当前位置:文档之家› 氨合成工段仿真实训讲义一、实验目的

氨合成工段仿真实训讲义一、实验目的

氨合成工段仿真实训讲义一、实验目的
氨合成工段仿真实训讲义一、实验目的

氨合成工段仿真实训讲义

一、实验目的

1、深入了解化工过程操作原理。提高学生对化工过程的开车、停车运行能力。 2 、掌握控制系统的投运和调整技术。

3 、提高对复杂化工过程动态运行的分析和决策能力。

4 、提高识别和排除事故的能力。

5 、科学的严格的考核与评价学生经过训练后所达到的操作水平和理论联系实际的能力。

二、 工艺原理

氨的合成是氨厂最后一道工序,任务是在适当的温度、压力和有催化剂存在的条件下,将经过精制的氢氮混和气直接合成为氨。然后将所生成的气体氨从未合成为氨的混和气体中冷凝分离出来,得到产品液氨,分离氨后的氢氮气体循环使用。

(一) 氨合成反应的特点

氨合成的化学反应式如下:

Q NH N 2

1H 23322+?+ 这一化学反应具有如下几个特点:

(1) 是可逆反应。即在氢气和氮气反应生成氨的同时,氨也分解成氢气和氮气。

(2) 是放热反应。在生成氨的同时放出热量,反应热与温度、压力有关。

(3) 是体积缩小的反应。

(4) 反应需要有催化剂才能较快的进行。

(二) 氨合成反应的化学平衡

氨合成反应的平衡常数p K 可表示为:

p K =)

N (p )H (P )NH (p 25.025.13? 式中p(NH 3)、p(H 2)、p(N 2)-----为平衡状态下氨、氢、氮的分压。

由于合成反应是可逆、放热、体积缩小的反应,根据平衡移动定律可知,降低

温度,提高压力,平衡向生成氨的方向移动,平衡常数增大。所以,在实际生产中,氨的合成反应均在加压下进行。

(三) 氨合成动力学

(1)反应机理

氮与氢自气相空间向催化剂表面接近,其绝大部分自外表面向催化剂毛细孔的

内表面扩散,并在表面上进行活性吸附。吸附氮与吸附氢及气相氢进行化学反应,一次生成NH 、NH 2、、NH 3。后者至表面脱附后进入气相空间。可将整个过程表示如下:

)(2N H )(2N H )(2N H )2N H ()()(N 33H22H2H222气相吸附吸附吸附吸附气相脱吸气相中的气相中的气相中的??→?????→?????→

?????→?→N

在上述反应过程中,当气流速度相当大,催化剂粒度足够小时,外扩散光和内

扩散因素对反应影响很小,而在铁催化剂上吸附氮的速度在数值上很接近于合成氨的速度,即氮的活性吸附步骤进行的最慢,是决定反应速度的关键。这就是说按得合成反应速度是由氮的吸附速度所控制的。

(2)反应速度

反应速度是以单位时间内反应物质浓度的减少量或生成物质浓度的增加量来

表示。在工业生产中,不仅要求获得较高的氨含量,同时还要求有较快的反应速度,以便在单位时间内有较多的氢和氮合成为氨。

根据氮在催化剂表面上的活性吸附是氨合成过程的控制步骤、氮在催化剂表面

成中等覆盖度、吸附表面很不均匀等条件,捷姆金和佩热夫导得的速度方程式如下:

)

()()()()(W 25.132325.121H p NH p k NH p H p N p k -= W-----反应的瞬时总速度,为正反应和逆反应速度之差

1k 、2k ----正、逆反应速度常数

)NH (P )N (P )H (p 322、、----为氢、氮、氨气体的分压。

(3)内扩散的影响

当催化剂的颗粒直径为1mm时,内扩散速度是反应速度的百倍以上,故内扩散的影响可忽略不计。但当半径大于5mm时,内扩散速度已经比反应速度慢,其影响就不能忽视了。催化剂毛细孔的直径愈小和毛细孔愈长(颗粒直径愈大),则内扩散的影响愈大。

实际生产中,在合成塔结构和催化层阻力允许的情况下,应当采用粒度较小的催化剂,以减小内扩散的影响,提高内表面利用率,加快氨的生成速度。

三、装置概况

(一)工艺流程简述

1、合成系统

从甲烷化来的新鲜气(40℃、2.6Mpa、H2/N2=3:1)先经压缩前分离罐(104-F)进合成气压缩机(103-J)低压段,在压缩机的低压缸将新鲜气体压缩到合成所需要的最终压力的二分之一左右,出低压段的新鲜气先经106-C用甲烷化进料气冷却至93.3℃,再经水冷器(116-C)冷却至38℃,最后经氨冷器(129-C)冷却至7℃,后与氢回收来的氢气混合进入中间分离罐(105-F),从中间分离罐出来的氢氮气再进合成气压缩机高压段。

合成回路来的循环气与经高压段压缩后的氢氮气混合进压缩机循环段,从循环段出来的合成气进合成系统水冷器(124-C)。高压合成气自最终冷却器124-C出来后,分两路继续冷却,第一路串联通过原料气和循环气一级和二级氨冷器117-C和118-C 的管侧,冷却介质都是冷冻用液氨,另一路通过就地的MIC-23节流后,在合成塔进气和循环气换热器120-C的壳侧冷却,两路会合后,又在新鲜气和循环气三级氨冷器119-C中用三级液氨闪蒸槽112-F来的冷冻用液氨进行冷却,冷却至-23.3℃。冷却后的气体经过水平分布管进入高压氨分离器(106-F),在前几个氨冷器中冷凝下来的循环气中的氨就在106-F中分出,分离出来的液氨送往冷冻中间闪蒸槽(107-F)。从氨分离器出来后,循环气就进入合成塔进气--新鲜气和循环气换热器120-C的管侧,从壳侧的工艺气体中取得热量,然后又进入合成塔进气--出气换热

器(121-C)的管侧,再由HCV-11控制进入合成塔(105-D),在121-C管侧的出口处分析气体成分。

SP-35是一专门的双向降爆板装置,是用来保护121-C的换热器,防止换热器的一侧卸压导致压差过大而引起破坏。

合成气进气由合成塔105-D的塔底进入,自下而上地进入合成塔,经由MIC-13直接到第一层触媒的入口,用以控制该处的温度,这一近路有一个冷激管线,和两个进层间换热器付线可以控制第二、第三层的入口温度必要时可以分别用MIC-14、15和16进行调节。气体经过最底下一层触媒床后,又自下而上地把气体导入内部换热器的管侧,把热量传给进来的气体,再由105-D的顶部出口引出。

合成塔出口气进入合成塔--锅炉给水换热器123-C的管侧,把热量传给锅炉给水,接着又在121-C的壳侧与进塔气换热而进一步被冷却,最后回到103-J高压缸循环段(最后一个叶轮)而完成了整个合成回路。

合成塔出来的气体有一部分是从高压吹出气分离缸108-F经MIC-18调节并用Fl-63指示流量后,送往氢回收装置或送往一段转化炉燃料气系统。从合成回路中排出气是为了控制气体中的甲烷化和氩的浓度,甲烷和氩在系统中积累多了会使氨的合成率降低。吹出气在进入分离罐108-F以前先在氨冷器125-C冷却,由108-F 分出的液氨送低压氨分离器107-F回收。

合成塔备有一台开工加热炉(102-B),它是用于开工时把合成塔引温至反应温度,开工加热炉的原料气流量由FI-62指示,另外,它还设有一低流量报警器FAL-85与FI-62配合使用,MIC-17调节102-B燃料气量。

2、冷冻系统

合成来的液氨进入中间闪蒸槽(107-F),闪蒸出的不凝性气体通过PICA-8排出作为燃料气送一段炉燃烧。分离器107-F装有液面指示器LI-12。液氨减压后由液位调节器LICA-12调节进入三级闪蒸罐(112-F)进一步闪蒸,闪蒸后作为冷冻用的液氨进入系统中。冷冻的一、二、三级闪蒸罐操作压力分别为:0.4MPa(G)、0.16MPa(G)、0.0028MPa(G),三台闪蒸罐与合成系统中的第一、二、三氨冷器相对应,它们是按

热虹吸原理进行冷冻蒸发循环操作的。液氨由各闪蒸罐流入对应的氨冷器,吸热后的液氨蒸发形成的气液混合物又回到各闪蒸罐进行气液分离,气氨分别进氨压缩机(105-J)各段气缸,液氨分别进各氨冷器。

由液氨接收槽(109-F)来的液氨逐级减压后补入到各闪蒸罐。一级闪蒸罐(110-F)出来的液氨除送第一氨冷器(117-C)外,另一部分作为合成气压缩机(103-J)一段出口的氨冷器(129-C)和闪蒸罐氨冷器(126-C)的冷源。氨冷器(129-C)和(126-C)蒸发的气氨进入二级闪蒸罐(111-F),110-F多余的液氨送往111-F。111-F的液氨除送第二氨冷器(118-C)和弛放气氨冷器(125-C)作为冷冻剂外,其余部分送往三级闪蒸罐(112-F)。112-F的液氨除送119-C外,还可以由冷氨产品泵(109-J)作为冷氨产品送液氨贮槽贮存。

由三级闪蒸罐(112-F)出来的气氨进入氨压缩机(105-J)一段压缩,一段出口与111-F来的气氨汇合进入二段压缩,二段出口气氨先经压缩机中间冷却器(128-C)冷却后,与110-F来的气氨汇合进入三段压缩,三段出口的气氨经氨冷凝器(127-CA、CB),冷凝的液氨进入接收槽(109-F)。109-F中的闪蒸气去闪蒸罐氨冷器(126-C),冷凝分离出来的液氨流回109-F,不凝气作燃料气送一段炉燃烧。109-F中的液氨一部分减压后送至一级闪蒸罐(110-F),另一部分作为热氨产品经热氨产品泵(1-3P-1,2)送往尿素装置。

四、装置冷态开工过程

(一)、合成系统开车

1.投用LSH109(104-F液位高联锁),LSH111(105-F液位高联锁)(辅助控制盘画

面)

2.打开SP71(合成工段现场),把工艺气引入104-F,PIC-182(合成工段DCS)设

置在2.6Mpa投自动

3.显示合成塔压力的仪表换为低量程表○L(合成工段现场合成塔旁)

4.投用124-C(图1合成工段现场开阀VX0015进冷却水),123-C(图1合成工段现

场开阀VX0016进锅炉水预热合成塔塔壁) ,116-C(合成工段现场开阀VX0014),打开阀VV077,VV078投用SP35(在图1合成工段现场合成塔底右部进口处)。

5.按103-J复位(辅助控制盘画面),然后启动103-J(合成工段现场启动按钮),

开泵117-J注液氨(在冷冻系统图的现场画面)

6.开MIC23,HCV11,把工艺气引入合成塔105-D,合成塔充压(合成工段现场图)

7.逐渐关小防喘振阀FIC7,FIC8,FIC14

8.开SP1付线阀VX0036均压后(一小段时间),开SP1,开SP72(在合成塔现场

图画面上)及SP72前旋塞阀VX0035(合成塔现场图)

9.当合成塔压力达到1.4Mpa时换高量程压力表○H(现场图合成塔旁)

10.关SP1付线阀VX0036,关SP72及前旋塞阀VX0035,关HCV-11

11.开PIC-194设定在10.5MPa,投自动(108-F出口调节阀)

12.开入102-B旋塞阀VV048,开SP70。

13.开SP70前旋塞阀VX0034,使工艺气循环起来。

14.打开108-F顶MIC18阀(开度为100(合成现场图)

15.投用102-B联锁FSL85(辅助控制盘画面)

16.打开MIC17(合成塔系统图)进燃料气,102-B点火(合成现场图),合成塔开

始升温

17.开阀MIC14调节合成塔中层温度,开阀MIC15,MIC16,控制合成塔下层温度,(合

成塔现场图)

18.停泵117-J,停止向合成塔注液氨

19.PICA8设定在1.68MPa投自动。(冷冻工段DCS图)

20.LICA14设定在50%投自动,LICA13设定在40%投自动。(合成工段DCS图)

21.当合成塔入口温度达到反应温度380时,关MIC17,102-B熄火,同时打开阀门

HCV11预热原料气。

22.关入102-B旋塞阀VV048,现场打开氢气补充阀VV060。

23.开MIC13进冷激起调节合成塔上层温度

24.106-F液位LICA-13达50%时,开阀LCV13,把液氨引入107-F

(二)、冷冻系统开车

1.投用LSH116(110-F液位高联锁),LSH118(111-F液位高联锁),LSH120(112-F液

位高联锁),PSH840,841联锁(辅助控制盘);

2.投用127-C (冷冻系统现场开阀VX0017进冷却水);

3.打开109-F充液氨阀门VV066,建立80%液位(LICA15 至80%)后关充液阀;

4.PIC7设定值为1.4MPa,投自动;

5.开三个制冷阀(在现场图开阀VX0005,VX0006,VX0007);

6.按105-J复位按钮,然后启动105-J(在现场图开启动按钮),开出口总阀

VV084。)

7.开127-C壳侧排放阀VV067 ;

8.开阀LCV15(打开LICA15)建立110-F液位

9.开出129-C的截止阀VV086 (在现场图)

10.开阀LCV16(打开LICA16)建立111-F液位,开阀LCV18(LICA18)建立112-F

液位;

11.投用125-C(打开阀门VV085)

12.当107-F有液位时开MIC24,向111-F送氨

13.开LCV-12(开LICA12)向112-F送氨

14.关制冷阀(在现场图关阀VX0005,VX0006,VX0007)

15.当112-F液位达20%时,启动109-J/JA向外输送冷氨

16.当109-F液位达50%时,启动1-3P-1/2向外输送热氨

(三)正常操作的工艺参数

合成岗位主要指标

A

B、重要压力设计值

C、重要流量设计值

五、装置正常停工过程

(一)合成系统停车

1、关阀MIC18弛放气 (合成工段现场图 108-F顶)

2、停泵1-3P-1/2 (冷冻工段现场图)

3、工艺气由MIC-25放空(图1),103-J降转速(此处无需操作)

4、依次打开FCV14,FCV8,FCV7,注意防喘振

5、逐关MIC14,MIC15,MIC16,合成塔降温

6、106-F液位 LICA-13降至5%时,关LCV-13

7、108-F液位 LICA-14降至5%时,关LCV-14

8、关SP1,SP70

9、停125-C,129-C (冷冻工段现场图现场关阀VV085,VV086)

10、停103-J

(二)冷冻系统停车

1、渐关阀FV11,105-J降转速(此处无需操作)

2、关MIC-24

3、107-F液位LICA-12降至5%时关LCV-12

4、现场(冷冻工段现场图)开三个制冷阀VX0005,VX0006,VX0007,提高温度,蒸

发剩余液氨

5、待112-F液位LICA-19降至5%时,停泵109-JA/B

6、停105-J

六、实训操作界面

(一)、DCS用户画面设计

1.DCS画面的颜色、显示及操作方法均与真实DCS系统保持一致,

2.一般调节阀的流通能力按正常开度为50%设计

(二)、现场操作画面设计

1.现场操作画面设计说明:

(1)现场操作画面是在DCS画面的基础上改进而完成的,大多数现场操作画面都有与之对应的DCS流程图画面。

(2)现场画面均以C字母作为结束符。

(3)现场画面上光标变为手形处为可操作点。

(4)现场画面上的模拟量(如手操阀)、开关量(如开关阀和泵)的操作方法与DCS画面上的操作方法相同。

(5)一般现场画面上红色的阀门、泵及工艺管线表示这些设备处于“关闭”状态,绿色表示设备处于“开启”状态。

(6)单工段运行时,对换热器另一侧物流的控制通过在现场画面上操作该换热器来实现;全流程运行时,换热器另一侧的物流由在其它工段进行的操作来控制。冷却水及蒸汽量的控制在各种情况下均在现场画面上完成。

2.现场画面列表:

参考书目:

1.《化工仿真-实训与指导》(第二版) 杨百梅化学工业出版社(2010)2.《化工仿真实习指南》吴重光化学工业出版社(1999)

合成氨变换工段车间布置图Word版

摘要 变换工段是指一氧化碳与水蒸气反应生成二氧化碳和氢气的过程。一氧化碳变换既是原料气的净化过程,又是原料气制备的继续。目前,变换工段主要采用中变串低变的工艺流程。本设计针对中低温串联变换流程进行设计,对流程中各个设备进行物料、能料衡算、以及设备选型,并绘制了带控制点的流程图。 关键词:合成氨,变换,工艺设计,设备选型

30kt/a Retention Of Ammonia Synthesis Process Preliminary Design Abstact Transform section refers to the reactions that produce carbon dioxide carbon monoxide and hydrogen and water vapor in the process. Carbon monoxide transformation is the gas material purification process, and the preparation of gas material to continue. At present, the transformation mainly by grow string sections of variable process low. This design of low-temperature series transformation process of process design, materials, each device can material calculation, and the equipment selection, and plotted take control in the flow chart and variable furnace equipment assembly drawing. Keywords:ammonia, transformation, process design,equipment choice

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

年产五万吨合成氨合成工段工艺设计设计

年产五万吨合成氨合成工段工艺设计设计

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (2) 1.1 氨的基本用途 (2) 1.2 合成氨技术的发展趋势 (2) 1.3 合成氨常见工艺方法 (2) 1.3.1 高压法 (2) 1.3.2 中压法 (2) 1.3.3 低压法 (2) 1.4 设计条件 (2) 1.5 物料流程示意图 (2) 2 物料衡算 (2) 2.1 合成塔入口气组成 (2) 2.2 合成塔出口气组成 (2) 2.3 合成率计算 (2) 2.4 氨分离器出口气液组成计算 (2) 2.5 冷交换器分离出的液体组成 (2) 2.6 液氨贮槽驰放气和液相组成的计算 (2) 2.7 液氨贮槽物料衡算 (2) 2.8 合成循环回路总物料衡算 (2) 3 能量衡算 (2) 3.1 合成塔能量衡算 (2) 3.2废热锅炉能量衡算 (2) 3.3 热交换器能量衡算 (2) 3.4 软水预热器能量衡算 (2) 3.5 水冷却器和氨分离器能量衡算 (2) 3.6 循环压缩机能量衡算 (2) 3.7 冷交换器与氨冷器能量衡算 (2) 3.8 合成全系统能量平衡汇总 (2) 4 设备选型及管道计算 (2) 4.1 管道计算 (2) 4.2 设备选型 (2) 结论 (2) 致谢 (2) 参考文献 (2)

年产五万吨合成氨合成工段工艺设计 摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步 骤,上述基本步骤组合成为氨合成循环反应的工艺流程。其中氨合成工 段是合成氨工艺的中心环节。新鲜原料气的摩尔分数组成如下:H 2 73.25%,N 2 25.59%, CH 4 1.65%,Ar 0.51%合成操作压力为31MPa, 合成塔入口气的组成为NH 3(3.0%),CH 4 +Ar(15.5%),要求合成塔出口气中 氨的摩尔分数达到17%。通过查阅相关文献和资料,设计了年产五万吨 合成氨厂合成工段的工艺流程,并借助CAD技术绘制了该工艺的管道及 仪表流程图和设备布置图。最后对该工艺流程进行了物料衡算、能量衡 算,并根据设计任务及操作温度、压力按相关标准对工艺管道的尺寸和 材质进行了选择。 关键词:物料衡算,氨合成,能量衡算

化工单元操作仿真实训总结

化工单元操作仿真实训总结

————————————————————————————————作者:————————————————————————————————日期:

化 工 单 元 操 作 仿 真 实 训 总 结 姓名:XX 班级;XX班 学号:XXXX

目录 一、实训内容 1、精馏塔仿真 2、液位控制仿真 3、吸收解吸仿真 4、萃取仿真 5、灌区仿真 6、真空仿真二、仿真总结

一、实训内容 1、精馏塔仿真 1.1操作原理: 精馏原理精馏操作迫使混合物的气、液两相在精馏塔体中作逆向流动,在互相接触过程中,液相中的轻组分逐渐转入气相,而气相中的重组分则逐渐进入液相。精馏过程本质上是一种传质过程,也伴随着传热。在恒定压力下,对单组分液体在沸腾时继续加热,其温度保持不变。但对于多组分的理想溶液来说,在恒定压力下,沸腾溶液的温度却是可变的。一般而言,在恒定压力下,溶液气液相平衡与其组分有关。高沸点组分的浓度越高,溶液平衡温度越高。与纯物质的气液平衡相比较,溶液气液平衡的一个特点是:在平衡态下,气相浓度与液相浓度是不相同的。一般情况下,气相中的低沸点组分的浓度高于它在液相中的数值.对于纯组分的气液相平衡,把恒定压力下的平衡温度称为该压力下的沸点或冷凝点。但对于处在相平衡的溶液,则把平衡温度称为在该压力下某气相浓度的露点温度或对应的液相浓度的泡点温度。对于同一气相和液相来说,露点温度与泡点一般是不相等的,前者比后者高。 1.2工艺流程: 进料及排放不凝气 启动再沸器 建立回流 调整至正常 1.3仿真图:

2、液位控制仿真 2.1操作原理: 缓冲罐V101仅一股来料,8Kg/cm2压力的液体通过调节产供阀FIC101向罐V101充液,此罐压力由调节阀PIC101分程控制,缓冲罐压力高于分程点(5.0Kg/cm2)时,PV101B自动打开泄压,压力低于分程点时,PV101B 自动关闭,PV101A自动打开给罐充压,使V101压力控制在5Kg/cm2。缓冲罐V101液位调节器LIC101和流量调节阀FIC102串级调节,一般液位正常控制在50%左右,自V101底抽出液体通过泵P101A或P101B(备用泵)打入罐V102,该泵出口压力一般控制在9Kg/cm2,FIC102流量正常控制在20000Kg/hr。 罐V102有两股来料,一股为V101通过FIC102与LIC101串级调节后来的流量;另一股为8Kg/cm2压力的液体通过调节阀LIC102进入罐V102,一般V102液位控制在50%左右,V102底液抽出通过调节阀FIC103进入V103,正常工况时FIC103的流量控制在30000 kg/hr。 罐V103也有两股进料,一股来自于V102的底抽出量,另一股为8kg/cm 2压力的液体通过FIC103与FI103比值调节进入V103,比值系数为2:1,V103底液体通过LIC103调节阀输出,正常时罐V103液位控制在50%左右。2.2工艺流程: 缓冲罐V-101充压及液位建立 中间罐V-102液位建立 产品罐V-103建立液位 2.3、仿真图:

生产管理--年产五万吨合成氨变换工段工艺初步 精品

四川理工学院 毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业无机化工 011 指导教师 教研室主任 学生姓名 接受任务日期 20XX年2月28日 完成任务日期 20XX年6月1日

四川理工学院 毕业论文任务书 材料与化学工程系无机化工专业2001-1 班题目年产五万吨合成氨变换工段工艺初步设计 起迄日期20XX年 2 月25 日起至20XX 年 6 月1日止 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期20XX 年 2 月25 日 接受任务日期20XX 年 2 月25 日 完成任务日期20XX 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 及致谢 (35)

合成氨仿真实习报告

合成氨仿真实习报告 篇一:合成氨仿真实习报告 南京工业大学 城建学院 仿真实习报告书 刘皓 28 安全工程系 化学化工实验教学中心 XX年10月 合成仿真实习报告 30万吨合成氨装置模型照片 一、实习的目的 合成仿真实习是理论联系实际,应用和所学专业知识的一项重要环节,是培养我们动手能力和学习能力的一个重要手段。仿真实习是以仿真的实习模式,在既保证学生安全又能完美提供实习机会的情况下,学校给予我们的一次专业实践的机会。是我们在学习专业知识后进行实际运用的重要环节,它对培养我们的动手能力有很大的意义,同时也能使我们了解化工工艺的重点要素,仿真实习是我们走向工作岗位的必要前提。

二、实习要求 1.实习装置为合成氨生产仿真装置。要求了解并熟悉生产过程及控制,包括: 1)生产方法和原理,原料、催化剂及产品特性; 2)生产工艺流程(流程中设备、主副管线,过程操作和控制); 3)各工序工艺条件及控制:主要设备操作温度、压力和组成; 4)主要设备型式、结构; 5)主要设备及管线上的控制仪表及调节方法。 2.搜集信息途径 1)听讲座(拟安排工艺及设备、仿真装置及操作等讲座); 2)现场实习:熟悉工艺流程、设备、及仿真软件操作,熟悉仿真模型; 3)阅读实习指导书、流程图、设备图及其它文献资料。 三、实习内容 仿真实习的主要内容是:以河南化肥厂为原型的大型合成氨全流程仿真模型和以宁夏化工厂为原型的合成氨大工段DCS控制系统仿真软件。两者均以天然气为原料的合成氨工艺,通过仿真实习了解合成氨工艺原理与流程,掌握合成

氨生产中的主要参数和DCS控制系统的操作。 以下为东方仿真软件的合成氨工艺流程。 (1) 合成氨装置转化工段 1 概述 转化工段包括下列主要部分: 原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。 2 原料气脱硫 天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。因此,必须尽可能地除去原料气中的各种硫化物。 加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。 在采用钴钼催化剂的条件下,主要进行如下反应: R-SH+H2=RH+H2S R-S-R’+2H2=RH+R’H+H2S C4H4S+4H2=C4H10+H2S RC=CR’+H2=RCH2-CH2R’

年产40万吨合成氨合成工段工艺设计

目录 摘要 (3) ABSTRACT (4) 第一章总论 (5) 1.1 概述 (5) 1.2 氨的性质 (5) 1.2.1 氨的物理性质 (5) 1.2.2氨的化学性质 (6) 1.3 原料气来源 (6) 1.4 文献综述 (6) 1.4.1 合成氨工业的发展 (7) 1.4.2我国合成氨工业的现状 (7) 1.4.3合成氨工业的发展趋势 (7) 1.5 设计任务的项目来源 (8) 第二章流程方案的确定 (9) 2.1生产原理 (9) 2.2各生产方法及特点 (9) 2.3工艺条件的选择 (10) 2.4合成塔进口气的组成 (11) 第三章工艺流程简述 (13) 3.1 合成工段工艺流程简述 (13) 3.2 工艺流程方框图 (14) 第四章工艺计算 (15) 4.1 物料衡算 (15) 4.1.1设计要求 (15) 4.1.2计算物料点流程图 (16) 4.1.3合成塔入口气组分 (16) 4.1.4合成塔出口气组分 (17) 4.1.5合成率 (18)

4.1.6氨分离器气液平衡计算 (18) 4.1.7冷交换器气液平衡计算 (20) 4.1.8液氨贮槽气液平衡计算 (21) 4.1.9合成系统物料计算 (24) 4.1.10合成塔物料计算 (25) 4.1.11水冷器物料计算 (26) 4.1.12氨分离器物料计算 (27) 4.1.13冷交换器物料计算 (27) 4.1.15氨冷器物料计算 (30) 4.1.17液氨贮槽物料计算 (30) 4.2 热量衡算 (30) 4.2.1冷交换器热量计算 (30) 4.2.2 氨冷凝器热量衡算 (33) 4.2.3循环机热量计算 (33) 4.2.4合成塔热量衡算 (35) 4.2.5废热锅炉热量计算 (37) 4.2.6热交换器热量计算 (38) 4.2.7水冷器热量衡算 (39) 第五章设备选型及设计计算 (40) 5.1 合成塔催化剂层设计 (40) 5.2 废热锅炉设备工艺计算 (42) 5.2.1计算条件 (42) 5.2.2管内给热系数的计算 (42) 5.2.3管外给热系数 (46) 5.2.4传热总系数K (46) 5.2.5传热温差 (47) 5.2.6传热面积 (47) 参考文献 (50) 致谢 (51)

化工单元操作仿真实训总结

化 工 单 元 操 作 仿 真 实 训 总 结 姓名:XX 班级;XX班 学号:XXXX

目录 一、实训内容 1、精馏塔仿真 2、液位控制仿真 3、吸收解吸仿真 4、萃取仿真 5、灌区仿真 6、真空仿真 二、仿真总结

一、实训内容 1、精馏塔仿真 操作原理: 精馏原理精馏操作迫使混合物的气、液两相在精馏塔体中作逆向流动,在互相接触过程中,液相中的轻组分逐渐转入气相,而气相中的重组分则逐渐进入液相。精馏过程本质上是一种传质过程,也伴随着传热。在恒定压力下,对单组分液体在沸腾时继续加热,其温度保持不变。但对于多组分的理想溶液来说,在恒定压力下,沸腾溶液的温度却是可变的。一般而言,在恒定压力下,溶液气液相平衡与其组分有关。高沸点组分的浓度越高,溶液平衡温度越高。与纯物质的气液平衡相比较,溶液气液平衡的一个特点是:在平衡态下,气相浓度与液相浓度是不相同的。一般情况下,气相中的低沸点组分的浓度高于它在液相中的数值.对于纯组分的气液相平衡,把恒定压力下的平衡温度称为该压力下的沸点或冷凝点。但对于处在相平衡的溶液,则把平衡温度称为在该压力下某气相浓度的露点温度或对应的液相浓度的泡点温度。对于同一气相和液相来说,露点温度与泡点一般是不相等的,前者比后者高。 工艺流程: 进料及排放不凝气 启动再沸器 建立回流 调整至正常 仿真图:

操作原理: 缓冲罐V101仅一股来料,8Kg/cm2压力的液体通过调节产供阀FIC101向罐V101充液,此罐压力由调节阀PIC101分程控制,缓冲罐压力高于分程点(5.0Kg/cm2)时,PV101B自动打开泄压,压力低于分程点时,PV101B自动关闭,PV101A自动打开给罐充压,使V101压力控制在5Kg/cm2。缓冲罐V101液位调节器LIC101和流量调节阀FIC102串级调节,一般液位正常控制在50%左右,自V101底抽出液体通过泵P101A或P101B(备用泵)打入罐V102,该泵出口压力一般控制在9Kg/cm2,FIC102流量正常控制在20000Kg/hr。 罐V102有两股来料,一股为V101通过FIC102与LIC101串级调节后来的流量;另一股为8Kg/cm2压力的液体通过调节阀LIC102进入罐V102,一般V102液位控制在50%左右,V102底液抽出通过调节阀FIC103进入V103,正常工况时FIC103的流量控制在30000 kg/hr。 罐V103也有两股进料,一股来自于V102的底抽出量,另一股为8kg/cm2压力的液体通过FIC103与FI103比值调节进入V103,比值系数为2:1,V103底液体通过LIC103调节阀输出,正常时罐V103液位控制在50%左右。 工艺流程: 缓冲罐V-101充压及液位建立 中间罐V-102液位建立 产品罐V-103建立液位 、仿真图:

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

实习报告合成氨仿真

南京工业大学 合成氨仿真实习报告书 学院:城市建设与安全工程学院班级、学号:安全1905090323 姓名(签名): 2011年11 月

1 实习目的 仿真实习是认识实习实习计划的组成部分,通过实习使学生了解化工生产一般特点、规律和工艺参数的控制,获得化工生产实践知识,培养运用化工专业理论知识,分析和解决实际问题的能力,为今后毕业论文(设计)和所从事的化工实际工作打下良好的实践基础。 2 实习要求 1.实习装置为合成氨生产仿真装置。要求了解并熟悉生产过程及控制,包括: 1)生产方法和原理,原料、催化剂及产品特性; 2)生产工艺流程(流程中设备、主副管线,过程操作和控制); 3)各工序工艺条件及控制:主要设备操作温度、压力和组成; 4)主要设备型式、结构; 5)主要设备及管线上的控制仪表及调节方法。 2.搜集信息途径 1)听讲座(拟安排工艺及设备、仿真装置及操作等讲座); 2)现场实习:熟悉工艺流程、设备、及仿真软件操作,熟悉仿真模型; 3)阅读实习指导书、流程图、设备图及其它文献资料。 3 实习内容 仿真实习的主要内容是:以河南化肥厂为原型的大型合成氨全流程仿真模型和以宁夏化工厂为原型的合成氨大工段DCS控制系统仿真软件。两者均以天然气为原料的合成氨工艺,通过仿真实习了解合成氨工艺原理与流程,掌握合成氨生产中的主要参数和DCS控制系统的操作。

3.1 合成氨装置转化工段 1、概述 转化工段包括下列主要部分: 原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。 2、原料气脱硫 天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。因此,必须尽可能地除去原料气中的各种硫化物。 加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。 在采用钴钼催化剂的条件下,主要进行如下反应: R-SH+H2=RH+H2S R-S-R’+2H2=RH+R’H+H2S C4H4S+4H2=C4H10+H2S RC=CR’+H2=RCH2-CH2R’ 氧化锌是一种内表面积颇大,硫容较高的接触反应型脱硫剂。除噻吩及其衍生物外,脱除硫化氢及各种有机硫化物的能力极高,可将出口气中硫含量降至0.1PPm以下。 氧化锌脱硫反应:ZnO+H2S=ZnS+H2O 原料天然气在原料气预热器(141-C)中被低压蒸汽预热后,进入活性碳脱硫槽(101-DA、102-DA一用一备),进行初脱硫后,经压缩机(102-J)加压。在一段炉对流段低温段加热到230℃左右与103-J段来的氢混合后进入Co -Mo加氢和氧化锌脱硫槽(108-D)终脱硫后,天然气中的总硫≤0.1ppm。 3、原料气的一段蒸汽转化 经脱硫后的原料气的总硫含量降至0.1PPm以下,与水蒸汽混合后进行转化反应:

(工艺技术)合成氨工艺简介

合成氨工艺控制方案总结 一合成氨工艺简介 中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示: 该装置主要的控制回路有:(1)洗涤塔液位; (2)洗涤气流量; (3)合成塔触媒温度; (4)中置锅炉液位; (5)中置锅炉压力; (6)冷凝塔液位; (7)分离器液位; (8)蒸发器液位。 其中触媒温度控制可采用全系数法自适应控制,其他回路采用PID控制。 二主要控制方案 (一)造气工段控制 工艺简介: 固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时间里具体分为五个阶段;(1)吹风阶段约37s;(2)上吹阶段约39s;(3)下吹阶段约56s;(4)二上吹阶段约12s;(5)吹净阶段约6s. l、吹风阶段 此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低, 时间过长,炉温过高;时间过短,炉温偏低并且都影响发气量,炉温主要由这一阶段控制。般工艺要求此阶段的操作时间约为整个循环周期的18%左右。 2、上吹加氮制气阶段 在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调节H2/N2的主要手段。但是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。 3、上吹制气阶段 该阶段与上吹加氯制气总时间为整个循环的32%,随着上吹制气的进行下部炉温逐渐下降,为了保证炉况和提高发气量,在此阶段蒸汽的流量最好能得以控制。 4、下吹制气阶段 为了充分地利用炉顶部高温、提高发气量,下吹制气也是很重要的一个阶段。这段时间

年产5万吨合成氨变换工段工艺初步讲解

毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业 指导教师 教研室主任 学生姓名 接受任务日期 完成任务日期

四川理工学院 毕业论文任务书 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期2005 年 2 月25 日接受任务日期2005 年 2 月25 日完成任务日期2005 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 参考文献及致谢 (35)

合成氨仿真实习报告

氨合成仿真实习报告 一、实习目的及意义 仿真实习是毕业实习计划的组成部分,通过实习使学生了解化工生产一般特点、规律和工艺参数的控制,获得化工生产实践知识,培养运用化工专业理论知识,分析和解决实际问题的能力,为今后毕业论文(设计)和所从事的化工实际工作打下良好的实践基础。 二、合成氨工艺原理与流程 (1) 合成氨装置转化工段 1 概述 转化工段包括下列主要部分: 原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。 2 原料气脱硫 天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。因此,必须尽可能地除去原料气中的各种硫化物。 加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。 在采用钴钼催化剂的条件下,主要进行如下反应: R-SH+H2=RH+H2S R-S-R’+2H2=RH+R’H+H2S C 4H 4 S+4H 2 =C 4 H 10 +H 2 S RC=CR’+H 2=RCH 2 -CH 2 R’ 氧化锌是一种内表面积颇大,硫容较高的接触反应型脱硫剂。除噻吩及其衍生物外,脱除硫化氢及各种有机硫化物的能力极高,可将出口气中硫含量降至0.1PPm以下。 氧化锌脱硫反应:ZnO+H 2S=ZnS+H 2 O 原料天然气在原料气预热器(141-C)中被低压蒸汽预热后,进入活性碳脱硫槽(101-DA、102-DA一用一备),进行初脱硫后,经压缩机(102-J)加压。在一段炉对流段低温段加热到230℃左右与103-J段来的氢混合后进入Co-Mo加氢和氧化锌脱硫槽(108-D)终脱硫后,天然气中的总硫≤0.1ppm。

合成氨生产工艺介绍

1、合成氨生产工艺介绍 1)造气工段 造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。

脱硫工艺流程图 3)变换工段 变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。河南中科化工有限责任公司采用的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常 压的解吸气经阻火器排入大气。

小合成氨厂低温变换工段工艺设计资料

《化工工艺设计任务书》

变换工艺设计说明书 设计题目小合成氨厂低温变换工段工艺设计 课题来源小合成氨厂低温变换工段工艺设计变换工段化学工艺设计标准变换工段在合成氨生产起的作用既是气体净化工序,又是原料气的再制造工序,经过变换工段后的气体中的CO含量大幅度下降,符合进入甲烷化或者铜洗工段气质要求。 要求:1.绘制带控制点的工艺流程图 2.系统物料、能量衡算 3.系统主要设备能力及触媒装填量核算 4?该工段设备多,工艺计算复杂,分变换炉能力及触媒装填量核算、系统热量核算和系统水循环设备及能力核算。 变换工艺流程 低压机四段来的半水煤气压力 2.0 MPa,温度40C的半脱气经热水洗涤塔除去气体中的油 污、杂质,进入饱和塔下部与上部喷淋下来的166?175 C的热水逆流接触,进行传质传热, 使气体中的水汽含量接近饱和,从塔顶出来到蒸汽喷射器,补入外管来的高压蒸汽,进一步 提高气体的温度和水气比,使出0/干气=0.6?0.7。达到变换所需的液气比值。接着气体进 入半水煤气换热器I,半水煤气换热器n管内加热,温度升至300 C,经过加压电炉进入中 变炉内。中变炉触媒分三段,每段各装一层触媒,上段出口变换气CO含量13?15%,温度 437C,通过甲烷化加热器壳程换热和增湿器降温,增湿温度降至370C进入中变二段,二 段出口CO变换率8?9%,温度403 C进入增温器,三段出口变换气中,CO 3?3.5%,温度386C,经过半水煤气换热器n和半水煤气换热器I的管间,加热进中变的半水煤气,温度降至285C 然后进入一水加热器被管内的循环热水降温至185C,进入低变炉进行低温变换。 低变炉触媒分上、下两段,每段各层一层耐硫变换催化剂,上段出口变换气温度222C,含CO 0.5?0.6%,进入段间冷却器管间,温度降至190C,进入低变炉下段反应,出口变换气 温度232 C,含CO 0.2?0.3%,进入二水加热器降温后,温度170 C进入热水塔与饱和塔底 出来的热水逆流接触,进行传质传热,进一步降温并回收热量,147C的变换气接着又进入 脱盐水预热器管内与来自脱盐水站的脱盐水换热后进入变换气水冷器管间,出来后温度降至 40 C,在变换气水分离器内,分离冷凝水后去变脱工段。 变换工段化学工艺设计原则 1.入工序气体流量:6000kmol/h (干基)压力: 2.47Mpa温度:40 C 2.入口气体组分:CO%=2.01% CO2%=10.95% 出%=41.49% 2%=1 3.93% CH4%=0.21% H2O%=31.23% Ar=0.18 %(体积比) 3.出口气体组分:CO% < 0.34% (体积比) 目录

氨合成工段仿真实训讲义一、实验目的

氨合成工段仿真实训讲义 一、实验目的 1、深入了解化工过程操作原理。提高学生对化工过程的开车、停车运行能力。 2 、掌握控制系统的投运和调整技术。 3 、提高对复杂化工过程动态运行的分析和决策能力。 4 、提高识别和排除事故的能力。 5 、科学的严格的考核与评价学生经过训练后所达到的操作水平和理论联系实际的能力。 二、 工艺原理 氨的合成是氨厂最后一道工序,任务是在适当的温度、压力和有催化剂存在的条件下,将经过精制的氢氮混和气直接合成为氨。然后将所生成的气体氨从未合成为氨的混和气体中冷凝分离出来,得到产品液氨,分离氨后的氢氮气体循环使用。 (一) 氨合成反应的特点 氨合成的化学反应式如下: Q NH N 2 1H 23322+?+ 这一化学反应具有如下几个特点: (1) 是可逆反应。即在氢气和氮气反应生成氨的同时,氨也分解成氢气和氮气。 (2) 是放热反应。在生成氨的同时放出热量,反应热与温度、压力有关。 (3) 是体积缩小的反应。 (4) 反应需要有催化剂才能较快的进行。 (二) 氨合成反应的化学平衡 氨合成反应的平衡常数p K 可表示为: p K =) N (p )H (P )NH (p 25.025.13? 式中p(NH 3)、p(H 2)、p(N 2)-----为平衡状态下氨、氢、氮的分压。

由于合成反应是可逆、放热、体积缩小的反应,根据平衡移动定律可知,降低 温度,提高压力,平衡向生成氨的方向移动,平衡常数增大。所以,在实际生产中,氨的合成反应均在加压下进行。 (三) 氨合成动力学 (1)反应机理 氮与氢自气相空间向催化剂表面接近,其绝大部分自外表面向催化剂毛细孔的 内表面扩散,并在表面上进行活性吸附。吸附氮与吸附氢及气相氢进行化学反应,一次生成NH 、NH 2、、NH 3。后者至表面脱附后进入气相空间。可将整个过程表示如下: )(2N H )(2N H )(2N H )2N H ()()(N 33H22H2H222气相吸附吸附吸附吸附气相脱吸气相中的气相中的气相中的??→?????→?????→ ?????→?→N 在上述反应过程中,当气流速度相当大,催化剂粒度足够小时,外扩散光和内 扩散因素对反应影响很小,而在铁催化剂上吸附氮的速度在数值上很接近于合成氨的速度,即氮的活性吸附步骤进行的最慢,是决定反应速度的关键。这就是说按得合成反应速度是由氮的吸附速度所控制的。 (2)反应速度 反应速度是以单位时间内反应物质浓度的减少量或生成物质浓度的增加量来 表示。在工业生产中,不仅要求获得较高的氨含量,同时还要求有较快的反应速度,以便在单位时间内有较多的氢和氮合成为氨。 根据氮在催化剂表面上的活性吸附是氨合成过程的控制步骤、氮在催化剂表面 成中等覆盖度、吸附表面很不均匀等条件,捷姆金和佩热夫导得的速度方程式如下: ) ()()()()(W 25.132325.121H p NH p k NH p H p N p k -= W-----反应的瞬时总速度,为正反应和逆反应速度之差 1k 、2k ----正、逆反应速度常数 )NH (P )N (P )H (p 322、、----为氢、氮、氨气体的分压。 (3)内扩散的影响

产五万吨合成氨合成工段工艺设计方案

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (3) 1.1 氨的基本用途 (3) 1.2 合成氨技术的发展趋势 (4) 1.3 合成氨常见工艺方法 (4) 1.3.1 高压法 (5) < 1.3.2 中压法 (5) 1.3.3 低压法 (5) 1.4 设计条件 (5) 1.5 物料流程示意图 (6) 2 物料衡算 (8) 2.1 合成塔入口气组成 (8) 2.2 合成塔出口气组成 (8) 2.3 合成率计算 (9) 《 2.4 氨分离器出口气液组成计算 (10) 2.5 冷交换器分离出的液体组成 (13) 2.6 液氨贮槽驰放气和液相组成的计算 (13) 2.7 液氨贮槽物料衡算 (15) 2.8 合成循环回路总物料衡算 (17) 3 能量衡算 (28) 3.1 合成塔能量衡算 (28) 3.2废热锅炉能量衡算 (30) ~ 3.3 热交换器能量衡算 (31) 3.4 软水预热器能量衡算 (32) 3.5 水冷却器和氨分离器能量衡算 (33) 3.6 循环压缩机能量衡算 (35) 3.7 冷交换器与氨冷器能量衡算 (36) 3.8 合成全系统能量平衡汇总 (38) 4 设备选型及管道计算 (40) 4.1 管道计算 (40) , 4.2 设备选型 (42) 结论 (43) 致谢 (44) 参考文献 (45)

年产五万吨合成氨合成工段工艺设计 摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步骤,上述基本步骤组合成为氨合成循环反应的工艺流程。其中氨合成工段是合成氨工艺的中心环节。新鲜原料气的摩尔分数组成如下:H273.25%, N225.59%,CH41.65%,Ar0.51%合成操作压力为31MPa,合成塔入口气的组成为NH3(3.0%>,CH4+Ar(15.5%>,要求合成塔出口气中氨的摩尔分数达到 17%。通过查阅相关文献和资料,设计了年产五万吨合成氨厂合成工段的 工艺流程,并借助CAD技术绘制了该工艺的管道及仪表流程图和设备布置图。最后对该工艺流程进行了物料衡算、能量衡算,并根据设计任务及操作温度、压力按相关标准对工艺管道的尺寸和材质进行了选择。 关键词:物料衡算,氨合成,能量衡算 , The Design of 50kt/a Synthetic Ammonia Process Abstract:There are many types of Ammonia synthesis technology and process,Generally,they includes ammonia synthesis, separation and recycling, inert gases Emissions and other basic steps, Combining the above basic stepsturnning into the ammonia synthesis reaction and recycling process , in which ammonia synthesis section is the central part of a synthetic ammonia process. The task of curriculum design is theammonia synthesis section of an annual fifty thousand tons synthetic ammonia plant . The composition of fresh feed gas is: H2(73.77%>,N2(24.56%>,CH4(1.27%>,Ar(0.4%>, the temperature is 35℃, the operating pressure is 31MPa, the inlet gas composition of the Reactor is : NH3(3.0%>,CH4+Ar(15.7%>,it Requires the mole fraction of ammonia reacheds to 16.8% of outlet gas of synthesis reactor. By consulting the relevant literature and information,we designed the ammonia synthesis section of an annual fifty thousand tons synthetic ammonia

相关主题
文本预览
相关文档 最新文档