预计项目全部建成后,政府固定资产投资将累计支持约7亿元。 烟气余热回收为主要利用形式 据媒体报道,热电厂的余热利用主要有两种形式,一个是烟气余热利用,另一个是循环水余热利用。 “结合北京市热电厂实际情况,烟气余热资源在供暖季稳定性相对较好,因此北京地区的热电厂就将采用烟气余热回收为余热利用的主要形式。”北京市发改委相关负责人说。 值得一提的是,这也是我国首次在燃气电厂大规模建设烟气余热热泵系统。 那么这些“余热”价格如何确定呢?北京市发改委相关负责人介绍,北京实施的余热利用项目供热价格参照北京现行价格政策执行,其中燃气热电厂余热利用项目参照北京燃气热电厂热力出厂价格相关政策执行。

火力发电厂烟气余热利用的分析与应用

火力发电厂烟气余热利用的分析与应用 随着我国经济与科技的发展,对资源的需求越来越大,而由于我国资源一直处于供不应求的状态,使得我国国民越来越重视对资源的有效利用,研发出了很多节能减排的科技手段。火力发电厂是我国非常重要的发电来源,在传统的火力发电当中,其损耗的能源非常多,远大于其转化的电能,在发电过程中大量资源被浪费,与我国节约能源的政策完全不符。如何改变以往的火力发电模式,将多余的烟气余热加以有效利用成为了行业内讨论的重点话题。本文就如何确保煙气余热的有效利用做了简要分析,并详细介绍了烟气余热利用系统的一些理论,望能给业内人士提供一些参考和建议。 标签:火力发电厂;烟气余热;能源利用 所谓火力发电厂其主要发电手段就是将可以燃烧的物体进行燃烧加工,让其转化为可供人们使用的电能。在其发电过程中仪器设备和操作工艺严重影响了能源的转化效率。我国大部分火力发电厂仍然使用的是传统的锅炉发电设备,这类设备在使用中并不能有效的保证能源的高效率转化,如在锅炉的排烟过程中,能源就会被大量的浪费。因此改良发电设备,研究更有利于转化的技术和器材与如何利用这些多余的能源已经成为当前行业内研究的重要方向,为了达到节约用能的目的,业内人士必须不断深入研究,来确保有更好的方式被运用到实际火力发电当中。 一、烟气余热利用条件分析 将火力发电中的烟气余热高效利用是有一定条件的,如果不能满足烟气余热利用的条件,那么就很难保证烟气余热能够被有效收集,也会降低电能的转化率。当前要想达到烟气余热的有效利用,一般需要满足以下条件: (一)确保设备的防腐蚀性 在锅炉设备排出的烟气当中,其存在很多具有腐蚀性的酸性气体,这些酸性气体在排出过程中会导致发电厂很多设备被腐蚀,不仅影响发电厂的发电效率,还影响烟气的排出率,导致大部分烟气在排出过程中就被损耗,故火力发电厂必须采取一定措施来保证设备的防腐蚀性。首先发电厂的工作人员应该先对发现酸性气体的位置进行标记,记录好出现问题的设备,然后再使用热水再循环工艺来解决仪器表面的问题,防止仪器在高温情况下和酸性气体发生腐蚀反应。此外工作人员还可以安装低温省煤器,通过仪器降温来达到防腐的目的,一般可将低温省煤气安装在烟气的出口和入口处,在两处进行烟气温度的处理,大大降低了最终的烟气温度,在某些情况下低温省煤气还可被安装在烧煤设备上,工作人员可以根据设备的反应迅速对烟气的温度进行控制,在防止设备腐蚀的同时,还能有效地提高能源的转化效率,也同时提高了烟气的排出率[1]。 (二)保证设备的干燥和整洁

锅炉烟气余热回收利用分析与措施研究

锅炉烟气余热回收利用分析与措施研究 在当今社会里,节能已成为继煤炭、电力、石油和天然气之后的“第五能源”。而在现在的工业锅炉的使用中普遍存在着热量利用率低下,排放烟气余热温度过高,以及烟气内污染环境气体含量过高等问题。本文将就这些问题做深入的分析,并提出一定措施来解决当前问题。 目前,节能已是我国经济发展的一项长远战略计划,也是当前一项紧迫的任务。当前,全社会都在开展节能降耗,缓解能源压力,建设节能型社会,而工业锅炉余热资源的回收利用是节约能源的重要措施,工业锅炉排烟余热所占锅炉热量比重较大。如果不控制锅炉烟气余热,将会给地球环境和资料带来极大的危害。 1锅炉烟气余热问题分析 大型锅炉都安装有铸铁管或不锈钢式省煤器,用来助燃空气或预热锅炉给水,但是由于石油、煤、天然气燃料中均含有硫,在燃烧时,硫氧化物的产生是必不可少的,它与水蒸气结合后即形成硫酸蒸汽。当锅炉尾部受热面的金属壁面温度低于硫酸蒸汽的凝结点(称为酸露点),就会在其表面形成液态硫酸(称为结露)。长久以来,省煤器等物体由于结露引起腐蚀,甚至还会穿孔,这种现象时常发生,严重影响了锅炉的运行安全,所以目前的锅炉都是通过提高排烟温度来缓解结露和腐蚀现象的产生,致使锅炉烟气温度很高,从而导致大量热量散发到大气中,浪费资源又污染环境。 据相关数据表明,一般工业锅炉的热效率约为60~70%,它的排烟温度大概在250℃~3 50℃之间,而导热油炉,排烟温度更是达到280℃以上,大量余热未充分利用,如果把这些烟气直接排放到空气中,这不但会导致气温升高,污染了环境,而且极大的浪费了能源。因此降低锅炉烟气温度已成为锅炉节能的一个重要途径,同时又必须解决锅炉低温腐蚀的难题。 但是,在进行烟气余热回收利用实现节能时,应注意以下几个问题:酸露点腐蚀的部位

相关主题
文本预览
相关文档 最新文档