当前位置:文档之家› 数字信号光纤通信技术分析方案

数字信号光纤通信技术分析方案

数字信号光纤通信技术分析方案
数字信号光纤通信技术分析方案

数字信号光纤通信技术实验的报告

预习要求

通过预习应理解以下几个问题:

1.数字信号光纤传输系统的基本结构及工作过程;

2.衡量数字通信系统有那两个指标?;

3.数字通信系统中误码是怎样产生的?;

4.为什么高速传输系统总是与宽带信道对应?;

5.引起光纤中码元加宽有那些因素?;

6.本实验系统数字信号光-电/电-光转换电路的工作原理;

7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?;

8.时钟提取电路的工作原理。

目的要求

1.了解数字信号光纤通信技术的基本原理

2.掌握数字信号光纤通信技术实验系统的检测及调试技术

实验原理

一、数字信号光纤通信的基本原理

数字信号光纤通信的基本原理如图8-2-1示<图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位<低电平)和终止位<高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号;

2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。

图8-2-1数字信号光纤通信系统的结构框图

在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间<亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。

由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤<芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

宽程度显然与模式的数量有关。由多模传输引起的码元加宽称为模式色散。当光纤纤芯半径减小到一定程度时,光纤中只允许存在一种模式<基模)参与光信号的传输。这种光纤称为单模光纤<芯径5—10μm)。单模光纤中虽然无模式色散存在,但是由于光源器件的发光光谱不是单一谱线、光纤的材料色散和波导效应等原因,光信号在单模光纤中传输时仍然要引起码元加宽。这些因素产生的码元加宽称为材料色散和波导色散。材料色散和波导色散比起模式色散要小很多。

当码元加宽程度超过一定范围,就会在码值判别时产生误码。通信系统的传输率愈高,码元宽度愈窄,允许码元加宽的程度也就愈小。所以,多模光纤只适用于传输率不高的局域数字通信系统。在远距离、大容量的高速数字通信系统中光纤信道必须采用单模光纤。

长距离、高速数字信号光纤通信系统中常用的光源器件是发光波长为1﹒3μm和1﹒5μm 的半导体激光器LD。在传输速率不高的数字信号光纤通信系统中也可采用发光中心波长为0﹒86μm的半导体发光二极管LED。光电探测器件,主要有PIN光电二极管和雪崩光电二极管。有关光纤通信中采用的上述电光和光电器件的结构、工作原理及性能的详细论述见参考文献[2]。

二、实验系统的硬件结构及工作原理

为了使非通讯专业的理工科学生在近代物理实验中学习到有关数字信号光纤通信的基本原理,我们在《数字信号光纤通信实验》中着重于对光信号的发送、接收和再生;数字信号的并串/串并转换;模拟信号的AD/DA转换以及误码现象和原因等问题加以论述。有关编码、时钟提取和解码问题先不作为本实验的基本要求。有必要时,做完这一实验后,可作为设计性实验对这些问题进行深入研究。

<一)实验系统的硬件结构

实验系统的结构如图8-2-2示。其中,光讯号发送部分采用中心波长为0.86μm

图8-2-2 数字信号光纤通信实验系统的基本结构

的半导体发光二极管

<二)工作过程

实验系统传输的数字信号可以是ASCII字符的2进制代码,也可是语音信号经ADC0809集成芯片进行A/D转换后的数字信号。在实验内容基本要求阶段<避开编、译码和收时钟提取问题,此时图8-2-2中的开关K1、K2和K3均应打在“1”位),实验系统的工作过程如下:

1.传输ASCII字符时,ASCII字符的2进制代码由计算机提供,经RS—232串口送至电端机,经电端机内的8251数据发送端

2.传输语音信号时,语音信号放大后送至电端机内ADC0809模拟信号输入端进行A/D转换,所形成的数字信号经8251并/串转换后由其数据发送端TxD送至光端机对LED进行调制。然后经过ASCII字符同样的传输过程在实验系统接收端形成的数字信号再送至电端机,进行D/A转换。由此生成的模拟信号经滤波、放大后再由音箱输出。

以上过程均在程序控制下由计算机和电端机中的单片机完成。

<三)数字信号的发送和电光转换

在8251芯片设定为异步传输工作方式并波特率因子等于1的情行下,电端机发送端所发送的数据码是由起始位

图8-2-3 LED的驱动和调制电路图8-2-4 数字信号的光电转换及再生

延长发光二极管LED的使用寿命,对应这一状态应使LED无电流流过。为此,在其驱动调制电路输入端设置了一个由IC1组成的反相器。因此LED发光,对应电信号的0码,无光则对应电信号1码。图8-2-3中W1是调节LED工作电流的电位器。

<四)数字信号的光电转换及再生调节

由传输光纤输出的数字光信号在接收端经过硅光电二极管SPD和再生调节电路变换成数字电信号,再送至电端机内8251集成电路的数据接收端RxD进行码值判别。图8-2-4是数字信号光电转换及再生调节电路的原理图,其工作原理如下:当传输系统处于空闲状态时,传输光纤中无光,硅光电二极管无光电流流过,这时只要R C和R b2的阻值适当,晶体管BG2就有足够大的基极电流I b注入,使BG2处于深度饱和状态,因此它的集-射极之间的电压V ce极低,既使经过后面放大也能使反相器IC2的输出电压维持在高电平状态,以满足实验系统数据接收端RxD在空闲状态时也应为高电平的要求。当传输0码元时,发送端的LED发光,光电二极管有光电流I3流过,它是从SPD的负极流向正极,这对BG2的基极电流具拉电流作用,能使BG2的基极电流I b减小。由于SPD结电容、其出脚接线的线间电容以及BG2基-射极间杂散电容的存在<在图8-2-4中用C a表示以上三种电容的总效应),使得BG2基极电流的这一减小不是突变的,而是按某一时间常数的指数规律变化。随着BG2基极电流的减小,BG2逐渐脱离深饱和状态,向浅饱和状态和放大区过渡,其集-射极电压V ce也开始按指数规律逐渐上升。由于后面的放大器放大倍数很高,V ce还未上升到其渐近值时,放大器输出电压就到达了能使反相器IC2状态翻转的电压值,这时IC2输出端为低电平。在下一个1码元到来时,接收端的SPD无光电流,BG2的基极电流I b又按指数规律逐渐增加,因而使BG2原本按指数规律上升的V ce在达到某一值时就停止上升,并在此后又按指数规律下降。V ce下降到某一值后,IC2的输出由低电平翻转成高电平。调节图8-2-3中W1或图8-2-4中W2,使LED的工作电流与SPD无光照射时BG2饱和深度之间适当的配匹,既使在被传输的数据码中1码元和0码元随机组合的情况下,也能使接收端所接收到的数字信号在码元结构和码元宽度方面与发送的

数字信号一致。

<五)数字信号的码值判决和误码

数字信号传输到接收端8251的RxD端后还不能算信号传输过程的结束。此后,尚需在收时钟RxC 上升沿时刻对再生信号每位码元的码值进行“0”、“1”判别。在8251芯片设定为异步传输工作方式时,码值判别过程如下:8251内部有一时钟和计数系统,它随时检测着数据接收端RxD的电平状态,一旦检测到RxD的电平为低电平,接收端得知被传数据的起始位已到的信息。此后开始计时,计时到半个码元宽度时再次对RxD端的电平状态进行检测,若仍为低电平,表明先前检测到的低电平状态确实是被传数据的起始位,而不是噪声干扰。确认了传数据起始位的确到来之后,从确认时刻开始,每隔一个收时钟RxC周期对RxD端的电平状态进行一次检测,若检测到为高电平,赋予的码值为“1”,反之为“0”。若判别结果所形成的二进制代码与发送数据的代码一致,表明码值判别结果正确。根据正确判别结果的二进制代码从计算机字符库内调出的字符就会与发送字符一致;若判别结果所形成的二进制代码与发送字符代码不一致,计算机屏幕上显示的字符就与发送字符不一样,这表明实验系统在信号传输过程中有误码产生。

在本实验系统中误码原因有以下两种:

1.送到8251数据接收端RxD信号的码元宽度还未调节到再生状态<与TxC相比过宽或过窄);

2.在以上实验过程中收时钟RxC不时从时钟提取电路获得,而是与发时钟TxC采用同一时钟。在此情况下,由于再生信号的波形相对于发送信号的波形具有一定延迟,当这一延迟超过一定范围时,既使接收端数字信号的码元宽度调节到了TxC相等的再生状态,在码值判别时也要发生错误。以上延迟既包含了信号在传输过程中光路上的延迟,也包括了电路上的延迟。在实验系统所提供的光纤长度情况下,电路延迟是主要的。而电路延迟又与再生调节电路中晶体管BG2的饱和深度有关。BG2的饱和深度不同,为使接收端的数字信号达到再生状态所要求SPD的光电流也不同。BG2的饱和深度愈深,要求SPD提供的光电流也愈大。所以,若在接收端虽有再生波形但仍有误码现象出现的情况下,适当调节图8-2-3中W1使LED导通时工作电流为另一值后,再调节图8-2-4中W2可使再生波形的以上延迟达到无误码的状态。

实验装置

本实验所用仪器由:数字信号光纤通信实验仪和示波器组成。其中数字信号光纤通信实验仪采用四川大学研制的DOF—E型仪器,它由光端机、电端机和光纤信道三部分组成。光端机和电端机前、后面板的布局如图8-2-5和图8-2-6示。

图8-2-5(a> 光端机前面板布局图

C1-电源插座;C2-外接音箱插孔;C3-连接电端机的DDK-20电缆插座;W-正弦信号起振与波形调节;K-音箱切换开关

图8-2-5(b> 光端机后面板布局图

图8-2-6(a> 电端机前面板布局

C1: 与计算机RS—232串口联接的九针插座。 C2: 电源插座。C3: 连接光端机的DDK-20电缆插座

图8-2-6(b>.电端机后面板布局

实验内容

1.半导体发光二极管

<1).把发光二极管LED、光纤信道和光电二极管SPD按图8-2-7示接至光端机前面板的“LED插孔”和“SPD插孔”,光端机前面板的SPD切换开关K1拨至左侧,观测并记录光端机前面板光功率计的示值。以此示值作为光功率计的零点.

<2).用导线连接图8-2-7中“调制输入”和“GND”插孔,反时钟方向调节W1,使光端机前面板的毫安表为一最小整数值,然后顺时钟方向调节W1,使毫安表读数慢慢增加,每增加5mA读取一次光功率计的示

值,直到毫安表示值为50mA止,列表记录测量结果。根据实验读数,以毫安表读数为横坐标、光功率计读数<扣除零点后)为纵坐标,绘制LED的电光特性。

图8-2-7 半导体发光二极管

2.传输系统发送时钟TxC周期的测定

把光端机前面板“时钟信号”切换开关拔至“Txc1”侧、双迹示波器CH1通道接至光端机前面板“时钟信号”插孔、示波器扫描时间分度值选为2μs、调节示波器同步旋钮使荧光屏上出现一稳定的波形后,观测并记录其周期值。

3.时钟信号的电光/光电转换及再生调节

图8-2-8 时钟信号的电光/光电转换及再生调节

按图8-2-8接线。光端机开关K1置右侧,调节W1使毫安表指示的LED(在时钟信号调制状态下>的平均工作电流为适当值<比如20mA)后,保持W1的调节位置不变,观察示波器荧光屏上是否有时钟信号波形出现。若无,并示波器荧光屏上显示出一条代表低电平的直线,就需沿顺时钟方向慢慢调节W2,直到示波器荧光屏上出现占空比为50%的时钟信号为止;若示波器荧光屏上显示出一条代表高电平的直线就需沿反时钟方向慢慢

调节W2实现时钟信号的再生调节。若示波器荧光屏上有时钟信号波形出现,但占空比小于50%,就需顺时钟方向慢慢调节W2。若占空比大于50%,就需反时钟方向慢慢调节W2。

4.ASCII字符代码的光纤传输实验

按图8-2-9示,进一步连接好实验系统的后面板。

图8-2-9 实验系统的后面板连接

<1).实验系统发送功能的检测

按图8-2-10接好实验系统前面板的连线,并把电端机前面板的开关K1执向左侧。启动计算机、运行配套

软件后计算机屏幕上将出现图8-2-11示的界面。点击“串口设置”按钮,计算机屏幕将换成图8-2-12示界面。根据电端机与计算机的连接情况,串口号选择COM1或COM2。再点击“确定”按钮,待计算机屏幕再一次出现图8-2-11示的界面后,点击“数字传输”按钮。计算机屏幕上就出现图8-2-13示界面。

图8-2-11

把光标移至“请输入十进制数”的窗口中后,在0-127的范围内从键盘输入被传输的ASCII字符的十进制数代码<比如,字符U、Z和7…等等,它们相应的十进制数代码分别为85、90和55…等等),再点击“发送”按钮,界面的“本地回显”栏将显示出该代码的ASCII字符。观察示波器荧光屏上显示的串行数字信号波形的数码结构是否与被发送的ASCII字符的二进制代码一致。若一致,表示实验系统的发送功能正常;若示波器荧光屏上观察不到这一波形,按电端机的“Reset”按钮后用以上方式重新发送。

图8-2-12

图8-2-13

<2).实验系统数字信号的电光/光电转换及再生调节

继续以上实验,把双迹示波器CH2通道接至光端机前面板的“再生输出”插孔。调节W1使LED的平均工作电流为2mA以上。然后保持W1的这一调节位置不变,调节W2使双迹示波器CH2通道出现码元宽度和数码结构均与CH1通道一样的再生波形为止。

<3).码值判别、误码及实验系统无误码状态的调节

完成了上一步调节之后,虽然光端机的再生输出端出现了与发送端波形一样的再生信号,但还不能算完成了数字信号的传输过程。此后,尚需在接收时钟RxC的作用下对再生信号每位码元的码值进行“0”、“1”判别。在判别时刻,若检测到再生波形的电平为高电平,赋予的码值为“1”,反之为“0”。若判别结果所形成的二进制代码与发送端发送的字符代码一致,表明码值判别结果正确。根据正确判别结果所形成的二进制代码从计算机字符库调出的字符<显示在图8-2-13示的界面接收栏中)就会与“本地显示”栏中出现的字符一致。若判别结果所形成的二进制代码与发送端发送的字符代码不一致,从计算机字符库调出的字符就与“本地显示”栏中出现的字符不一样。这表明实验系统在传输过程中有误码产生。

使实验系统产生误码的原因有以下两种:

a.实验系统数据接收端

b.在实际的数字通信系统中接收时钟RxC是用复杂的时钟提取技术从接收信号中提取的,而本实验系统到目前为止,发送时钟TxC和接收时钟RxC是由同一时钟供给.另一方面,由于接收端再生信号波形相对发送端的发送波形具有一定延迟,当这一延迟超过一定范围时,既使实验系统数据接收端波形达到了再生状态,也会产生误码判别。

接收端再生波形相对发送端的发送波形的总延迟由电路上和光路上两部分延迟组成.本实验系统,电路上延迟是主要的。电路上延迟与传输系统在空闲状态下光电转换和再生调节电路中晶体三极管的饱和深度有关.为了实现光电转换信号的再生调节,接收端这一晶体三极管的饱和深度又应与发送端LED导通时的发光强度匹配。若发送端LED导通时发光强度愈大,就需光电转换和再生调节电路中晶体三极管的饱和深度愈深,对应的电路延迟就愈短。所以,若在接收端虽有再生波形但仍有误码现象出现的情况下,应调节W1使LED导通时工作电流为另一值后,再调节W2使再生输出端波形达到再生状态…如此反复几次调节直到实验系统无误码状态出现为止。点击图8-2-13示界面中的“停止”按钮,重复以上操作可进行传输其它字符代码的实验。

5.传输模拟信号时的模数、数模转换实验和模数转换采样周期的测定

保持以上实验连线不变的基础,把1kHz左右的正弦信号引入光端机前面板的语音信号插孔。点击图8-2-13示界面中的“退出”按钮,计算机屏幕再次回到图8-2-11示界面,然后点击“声音传输”按钮,计算机屏幕就将显示图8-2-14示界面。点击“开始”按钮,实验系统

图8-2-14

就进入模拟信号传输状态。在模拟信号传输状态下,用示波器观测以下实验内容:

(1)模数转换前和数模转换后的模拟信号波形的观测及实验系统无误码状态的调节

把示波器的CH1通道和CH2通道分别接至电端机前面板左上角的ADin插孔和光端机右下角的DAout插孔.通过拨动光端机后面板无标注的开关,把光端机内设的正弦信号源接至模拟信号输入端。用示波器观察CH2通道波形是否也是一个与CH1通道波形同频率、但具有离散化特征的正弦波形?若CH2通道波形具有这一特点,表明实验系统处于语音信号无误码传输状态;否则,需要调节光端机前面板的W2调节旋钮或W1调节旋钮,使CH2通道波形具有这一特征的正弦波。

(2)模数转换采样频率的测定

在传输模拟信号的情况下,由于每次传输的数码结构不一样,故在示波器上看不到一个固定数码结构的波形出现。但每次所传输数据的数码结构中起始位都是低电平。所以,调节示波器同步旋钮可清楚观察到它在荧光屏上的位置(如图8-2-15示>。两个相邻起始位间隔的时间就是实验系统模数转换过程的采样周期,该周期的倒数值就是采样频率。因语音信号的频率在300—3400Hz范围内,根据采样定理,采样频率应大于7000次/每秒,通信部门规定为8000次/每秒。

用收音机或单放机提供的语音信号接至光端机前面板的语音信号插孔,.示波器CH1和CH2通道分别接至光端机的调制输入和再生输出插孔。在时钟信号为TxC1和TxC2两种情况下,用示波器观测传输语音时模数转换过程的采样周期、计算相应的采样频率、用采样定理评估本实验系统传输语音信号时的性能.

图8-2-15

6数字信号的编码、解码和时钟提取<设计性选作实验)

在前面所有的实验过程中发送时钟和接收端码值判别所需时钟信号均由同一时钟信号提供。在实际通信系统中,接收端码值判别所需时钟信号是由接收端所接收到的数据码流中提取出来的.为了便于提取时钟信号,需要对从电端机送至光端机的数据码进行编码.

编码的方式很多,本实验系统的编码码型采用CMI码,CMI是Coded Mark Inversion<传号反转码)的缩写。其变换规则是:用01代表数据码的0, 用00或11代表数据码的1,若一个数据码1已用00表示,则下一个数据码1必须用11表示,也即表示数据码1的线路码在00和11之间交替反转。CMI线路码长0和长1码元数目最多不超过3个,这对接收端的时钟提取十分有利。按CMI线路码的编码

图8-2-16 CMI码编码电路

规则,数据码的一个码元变成了线路两个码元。在不降低通信速率的情况下就要求发送CMI线路码的时钟频率提高1倍,或在沿用数据码发时钟的情况下,CMI线路码的码元宽度应减小一半。实现CMI码变

换规则的电路如图8-2-16示。用这一电路进行编码生成的CMI线路码的码元宽度相对于数据码的码元宽度减小了一半。因此其频谱中就含有等于发时钟频率2倍的谱线。接收端的CMI解码电路如图8-2-17示,其变换规则与CMI码编码电路相反。

接收端对CMI码进行解码和对解码后的数字信号进行码值判别时,需要与发时钟TxC同频率、同相位的时钟信号。这一时钟信号是从接收端的再生CMI线路码中提取。按图8-2-18示的电路结构设计一个时钟提取电路。设计任务与步骤:

<一)首先测定实验系统发时钟的频率f TxC;

<二)选择和计算图8-2-18中RLC谐振电路的参数:谐振频率f0=2f TxC

<三)音频信号源作输入信号,用示波器观测RLC谐振电路的选频特性,需要时适当改变电路参数,使RLC谐振电路的选频特性满足设计要求。

<四)按图8-2-2中的所有开关均打在2位的连接方式,把设计好的RLC谐振电路接入实验系统后,依照本实验第一阶段要求的内容重新实验。

图8-2-17 CMI码解码电路

图8-2-18 时钟提取电路

问题与思考

一、语音信号数字光纤通信经历那些过程?

二、数字信号的码元宽度与什么因素有关?

三、数字光信号经光纤信道传输后码元宽度为什么要变宽?

四、如果利用一条光纤信道分时传输32<或更多)路模拟语音信号,在对语音信号以每秒8000次采

样进行8位模数转换的情况下,光纤数字通信系统的发时钟的频率f TxC至少应等于多少?

五、为什么在数字信号发送端进行数据发送之前要进行编码?

六、在接收端由时钟提取电路输出的时钟信号有那些作用?

七、图8-2-11中RLC谐振选频电路依据的工作原理是什么?

浅谈光纤通信技术的发展及其应用

浅谈光纤通信技术的发展及其应用 发表时间:2016-11-02T16:56:20.480Z 来源:《基层建设》2016年14期作者:张运器 [导读] 摘要:随着社会的发展和时代的进步,我国的综合国力逐渐增强,人们对通信的技术和质量也有了更高的要求。 广州市奇成通信技术服务有限公司 摘要:随着社会的发展和时代的进步,我国的综合国力逐渐增强,人们对通信的技术和质量也有了更高的要求。光纤通信作为新兴技术被广泛的应用在各国各行业的科技领域中,尤其是在电信网络中起着不可忽视的作用,在我国的通信行业中,光纤通信技术占据着主要的作用。光纤通信技术不仅能在通信主干路中得到应用,还能在电力通信的控制系统中得到应用,对工业进行控制和检测,为通信行业带来了很大的积极作用,为通信行业的发展和进步奠定了基础。 关键词:光纤通信技术;发展趋势;通信行业;应用 虽然光纤通信技术被广泛的应用在各国的通信行业中,但是光纤通信技术的使用历史并不是很长,早在二十世纪就有科学家对光纤通信进行了探索,但由于极高的造价导致研究不得不中断。光纤通信技术使通信行业得到了前所未有的发展,现阶段光纤通信的技术取得了得到了很大的提高,不断得到补充的新技术使我国通信行业的能力得到了极大的提高,使全国的大部分地区都实现了光纤通信技术的应用。只有良好的利用光纤通信,不断的提高光纤通信的技术才能使我国的通信行业得到长足的发展。 一、光纤通信的特点 光纤通信能够获得广泛的应用和发展主要是因为其具有多方面的特点,从而得到了更多人们和行业的重视。第一,光纤通信拥有很宽的传输频带,使通信的容量大大增加。和铜线、电缆等传输方式相比,光纤通信的带宽很大,现阶段我国还使用了密集波分复用的技术,此技术也使光纤的传输容量得到了极大提高。第二,拥有较长的中继距离,光纤通信的损耗很小,这个特点在传统的微波传输中难以得到体现。在较长的传输线路中,能够有效的将中继站数量控制在最小,使传输的成本得以降低。第三,拥有较好的保密性能并伴有强大的抗干扰能力。在进行光纤传输时,光波导结构会使光信号得到很好的限制,即使在特殊的地区渗漏的光波量也极小,使信号得到更好的保护。第四,光纤通信具有极高的传输质量。在外界环境等因素改变时,光纤通信不会受其影响,拥有很强的适应能力,使传输的信号以高质量被传输到需要的地方。第五,有效的节约了成本。制作光纤的原材料是石英玻璃,基础材料则为二氧化硅,这种原材料的价格较低,我国拥有丰富的原材料,使用这种材料能有效的节约金属的使用量,有效的节约了成本。第六,使用较灵活。光纤拥有很轻的重量,而且规格比较小,在进行光纤维护和施工时,传输和铺设都及其方便,并且能够在水底和架空时进行铺设。 二、光纤通信技术的发展 (一)由光入网的发展趋势 在我国光纤通信技术的发展过程中,由光入网一直是一个难题的,但在今后的光纤通信技术发展正,由光入网是其必须实现的发展趋势。通过技术的发展,由光入网趋势将在我国光纤通信技术中得以实现,将会成为网络中不可缺少的一项环节,由光入网将使通信行业实现网络化和智能化。另外,我国还有很多使用铜线进行通信的现象,铜线和光纤相比还存在很大的技术反差。在这种现在存在的同时,接入网络就显得尤为重要,是我国通信行业得到真正发展的一个非常重要的节点。通过实现光纤的接入网能使存在的问题得以解决。除了这种情况以外,还要适当的使各地的节点和与网络结构的适应度得到减少,这样能在一定程度上扩大覆盖率,从而使故障率和维修产生的费用都得到相应的减少。 (二)光纤通信技术的新一代光纤 由于社会的不断进步和发展,各行业都得到了不同程度的提高,业务量等数据都在不断的增长。电信网络也跟随着这一形式向下一个光纤通信技术的方向不断努力,这一新技术要遵循着可持续发展的目标。要想真正实现新一代的光纤技术就要拥有超大容量的光缆,光缆的组成为逛到纤维。大容量的光缆和传统的光缆相比具有很多的优点,不仅能够适应网络业务的超长距离,还要拥有良好的稳定性。根据这种要求,我国通信行业的技术人员已经研发出了新型的光纤,光纤具有不同的型号,例如,G.655光纤和全波光纤等。这样的光纤能够适合干线网和城域网的不同需要,根据不同需要制定不同的光纤,更有效的促进了其传输质量和速度,使光纤通信技术得到了真正的提高和发展。 (三)实现波分复用系统 在我国的通信行业中,传统的手段是利用电分复用系统对信号进行传输,随着时代的进步,这种传统的方法已经不能适应人们的需求,逐渐的对电分复用系统进行取代,波分复用系统将会得到人们的广泛应用。虽然波分复用系统得到了应用,但还是存在很多的问题。在进行200纳米光纤进行宽带传输时,利用率会极其低,使用了波分复用系统能有效的解决此类问题的发生,它能将很多个不同的波长使用同一时间进行同时传输,这样就使传输的容量得到提高。实现波分复用系统的优点具体表现在以下几个方面:第一,波分复用能有效的对信号功率和徐律进行脱钩处理,使通信不再受到传统关节点的影响。第二,波分复用系统能和光纤进行配合使用,从而使光纤的传输效率得到很大的提高,增加了资源的利用率。第三,运用波分复用系统能够节省大量的光纤,同时也使通信所产生的成本得到了减少。 三、光纤通信技术的应用 (一)光纤通信技术在电力通信行业中的应用 电力通信主要是要实现电网的商业化、现代化和自动化,电力通信是安全系统和自动化系统进行稳定工作的基础和前提,电力通信能够实现电力市场的现代化管理和运营商业化,为电力市场提供了很多的技术保障和支持。光纤通信技术在电力通信领域有着很大的应用,起初只是提供了传统的管道、架空和地埋等技术方法,对普通的电缆进行铺设这样能使电信部门的光纤通信网络逐渐实现系统化。随着光纤技术的不断进步和发展,光纤通信能够实现信号的大容量传输且损耗非常小,根据这种特点被电力通信部门应用,并受到了业界的一直好评。 (二)光纤通信技术在智能交通领域的应用 交通管理在我国越来越受到重视,智能交通的目的就是将交通管理和运营等方面的工作进行信息化管理,其核心的内容则是信息采集、信息的传输和信息的处理,通过对信息的综合运用能使交通系统实现准确且高效的运输管理体制。在智能交通中应用光纤通信技术主要是实现收费联网和监控等各录像数据和信息的传递,使交通系统更加稳定的运行,为公路等交通的安全和通常奠定了基础,进一步促进

光纤通信网络风险评估

光纤通信网络风险评估 光纤具有抗干扰、数据传输快、损耗小等优点,成为当前网络的主要 通信介质,在很多领域得到了广泛应用[1,2]。不过光纤通信网络 与其它类型的网络一样,也存有安全隐患问题[3],如果出现数据被 窃取、网络入侵等行为,那么会给人们带来巨大的经济损失,为此, 如何提升光纤通信网络的安全,一直是网络安全管理领域中的研究热 点[4]。近几年来,学者们对光纤通信网络的风险评估进行广泛研究,最原始风险评估模型是引用其它类型的网络评估模型,如双绞线网络等,但是光纤通信网络具有其自身的特殊性,这些模型的风险评估结 果不可靠[5]。近些年,一些研究机构提出了基于层次分析法、德尔 斐法、决策树、神经网络、支持向量机等光纤通信网络的风险评估模 型[6-10]。层次分析法、德尔斐法属于定性分析或简单定量方法, 评估结果的好坏与专家经验和知识直接相关,评估精度不太稳定,时 高时低,而且评估结果含有一定的主观性[11]。决策树、神经网络、支持向量机等属于定量分析方法,根据光纤通信网络风险的评估指标,采用神经网络等建立相对应的评估模型,评估精度比较高,在光纤通 信网络风险评估中应用最为广泛[12]。在实际应用中,这些方法均 没有考虑评估指标选择问题,导致评估指标过多,评估结果和效率均 有待进一步改善[13]。为了提升光纤通信网络风险评估精度,有效 保证光纤网络的数据传输可靠性,提出一种因子分析法的光纤通信网 络风险评估模型,采用并通过具体实例对其有效性和优越性进行分析。 1建立光纤通信网络风险的数学模型 在光纤通信网络风险评估过程中,有两个步骤对评估结果的影响十分 关键,其中一个是评估指标的选择,另一个是光纤通信网络风险值的 预测算法。假设选择第i个样本的评估指标为{xi1,xi2,…,xin}, 相对应的光纤通信网络值为yi,那么光纤通信网络风险评估的数学模 型可以描述。 2因子分析法选择光纤网络风险评估指标

光纤通信技术概述解析

3.3 光纤通信技术 一、光纤通信系统概述及基本结构 光纤通信系统是以光纤为传输媒介, 光波为载波的通信系统。主要由光发送机、光纤光缆、中继器和光接收机组成, 其基本结构原理如图所示。 系统中还包含了一些互联和光信号处理部件, 如光纤连接器、隔离器、光开关等。图中电端机和光端机均包括发送和接收两部分, 两者合起来构成发送器和接收器。其中发送光端机是将电信号变换成光信号,接收光端机则是将光信号转换成电信号。 1、发送器 发送器由发送光端机和电端机构成, 其核心是一个光源。光源的主要功能就是将一个信息信号从电子格式转换为光格式。今天的光纤通信系统采用发光二极管或激光二极管作为光源。两者都是小型的半导体

设备, 可以有效地将电信号转换为光信号。LD 输出的光功率较大, 谱线窄, 一般适合长距离、大容量的通信系统, 但其寿命较短, 价格高; LED 光源发出的光功率较小, 光谱线较宽, 调制速率较低, 输出线性好, 寿命长, 成本低, 适用于短距离和中小容量的系统。它们需要与电源相连并且需要调制电路。 2、光纤 光纤通信系统中的传输介质是光纤。光纤通信系统中发送器端的光信息信号就是通过光纤传送到接收器端的。实际上, 同任何其他通信链路一样, 光纤提供发送器和接收器间的连接。同时, 光纤对光信号进行传导, 就像铜线和同轴线传导电信号一样。它大概和人的头发的粗细相同, 为了保护非常脆弱的光纤, 使其不受恶劣的外部环境和机械的损害, 通常将光纤封装在特定的结构中。裸露的光纤包上保护膜后封装到其他几层中, 所有这些就构成了光纤光缆。 3、接收器 接收器由接收光端机和电端机构成。接收光端机的主要部分包括光检测器、放大器、均衡器、判决器、自动增益控制电路和时钟电路。其中光检测器是接收光端机的核心, 光检测器的主要功能就是把光信息信号转换回电信号( 光电流) 。光纤通信系统中的光检测器主要有PIN 二极管、雪崩光电二极管( APD) 。APD 比PIN 更灵敏, 而且对外部放大功能要求更低。A PD 的缺点是具有相对较长的渡越时间以及由于雪崩放大造成的附加内部噪声。 4、光中继器

光纤通信课程设计

湖南工业大学 课程设计 资料袋 计算机与通信学院(系、部)2013 ~ 2014 学年第 2 学期课程名称数字光纤通信指导教师刘丰年职称副教授学生姓名专业班级学号 题目图像、声音的光纤传输系统 成绩起止日期2014 年05月16 日~2014年05月22 日 目录清单

湖南工业大学 课程设计任务书 2013—2014学年第2学期 计算机与通信学院通信工程专业班级课程名称:数字光纤通信 设计题目:图像、声音的光纤传输系统 完成期限:自 2014 年 5 月 16日至 2014 年5月22 日共 1 周 指导教师(签字):年月日 系(教研室)主任(签字):年月日

数字光纤通信 设计说明书 声音、图像光纤传输系统 起止日期: 2014年 05 月 16 日至 2014年 05 月 22 日 学生姓名 班级 学号 成绩 指导教师(签字) 计算机与通信学院 2014年 05 月 22 日

指导教师(签字):年月日系(教研室)主任(签字):年月日

图像、声音光纤传输系统 一、设计原理 1、GT-RC-II 型光纤通信实验系统简介: (1)、电源模块:提供实验箱各模块电源。 (2)、1310nm光发送模块:实现模拟信号、数字信号在1310nm光发送机中的光传输及自动光功率控制功能(采用电路来实现)。 (3) 1550nm光发送模块:实现模拟信号、数字信号在1550nm光发送机中的光传输及自动光功率控制功能(采用专用芯片来实现)。 (4) 1310nm光接收模块:实现1310nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 (5)1550nm光接收模块:实现1550nm光纤传输信号的接收,实现接收信号光电转换,滤波及放大,将其恢复为标准的电脉冲数据信号。 实验系统主要由光发模块、光收模块、光无源器件和辅助通信模块等组成。光发端机完成将电信号直接调制至光载波上去,采用强度调制(IM);光接收机完成光信号的解调,采用直接检测(DD),属于非相干解调。光载波由半导体光源产生,由半导体光检测器将光信号转换成电信号从而达到传输信号的目的。 2、模拟光纤通信系统的结构 模拟基带直接光强调制(DIM)光纤传输系统由光发射机(光源通常为发光二极管)、光纤线路和光接收机(光检测器)组成,这种系统的方框图如图1所示。 图1 模拟光纤通信系统由以下五个部分组成: (1)光发送机:光发送机是实现电/光转换的光端机。它由光源、驱动器和调

电信光纤通信技术的

电信光纤通信技术的研究 许文彬 (中国电信股份有限公司 汕头分公司 广东 汕头 515041) 摘 要: 当前电信领域的媒体业务量正在迅速增长,业务类型也变得更加多样化。分析通信光纤通信的含义以及组成部分,并探讨电信光纤通信技术所具有的优点,包括具有较长中继距离,传输损耗较低以及具有良好的保密性等。 关键词: 光纤通信;电信;技术 中图分类号:U285 文献标识码:A 文章编号:1671-7597(2012)1120090-01 传输技术以及交换技术正在不断发展,在电信领域,已经光纤的内芯极细,光缆直径较小,因此,在传输信道上使基本上实现了光纤化核心网、数字化核心网以及宽带化核心用光缆,可以减少传输系统的占地空间,从而使管道出现拥挤网。但是,当前电信领域的媒体业务量正在迅速增长,业务类的现象得到有效缓解。作为通信介质的光纤具有较好的柔韧型也变得多样化,因此只有对其通信技术进行不断完善,才能性,重量也较轻。因此,如果将光纤通信技术应用于人造卫星进一步满足用户需求,光纤通信技术是一种新型通信技术,具或宇宙飞船以及飞机上,将能够有效减轻飞船以及飞机等现有有无可比拟的优势,将其应用于电信领域,将能够获得良好的的重量,方便于信息的传输。此外,因为纤具有较好的柔韧效益。对此,本文研究了电信光纤通信技术,以供参考。性,所以可以对光纤进行大幅度的绕制,方便光纤成束,从而 获得密度较高与直径较小的光缆,便于系统的铺设。 1 光纤通信的含义以及组成部分 2.4 具有良好的保密性 光纤通信指的是运行时信息载体为光,传输介质为光纤的 保密水平是评估通信系统是否处于良好状态的一个重要标一种通信手段。由玻璃材质制造而成的光纤是一种绝缘体,所 志。在科技发展的同时,窃听技术也在不断发展,因此只有对以不会出现接地回路的现象;不同光纤之间只具有小距离的中 通信绕,光信号不会出现泄漏现象,因此不会导致信息在传输的过 程中被泄露,在电信的通信领域具有良好的应用前景。要使光 纤通信处于正常运行状态,则离不开以下五个部分。第一部分 为光发信机,此部分为光端机,能够转换光与电;第二部分为 光收信机,与光发信机类似,此部分也为光端机,能够转换光 与电,光收信机包括了光放大器以及光检测器;第三部分为光 纤,光纤是传输信息的通路,光纤能够转换光端信号,负责传 输信息。第四部分为中继器,系统当中的中继器是由三个部分 构成的,即再生电路、光源以及光检测器;第五部分为无源器 件,包括耦合器以及连接器等,这一部分是不可缺少的。 2 光纤通信技术所具有的优点 2.1 具有较长中继距离,传输损耗较低 光纤通信当中,传输介质光纤的损耗率能够控制在 0.20dB/km以下,因此传输损耗较低。当损耗率较低时,就可 以相应延长中继距离。随着科技的进步,光纤材质也将变得更 为理想化,在理论上可以大幅度降低原有损耗,因此可以预 见,采用光纤通信技术将能够实现更长中继距离之间的跨越; 从而减少中继站的数量,降低系统复杂性以及系统建设成本 [1]。到目前为止,最长中继距离已经大于200千米,这对于提 高系统运行的稳定性以及可靠性具有重要作用。 2.2 具有大容量通信以及极宽频带的优点 光纤通信当中的载波频率远远高于电波频率,光纤在传输 信息时,其损耗远远低于导波管以及同轴电缆,因此采用光纤 技术进行通信,其容量要远远多于微波通信。与电缆以及铜线 相比,光纤传输宽带要大得多,因为光纤通信技术可以可以充 分利用光的调制方式以及调制特性等,如果为长窗口以及散波 光纤,则几十GHz·km容量的宽带便可以存在于单模光纤当中 [2]。如果光纤的类型为单波长,为了能够使其传输最大容量 的信息,可以通过运用相关技术来对其进行完善,例如采用波 分复用方面的技术,在采用波分复术对单波长类的光纤进行改 造后,将能够使其传输容量扩大到十倍甚至是几十倍。因为单 模光纤具有非常大的宽带拓展潜力,所以此类光纤已经成为电 信业务网络传输的一个首选介质。 2.3 光纤易于铺设 技术进行不断完善,才能有效防止窃听。光纤通信技术当 中的传输介质较为特殊,只在光纤包层以及纤芯附近进行光波的传送,光纤之外很少存在光波;因此能较好的保护信息,预防信息泄露。此外,光缆的外部运用了橡胶护套以及金属材质的防潮层,这些保护设施均无法透光,再加上中继光缆以及长途光缆一般被埋置于地下,因此光缆出现光泄露的情况几乎不可能发生。通过以上分析可知光纤具有良好的保密性,泄漏光信号的情况很少发生,所以在电信领域当中运用光纤通信技术能够有效预防串话现象。 2.5 具有较强的抗干扰能力 作为传输介质的光纤由绝缘性材料制造而成,具备良好的绝缘性,也不容易遭到腐蚀,再加上光波导能够对抗电磁所产生的干扰。所以在传输信息时,即使出现太阳黑子频繁活动、大气电离层发生变化以及雷电等自然现象,都不会对其造成干扰。此外,人为原因制造的电磁也不会干扰到光纤的正常传输,因此,可以将光纤架设于输电线的平行范围内,也可以组合电力导体,形成复合形式的光缆。光缆不具备导电作用,因此并不会生成电动势,保证信号不会受到噪声的干扰。因此,即使将通信系统建设于高压电气设施附近,通信质量依旧良好。 3 通信领域当中接入光纤的技术分析 当前,光纤技术的接入网被划分为两种类型,即无源光与有源光两种网络。有源光接入网络应用到了ATM技术以及SDH技术;而无源光接入网络的光配线网当中没有源节点。当前,要实现FT-Tx,则应采用无源光接入网络技术,即PON技术。应用PON技术能够简化网络层次,并可以提高宽带传输能力,从而降低运行成本以及维护成本;因此PON技术适用于面积较小且用户较为集中的通信区域。在用户接入方面,可以根据光纤到达时的不同位置,应用不同的接入技术,如FTTH、FTTC以及FTB等。FTTH指的是光纤到户,光纤到户技术能够接入全光,所以能够对光纤技术所具有的宽带优势进行充分利用,进而向用户提供不受限宽带,因此可以更好地满足用户需求。最近几年,FTTH技术已经得到了推广以及应用。在我国,目前有三十 多个城市已经初步建立起了FTTH技术的试商用网以及试验网, (下转第77页)

光纤通信技术论文

光纤通信技术论文 论光纤通信技术的特点和发展趋势 摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。本文探讨了光纤通信技术的主要特征及发展趋势。 关键词:光纤通信技术特点发展趋势接入技术 引言 近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。 1.光纤通信技术定义 光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤

通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 2.光纤通信技术的特点 2.1 频带极宽,通信容量大。 光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。 2.2 损耗低,中继距离长。 目前,实用的光纤通信系统使用的光纤多为石英光纤;此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。 2.3 抗电磁干扰能力强。

光纤通信系统与网络

本实验指导书为《数字传输技术(A)》《光纤通信系统》《光纤通信测量技术》《光同步传输技术》课程的实验用书,其有关内容也可以配合《数字传输技术(A)》《光纤通信系统》《光纤通信测量技术》《光同步传输技术》等课程教材使用。 本实验指导书用于光纤数字传输系统性能测试和光纤传输网络的设备与网络管理操作几方面的必做实验,主要是光纤数字线路系统传输性能测试、SDH 设备认识和SDH网络管理系统及操作。其中光纤数字线路系统传输性能测试是最基本的实验项目。 光纤数字线路系统包括光端机、光中继机和光纤线路等,其性能参数包括设备和系统光接口参数和电接口传输性能,光接口参数主要是光设备光接口参数、光通道(光纤线路)传输特性,电接口传输性能主要包括误码性能、定时性能和可用性等,需要测试的项目较多,涉及多种测试仪表和测试方法。本指导书重点介绍光纤线路接续和接续损耗的监测、光纤衰减测试实验、光接口参数测试和光纤数字传输系统的传输性能测试实验。 选做实验的指导书另行编写。

实验一光纤接续和监测 1 实验二光纤衰减测试 3 实验三光接口参数测试 5 实验四电接口传输性能测试10 实验五SDH设备认识17 实验六SDH网络管理系统及操作19

实验一 光纤的接续和监测 一. 试验目的 掌握光纤接续原理 掌握光纤接续损耗的测试原理 学习使用熔接机和了解光纤接续过程 二.试验原理 光纤接续的常用方法有热熔法和冷接法等,热熔法的主要步骤如下:连接光纤端面的制备,端面的定位和对准,熔接。 光纤接续损耗A s 的定义为 t r s p p A lg 10?= (dB ) 式中 p t 为发射光纤发出的光功率,W p r 为接收光纤接收的光功率,W 监测光纤接续损耗的方法有多种,如:光时域反射计(OTDR)监测和四功率法测试等,目前都采用光时域反射计监测法,其测试系统原理土如图1.1所示。 测试时OTDR 发出测试光脉冲,并测得连接光纤的背向色散曲线如图1.2所示,根据所得曲线设置五个测试点(即采用五点法)即得到接续损耗值。 三. 试验仪器和设备 1.TYPE35SE 光纤熔接机, 1台 2.光时域反射计, 1台 3.光纤, 2盘,2Km/盘 四. 测试步骤

高速光纤通信技术研究论文.

高速光纤通信技术研究论文 2018-12-12 摘要:本文首先简要分析了高速光纤通信技术;然后分析了高速光纤通信系统的损伤问题;其次重点针对色散问题进行相关补偿技术分析;最后为相关研究指明了方向。 关键词:高速;光纤通信技术;损伤;补偿技术 近年来,光纤通信在我们的日常生活中运用越来越普遍,人们在实际应用中关注最多的还是质量问题,对通讯质量提出了很高的要求。高速光纤通讯技术凭借其信息容量大、传播速率高等特征在行业中得到了广泛应用,并且在发展中取得了显著成果。然后在高速光纤通信的传播过程中,也存在着诸多的损伤问题。针对问题来研究分析相关补偿技术具有重要的理论意义。 1高速光纤通信技术的分析 1.1光纤通信的基本原理 光纤的全称是光导纤维,其通信原理是首先将调制好的电信号通过光电转换模块转换为光信号之后,通过光波传输信息。不是单根光纤传输信息,而是许多根光纤聚集以光缆的形式来进行信息传输[1]。光纤通信系统的组成框图如图1所示。从图中可以看出,电信号通过光发射机、光纤接口、中继器、光接收机这三个模块,从而形成光纤通信系统;当数据需要通过光纤通信系统来进行数据传输时,首选需要将电信号转换为光信号,这个转换过程是在光发射机内进行的。光发射机内部主要是由光源和调制模块这两大部分组成,调制模块将电信号转换成光信号,再通过光源模块以光信号的形式发射出去。光纤接口主要是指物理接口即光电转换模块与光纤直接的接口,例如LC、FC、ST、SC等接口,由于光信号在传输的过程中存在衰减,中继器可以通过对光信号的重发或者转发,从而扩大整个通信系统的传输的距离。光接收机主要是完成光电信号的转换,光接收机内部包括光检测器、放大器、信号恢复这两个部分,光检测器主要是对接收到的光信号强度来进行检测,然后转换为电信号,放大器是对光检测器输出的电信号进行放大,信号恢复是对放大后的信号进行恢复成发送之前对应的逻辑1和0,信号恢复后的信号输出电信号给后级数字信号处理系统进行处理[2]。 1.2光纤通信的特征 光纤通信具有频带宽,传输容量大,损耗低,中继距离比较长,抗电磁干扰,安全性能高等特征。光纤通信的频带宽,可以传输宽频带的信息;光纤的损耗低,所以能实现长距离中继,主要适用于干线、长途网络;光纤通信不受外界电磁的影响,在抗电磁干扰方面具有显著的优势;光纤在传输过程中,密

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

北邮2017秋季光纤通信技术光纤通信技术阶段作业三

一、单项选择题(共20道小题,共100.0分) 1.激光器的P-I曲线随温度的变化而变化,从而导 致的变化。 A.波长 B.输出光功率 C.谱宽 D.频率啁啾 知识点: 半导体激光器 学生答 案: [B;] 得分: [5] 试题分 值: 5.0 提示: 2.为了使光纤通信系统稳定可靠地工作,希望激光器的阈值电 流。 A.越小越好 B.越大越好 C.不变 D.10mA 知识点: 半导体激光器 学生答 案: [A;] 得分: [5] 试题分 值: 5.0 提示: 3.受激辐射会产生一个。 A.菲涅尔现象 B.费米能级 C.全同光子 D.耦合模式 知识点: 激光器的物理基础 学生答 案: [C;]

得分: [5] 试题分 值: 5.0 提示: 4.费米能级E f可视为能级被电子占据的界限,它是反映物质中电子在各能级上 __________的参量。 A.分布 B.跃迁 C.辐射 D.放大 知识点: 激光器的物理基础 学生答 案: [A;] 得分: [5] 试题分 值: 5.0 提示: 5.在激光器中完成频率选择和反馈作用的 是。 A.光滤波器 B.泵浦源 C.光学谐振腔 D.增益物质 知识点: 激光器的工作原理 学生答 案: [C;] 得分: [5] 试题分 值: 5.0 提示: 6.构成激光器的三个基本组成部分是激活物质、泵浦源 和。 A.受激辐射 B.光学谐振腔 C.单模光纤 D.光量子

知识点: 激光器的工作原理学生答 案: [B;] 得分: [5] 试题分 值: 5.0 提示: 7.要想物质能够产生光放大,就必须使受激辐射作用受激吸 收。 A.小于等于 B.小于 C.大于 D.等于 知识点: 激光器的工作原理 学生答 案: [C;] 得分: [5] 试题分 值: 5.0 提示: 8.光电检测器在光纤通信系统中的主要任务 是。 A.将光信号转换为电信号 B.将电信号直接放大 C.将光信号直接放大 D.将电信号转换为光信号 知识点: 光电检测器 学生答 案: [A;] 得分: [5] 试题分 值: 5.0 提示: 9.为了使雪崩光电二极管APD正常工作,在其P-N结上应加__________。 A.高正向偏压 B.低正向偏压 C.低反向偏压

数字信号光纤通信技术分析方案

数字信号光纤通信技术实验的报告 预习要求 通过预习应理解以下几个问题: 1.数字信号光纤传输系统的基本结构及工作过程; 2.衡量数字通信系统有那两个指标?; 3.数字通信系统中误码是怎样产生的?; 4.为什么高速传输系统总是与宽带信道对应?; 5.引起光纤中码元加宽有那些因素?; 6.本实验系统数字信号光-电/电-光转换电路的工作原理; 7.为什么在数字信号通信系统中要对被传的数据进行编码和解码?; 8.时钟提取电路的工作原理。 目的要求 1.了解数字信号光纤通信技术的基本原理 2.掌握数字信号光纤通信技术实验系统的检测及调试技术 实验原理 一、数字信号光纤通信的基本原理 数字信号光纤通信的基本原理如图8-2-1示<图中仅画出一个方向的信道)。工作的基本过程如下:语音信号经模/数转换成8位二进制数码送至信号发送电路,加上起始位<低电平)和终止位<高电平)后,在发时钟TxC的作用下以串行方式从数据发送电路输出。此时输出的数码称为数据码,其码元结构是随机的。为了克服这些随机数据码出现长0或长1码元时,使接收端数字信号的时钟信息下降给时钟提取带来的困难,在对数据码进行电/光转换之前还需按一定规则进行编码,使传送至接收端的数字信号中的长1或长0码元个数在规定数目内。由编码电路输出的信号称为线路码信号。线路码数字信号在接收端经过光/电转换后形成的数字电信号一方面送到解码电路进行解码,与此同时也被送至一个高Q值的RLC谐振选频电路进行时钟提取. RLC谐振选频电路的谐振频率设计在线路码的时钟频率处。由时钟提取电路输出的时钟信号作为收时钟RxC,其作用有两个:1.为解码电路对接收端的线路码进行解码时提供时钟信号; 2.为数字信号接收电路对由解码电路输出的再生数据码进行码值判别时提供时钟信号。接收端收到的最终数字信号,经过数/模转换恢复成原来的语音信号。 图8-2-1数字信号光纤通信系统的结构框图 在单极性不归零码的数字信号表示中,用高电平表示1码元,低电平表示0码元。码元持续时间<亦称码元宽度)与发时钟TxC的周期相同。为了增大通信系统的传输容量,就要求提高收、发时钟的频率。发时钟频率愈高码元宽度愈窄。 由于光纤信道的带宽有限,数字信号经过光纤信道传输到接收端后,其码元宽度要加宽。加宽程度由光纤信道的频率特性和传输距离决定。单模光纤频带宽,多模光纤频带窄。因为按光波导理论[1]分析:光纤是一种圆柱形介质波导,光在其中传播时实际上是一群满足麦克斯韦方程和纤芯—包层界面处边界条件的电磁波,每个这样的电磁波称为一个模式。光纤中允许存在的模式的数量与纤芯半径和数字孔径有关。纤芯半径和数字孔径愈大,光纤中参与光信号传输的模式也愈多,这种光纤称为多模光纤<芯径50或62.5μm)。多模光纤中每个模式沿光纤轴线方向的传播速度都不相同。因此,在光纤信道的输入端同时激励起多个模式时,每个模式携带的光功率到达光纤信道终点的时间也不一样,从而引起了数字信号码元的加宽。码元加

毕业设计100光纤通信+课程设计报告

课程设计报告 课程名称光纤通信 课题名称通信系统综合实验 一、设计内容与设计要求 1、设计内容 1)多路数据+多路电话光纤综合传输系统的实现 2)多路数据+多计算机+单路图像/语音全双工光纤综合传输系统的实现3)*多路计算机+双路图像/语音全双工光纤综合传输系统的实现 2、设计目的 掌握变速率时分复用的原理、实现方法; 学习并掌握计算机RS232通信技术; 掌握时分复用技术和波分复用技术的灵活搭配使用; 实现数字和语音同时通信。 3、实验仪器与设备 1.光纤通信实验系统2台。 2.示波器1台。 3.波分复用器2个。 4.电话2部。 I

5.FC/FC光纤跳线2根。 6.计算机若干台串口通信电缆若干根。 7.1310nm/1550nm波长波分复用器2个。 8.摄像头1个。 9.监视器1个(或用电话代替)。 4、设计原理 《多路数据+多路电话光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、PCM编译码、波分复用等几个子系统,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十四、实验二十五、实验二十的方法; 《多路数据+多计算机+单路图像图像/语音全双工光纤综合传输系统》拟实现模拟图像、数据在同一光纤中传输。即在光纤中同时传输数字数据和模拟信号。一种解决方案综合了《光纤通信原理教学系统实验指导书》中的实验二十六、实验二十七、实验十六的知识; 《多路计算机+双路图像/语音全双工光纤综合传输系统》综合了固定速率时分复用、解固定速率时分复用、变速率时分复用、解变速率时分复用、位时钟提取(数字锁相环DPLL)原理及实现五个实验,具体的实验原理可以参看《光纤通信原理教学系统实验指导书》中的实验二十一、实验二十三、实验二十四、实验二十五、实验二十六、实验二十七。 5、设计要求 掌握结构化系统设计的主体思想,以自下而上逐步完善的方法实现指定的通信系统功能,并按要求测试相关参数、波形等实验数据,以积累一些典型的通信子系统的功能、性能、参数等知识以及系统集成的知识。 (1)在规定的时间内以小组为单位完成相关的系统功能实现、数据测试和记录并进行适当的分析。 (2)按本任务书的要求,编写《课程设计报告》(Word文档格式)。并用A4纸打印并装订; II

我国光纤通信技术论文.doc

我国光纤通信技术论文 2020年4月

我国光纤通信技术论文本文关键词:光纤通信,我国,论文,技术 我国光纤通信技术论文本文简介:1光纤通信技术的主要特点 1.1损耗低,传输距离远与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用 我国光纤通信技术论文本文内容: 1光纤通信技术的主要特点 1.1损耗低,传输距离远 与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用光纤通信。光纤通信在

长距离传输中的优势非常明显。目前光纤通信的最长通信距离达到10000m以上。 1.2抗干扰能力强 与其他光缆相比,光纤通信具有非常明显的优点———抗电磁干扰能力极强。光纤通信设备的主要成分是SiO 的应用给光纤通信技术带来无可比拟的优势。由于石英具有极强的抗腐蚀性和绝缘性,因此,应用到光纤通讯设备上使其同样具有较强的抗干扰能力。光纤通信不会受到太阳黑子活动、电离层变化、雷电以及人为释放的电磁等方面的干扰,这一特性使得光纤可以应用到军事领域中。 1.3安全性和保密性高 因为光纤主要依靠光波的全反射原理进行传输,光信号完全被限制在包层内,光波泄露的现象很少发生。而且一个光缆内的很多光纤线之间也不会相互干扰,因此,光通信的抗干扰能力很强,保密性和安全性非常高。此外,光纤的重量很轻、体积较小,这样既节省空间又使得设备的安装非常方便。另外,用来制作光纤通信设备的原材料越来越丰富,而且价格低廉,稳定性好,同时受环境温度影响小,使

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

对高速光纤通信技术的应用与分析

对高速光纤通信技术的应用与分析 [摘要] 光纤维通信技术从光通信中脱颖而出,已成为现代通信的主要之一。本文就光强度调制——直接检波(IM/DD)光纤传输方式的几个主要技术课题:高速光源、光调制器、光检波器、光放大器以及光纤色散均衡进行了讨论。 [关键词] 高速光纤通信光纤传输技术 1.前言 随着光器件和LIC技术的不断发展,有效地利用了光纤的 1.3㎛与1.55㎛的低损耗、低色散特性,使565Mbit/s和相当于565Mbit/s及其以下的光纤通信系统得到普及。1987年左右,1.7Gbit/s(美国)、1.6 Gbit/s(旧本)系统也投入实用。 超高速光纤通信的传输方式,除目前广泛应用的光强度调制——直接检波(IM/DD)外,还提出了相干光通信、波分复用、光FDM(光频分复用)及光孤子通信等。由于IM/DD光通信方式简单,调制、解调比较容易,对器件要求比较低,所以在研究速率更高、距离更长的新通信方式的同时,仍在探讨IM/DD的通信潜力。由于近几年来超高速光器件和光电集成器件的研制成功,特别是EDFA(掺饵光纤放大器)的出现,扩大了IM/DD方式的传输能力,在传输速率和传输距离方面,年年取得新进展。从目前发表的实验数据看,传输速率可达到20 Gbit/s以上,传输距离超过1万km(2.5 Gbit/s)。 2.高速光传输的主要技术问题 光纤通信的发展依赖于光纤通信技术的进步。目前,高速长距离IM/DD光纤传输系统的基本构成和低速率IM/DD光纤传输系统大致相同。光发送端主要由线路码型变换器和光调制器组成,光接收端由光解调器和线路码型反变换器组成。为了延长传输距离,线路中途往往采用3R中继器。在低速率IM/DD系统中,用一般的LD或LED光源就能完成光强度调制,用PIN或一般的APD完成光解调。 在Gbit/s级高速传输时,常用的光器件不再适用,要采用高速光发送器件和光接收器件及光外调制器。并且在发送和接收端以及光纤传输线路中,根据需要,应用数量不同的EDFA(掺饵光纤放大器)。高速长距离光纤通信系统的主要技术课题是:(l)克服单模光纤波长色散的影响,这是保证脉冲波形不变形的必要条件;(2)发送信号高功率输出;(3)提高接收灵敏度。具体地说,与以下几项技术有关。 2.1光调制技术 光调制是产生光信号的手段,高速光信号产生方法有两种,一是用载有信息的电信号直接调制单频激光器DFB一LD的光强度,即直接强度调制的方法,一是载

浅谈电信光纤通信技术

浅谈电信光纤通信技术 发表时间:2010-08-03T09:58:31.983Z 来源:《中小企业管理与科技》2010年5月上旬刊供稿作者:严晓明[导读] 近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。严晓明(中国电信股份有限公司惠州分公司)摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也 越来越为广泛。光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。关键词:光纤通信技术优势接入技术 0 引言 近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。 1 光纤通信技术定义 光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 2 光纤通信技术优势 2.1 频带极宽,通信容量大 光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十GHz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。 2.2 损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。 如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。 2.3 抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。 2.4 光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。 2.5 保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。 光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。 3 光纤接入技术 随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络A(ON)和无源光网络((PON。)采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。 现阶段,无源光网络P(ON)技术是实现FT-Tx的主流技术。典型的PON系统由局侧OLT光(线路终端)、用户侧ONUO/NT(光网络单元)以及ODN-OrgnizationDevelopment Network(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。 为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有FTB、FTTC,FTTCab和FTTH等不同的应用,统称FTTx。 FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了FTTH的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为FTTH在我国的发展创造了良好的条件。

相关主题
文本预览
相关文档 最新文档