当前位置:文档之家› solutions_appendix_B

solutions_appendix_B

solutions_appendix_B
solutions_appendix_B

APPENDIX B

Exercise Solutions

419

EXERCISE B.1

(a)

()2

()00.2510.5020.251i i i E X x P X x ====×+×+×=∑

(b) ()()2

2

22

220

0.2510.5020.25 1.5i

i

i E X

x P X x ====×+×+×=∑

(c) ()()()()()2

2

2

2

2

0var()()010.25110.50210.250.5i i i X x E X P X x ==?==?×+?×+?×=∑

(d) ()(32)3()25E g X E X E X ??=+=+=??

()2var var(32)3var() 4.5g X X X ??=+==??

EXERCISE B.2

(a)

Probabilities of a single roll of a fair die

X ()f x

1 16

2 16

3 16

4 16

5 1

6 6

16

(b)

()416P X ==

()()()4 or 545161613P X X P X P X ====+==+=

(c)

6

1().()116216316416516616 3.5x E X x f x ===×+×+×+×+×+×=∑

() 3.5E X = is the average face value, if the dice is rolled a large number of times.

(d) 6

2

22222221

91().()112163164165166166x E X x f x ===×+×+×+×+×+×=∑

(e) The variance is given by

()()

()()()()()()6

2

12222

2

2

var()()1 3.5162 3.5163 3.514 3.5165 3.516 3.512.917

i i i X x E X P X x ==??==?×+?×+?×+?×+?×+?×=∑

(f) Average values after 5 rolls, 10 rolls and 20 rolls.

EXERCISE B.3

(a) A sketch of the density function

()2010otherwise x x f x ≤≤?=??

is as follows

(b) When 1/2,()1x f x ==. The probability (00.5)P X ≤≤ is the area of a triangle with base = 0.5

and height = 1. Since area of a triangle = 0.5base×height ×, the probability is given by (00.5)0.50.510.25P X ≤≤=××=

(c) When 1/4,()2/4x f x ==. When 3/4,()6/4x f x ==. The probability (0.250.75)P X ≤≤ is

given by the area of a rectangle with base = 0.5 and height = 0.5 plus the area of a triangle with base = 0.5 and height = (1.50.5)?. That is, (0.250.75)(0.50.5)(0.50.51)0.5P X ≤≤=×+××=

f (x ) x 1 2

EXERCISE B.4

(a) Using the pdf ()()11x

x f x p p ?=? for x = 0,1:

The mean of the binary random variable, X , is

()()()()()

11

100111x

E X x f x f f p p p ?==×+×=?=∑

The variance of X is

()()()()()()()

()()()()()()()()()

2

2

2

122

1011

012

2var 111111111x

x x

x

X E X E X x p f x x p p p p p p p p p p p p p p p p p p p ???=?=?=??=??+??=?+?=?+?=?∑∑

(b)

1212()()()()()n n E B E X X X E X E X E X =+++=+++""

p p p np =+++="

()()12var var ...n B X X X =+++ ()()()12=var var var n X X X +++", since 1,...,n X X are independent

()()()()1111p p p p p p np p =?+?++?=?"

(c) 1

()()B np E Y E E B p n n

n ??====????

()()()()22

111

var var var np p p p B Y B n n n n ????====????

EXERCISE B.5

(a) The marginal probability density function of Y is h (y ) where 1111(1)8482h =++=

1111(3)244243

h =

++=

111(9)012126

h =

++= (b)

The conditional probability density function for y given 2X = is (|2)(2,)(2)f y X f y g ==,

where ()g x is the marginal probability density function for x .

Now,

1111

(2)824124

g =++=

and so (|2)f y X = is given by

(2,1)1/81

(1|2)(2)1/42f f X g ==== (2,3)1/241

(3|2)(2)1/46

f f X

g ==

==

(2,9)1/121

(9|2)(2)1/43

f f X

g ==

==

(c) ()cov ,[()][()]X Y E X E X Y E Y =??

()1114242464E X =×+×+×=

()1112361393E Y =×+×+×=

()()()()

()()()()()()()()11118242412cov ,43,24132433643364930

x

y

X Y x y f x y =??=??+??++??+??=∑∑"

(d)

This is an example where X and Y are not independent, despite the fact that their covariance is

zero. If X and Y are independent, then (,)()()f x y g x h y =. To show that independence does not hold, consider the example when x = 2 and y = 3,

()()()11112,323244312

f g h =

≠=×=

EXERCISE B.6

E Y=×+×=

(a) ()00.610.40.4

22

Y=?×+?×=

var()(00.4)0.6(10.4)0.40.24

(b) ()10.120.230.340.43

E X=×+×+×+×=

2222

X=?×+?×+?×+?×= var()(13)0.1(23)0.2(33)0.3(43)0.41

E XY=××+××++××+××=

()000.1020.1130.1140.11

"

()()()()()()

=??=?=?×=?cov,[][]130.40.2 X Y E X E X Y E Y E XY E X E Y

(c) ρ0.408

===?

EXERCISE B.7

(a) ()()()121211

...()()()n n E X E X X X E X E X E X n n

??=+++=+++????"

()1n n n

μ

=

μ+μ++μ==μ" (b) ()()121var var n X X X X n ??

=+++????"

()()()()122

1

var var var n X X X n =

+++"

2221n n n

σ=σ=

Since

12,,...,n X X X are independent random variables, their covariances are zero.

EXERCISE B.8

(a) ()()()33

11

1113333i i i i E Y E Y E Y ==??===μ=μ????∑∑

(b)

()()3123111

var var var 39i i Y Y Y Y Y =??==++????∑

()()()()()()()

123121323222221

var var +var 2cov(,)2cov(,)2cov(,)9

1

3320.59

113323

Y Y Y Y Y Y Y Y Y =++++=

σ+×σ=σ+σσ=

EXERCISE B.9

(a) (

)()()1 1.3571 1.3570.087P X P Z P Z P Z ?

<=<=

(b) ()()()4 2.940.78610.7860.2161.4P X P Z P Z P Z ??

?≥=>=>=?<=????

(c) ()()()2 2.920.6430.6430.7401.4P X P Z P Z P Z ??

?≥=>=>?=<=????

(d)

()()2.5 2.9

4 2.92.540.2860.7861.4 1.4P X P Z P Z ????<<=<<=?<

()()

()()()0.7860.2860.78610.2860.396

P Z P Z P Z P Z =

(e) We want X 0 such that P (X < X 0) = 0.05. Now, ( 1.645)0.95P Z <= and hence

( 1.645)0.05P Z

Thus, it follows that a suitable X 0 is such that

0 2.9

1.645 1.4

X ??=

Solving for X 0 yields

()()0 2.9 1.645 1.40.597X =?= (which is approximately 7 months)

EXERCISE B.10

(a)

The probability function of X is shown below.

1

2

3

45

6

7

(b) The probability that, on a given Monday, either 2, or 3, or 4 students will be absent is

4

2

()(2)(3)(4)0.3100.3400.2200.87x f x f f f ==

++=++=∑

(c) The probability that, on a given Monday, more than 3 students are absent is

7

4()(4)(5)(6)(7)0.2200.0800.0190.0010.32x f x f f f f ==

+++=+++=∑

(d) 7

().()00.00510.02520.31030.340x

E X x f x ===×+×+×+×∑

40.22050.08060.01970.001

3.066

+×+×+×+×=

Based on information over many Mondays, the average number of students absent on Mondays is 3.066. (e) 22var()()[()]X E X E X =?

7

2

222220

2222()()00.00510.02520.31030.340

40.22050.08060.01970.001 = 10.578

x E X x f x ===×+×+×+×+×+×+×+×∑

22var()10.578(3.066) 1.17764X =σ=?=

1.085

2.σ==

(f) ()(73)7()37 3.066324.462E Y E X E X =+=+=×+=

2var()var(73)7var()49 1.1776457.704Y X X =+==×=

EXERCISE B.11

(a) The probability density function is shown below.

(b) Total area of the triangle is half the base multiplied by the height; i.e., the area is 0.5211××=

(c) When x = 1, ()(1)0.5.f x f ==

Then, (1)P X ≥ is given by the area to the right of 1 which is (10.50.251)0.5P X ××=≥=

(d) When x = 0.5, ()0.5f = 0.75.

1

(0.5)1(0.5)1 1.50.750.43752

P X P X ≤=?>=?××=

(e) For a continuous random variable the probability of observing a single point is zero. Thus, ( 1.5)0P X ==.

EXERCISE B.12

(a) 2~(0.10,0.04)X N

00.1(0)( 2.5)10.99380.00620.04P X P Z P Z ??

?<=<=

?

(b)

0.150.1(0.15)( 1.25)10.89440.10560.04P X P Z P Z ??

?>=>=>=?=????

(c) Now

2~(0.12,0.05)X N

00.12(0)( 2.4)10.99180.00820.05P X P Z P Z ??

?<=<=

?

0.150.12(0.15)(0.6)10.72570.27430.05P X P Z P Z ??

?>=>=>=?=???

?

The calculations show that the probability of a negative return has increased from 0.62% to

0.82%, while the probability of a return greater than 15% has increased from 10.56% to 27.43%. Whether fund managers should or should not change their portfolios depends on their risk preferences.

EXERCISE B.13

(a)

()()()()0.250.750.250.75A B A B E P E R R E R E R =+=+

0.250.7513.25815=×+×=

(b) ()()2var var 0.250.75P A B P R R =σ=+

()()()220.25var 0.75var 20.250.75cov ,A B A B R R R R =++×××

Now,

1ρ==

Hence,

cov(,)1222264A B A B R R =σσ=×=

2222var()0.25120.752220.250.75264380.25P =×+×+×××=

19.5P σ==

(c) When

0.5ρ==

cov(,)0.50.51222132A B A B R R =×σσ=××=

2222var()0.25120.752220.250.75132330.75P =×+×+×××=

18.1865P σ==

(d) When ρ0=, cov(,)0A B R R =, and the variance and standard deviation of the portfolio are 2222var()0.25120.7522281.25P =×+×=

16.7705P σ==

相关主题
文本预览
相关文档 最新文档