当前位置:文档之家› 轴扭转计算

轴扭转计算

轴扭转计算
轴扭转计算

第5章扭转

5.1 扭转的概念及外力偶矩的计算

5.1.1、扭转的概念

在工程实际中,有很多以扭转变形为主的杆件。例如图示 5.1,常用的螺丝刀拧螺钉。

图5.1

图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。

图5.2

图示5.3,载重汽车的传动轴。

图5.3

图示5.4,挖掘机的传动轴。

图5.4

图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。

图5.5

分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。以扭转变形为主要变形的直杆称为轴。

图5.6

本章着重讨论圆截面杆的扭转应力和变形计算。

5.1.2、外力偶矩的计算

工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为:

n

N m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ?;

N-----轴传递的功率,单位为kW ;

n------轴的转速,单位为r/min 。

图5.7

5.2 圆轴扭转时横截面上的内力及扭矩图

5.2.1 扭矩

已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。图5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系 内力偶矩T 称为扭矩。

扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。

图5.8

图示5.8的b 和c ,从同一截面截出的扭矩均为正号。扭矩的单位是m N ?或m kN ?。

5.2.2 扭矩图

为了清楚地表示扭矩沿轴线变化的规律,以便于确定危险截面,常用与轴线平行的x 坐标表示横截面的位置,以与之垂直的坐标表示相应横截面的扭矩,把计算结果按比例绘在图上,

正值扭矩画在x 轴上方,负值扭矩画在x 轴下方。这种图形称为扭矩图。

例题5.1 图示传动轴,转速m in r 300=n ,A 轮为主动轮,输入功率kW 10=A N ,B 、

C 、

D 为从动轮,输出功率分别为kW 5.4=B N ,kW 5.3=C N ,kW 0.2=D N ,试求各段扭矩。

解:1、计算外力偶矩

2、分段计算扭矩,设各段扭矩为正,用矢量表示,分别为

m N 2.143e 1?==B M T (图c )

m N -175m N 318.3-m N 2.143e e 2?=??=-=A B M M T (图d )

m N 7.63e 3?-=-=D M T (图e )

2T ,3T 为负值说明实际方向与假设的相反。

3、作扭矩图

例题5.1图

5.3 等直圆轴扭转时横截面上的切应力

5.3.1 实心圆轴横截面上的应力

工程中要求对受扭杆件进行强度计算,根据扭矩T 确定横截面上各点的切应力。下面用实心圆轴推导切应力在横截面上的分布规律。

1、变形几何关系

取一实心圆轴,在其表面等距离地画上圆周线和纵向线,如图 5.9(a )所示,然后在圆轴两端施加一对大小相等、方向相反的扭转力偶矩e M ,使圆轴产生扭转变形,如图5.9(b )所示,可观察到圆轴表面上各圆周线的形状、大小和间距均未改变,仅是绕圆轴线作了相对转动;各纵向线均倾斜了一微小角度γ。

图5.9

根据观察到的现象,由表及里作出如下假设。

⑴ 变形后,圆轴上所有的横截面均保持为平面,即平面假设;

⑵ 横截面上的半径仍保持为直线;

⑶ 各横截面的间距保持不变。

圆轴扭转时,横截面上的切应力非均匀分布,仅依靠静力方程无法求出,必须利用变形条件建立补充方程,即切应力的导出需按解超静定问题的相似步骤进行。

根据上述假设,从圆轴中取相距为x d 的微段进行研究,如图5.10(a )所示。

图5.10

设半径R ,根据平面假设,可以设想扭转时各横截面如同刚性平面一样绕杆轴作相对转动。则由图可知变形后,纵向线段AB 变为B A ',AB 和B A '的夹角为γ(切应变),BB ?对应横截

面的圆心角?d ,在小变形的条件下可以建立如下关系。

为了研究横截面上任意点的切应变,从圆轴截面内取半径为ρ的微段,如图5.10(b )所示。同理可得

x

d d ?ργρ= (5.2) 上式表明,横截面上任意点的切应变同该点到圆心的距离ρ成正比关系。

2、物理关系

根据剪切胡克定律,在剪切比例极限之内(或弹性范围以内)切应力和切应变成正比关系

将(5–2)式代入上式,得

x

G G d d ?ργτρρ== (5.3)

上式表明,圆轴扭转时,横截面上任意点处的切应力ρτ与该点到圆心的距离ρ成正比,其分布如图5.11所示,式中x

d d ?可利用静力方程确定。 图5.11

3、静力学关系

根据图5.11所示,横截面上任意点的切应力ρτ和扭矩有如下静力学关系

将(5.3)式代入

式中,p 2d I A A =?ρ称截面的极惯性矩,代入上式,得

p

d d GI T x =? (5.4) 将(5.4)式代入(5.3)式,得到圆轴扭转横截面上任意点切应力公式

p

I T ρτρ?= (5.5) 当R =ρ时,表示圆截面边缘处的切应力最大

p

p max R

W T I T ==τ (5.6) 式中,p W 称为抗扭截面系数。它是与截面形状和尺寸有关的量。

5.3.2 极惯性矩和抗扭截面系数

极惯性矩P I 和抗扭截面系数P W 可按其定义通过积分求得。下面介绍其计算方法。 对于图5.12(a )实心圆轴,可在圆轴截面上距圆心为ρ处取厚度为ρd 的环形面积作为微面积dA ,于是ρπρd dA 2=,从而可得实心圆截面的极惯性矩为 抗扭截面系数为

如为图(b )空心圆轴,则有 式中D

d =α为空心圆轴内外径之比。空心圆轴截面的抗扭截面系数为

极惯性矩P I 的量纲是长度的四次方,常用的单位为4mm 或4

m 。抗扭截面系数P W 的 量纲是长度的三次方,常用单位为3mm 或3m 。

(a ) (b )

图5.12 5.4 等直圆轴扭转时的强度计算

5.4.1 圆轴扭转强度条件

工程上要求圆轴扭转时的最大切应力不得超过材料的许用切应力[]τ,即

对于等截面圆轴,表示为

上式称为圆轴扭转强度条件

试验表明,材料扭转许用切应力[]τ和许用拉应力[]σ有如下近似的关系。

塑性材料 [][]στ6.0~5.0=

脆性材料 [][]στ0.1~8.0=

例题5.2 汽车的主传动轴,由45号钢的无缝钢管制成,外径mm 90=D ,壁厚mm 5.2=δ,工作时的最大扭矩 1.5N m T =?,若材料的许用切应力[]MPa 60=τ,试校核该轴的强度。

解:1、计算抗扭截面系数

主传动轴的内外径之比

抗扭截面系数为

2、计算轴的最大切应力

3、强度校核

[]ττ<=MPa 8.50max 主传动轴安全

例题5.3 如把上题中的汽车主传动轴改为实心轴,要求它与原来的空心轴强度相同,试确定实心轴的直径,并比较空心轴和实心轴的重量。

解:1、求实心轴的直径,要求强度相同,即实心轴的最大切应力也为MPa 51,即

2、在两轴长度相等、材料相同的情况下,两轴重量之比等于两轴横截面面积之比,即 讨论:由此题结果表明,在其它条件相同的情况下,空心轴的重量只是实心轴重量的31%,其节省材料是非常明显的。这是由于实心圆轴横截面上的切应力沿半径呈线性规律分布,圆心附近的应力很小,这部份材料没有充分发挥作用,若把轴心附近的材料向边缘移置,使其成为空心轴,就会增大p I 或p W ,从而提高了轴的强度。然而,空心轴的壁厚也不能过薄,否则会发生局部皱折而丧失其承载能力(即丧失稳定性)。

5.5 等直圆轴扭转时的变形及刚度条件

5.5.1 圆轴扭转时的变形

轴的扭转变形用两横截面的相对扭转角表示,由(5.4)式p

d d GI T x =?,可求x d 段的相对扭转角。

当扭矩为常数,且p GI 也为常量时,相距长度为l 的两横截面相对扭转角为

p p

d d GI Tl x GI T l l ===???? r a d (弧度) (5.7) 式中,p GI 称为圆轴扭转刚度,它表示轴抵抗扭转变形的能力。

相对扭转角的正负号由扭矩的正负号确定,即正扭矩产生正扭转角,负扭矩产生负扭转角。

若两横截面之间T 有变化,或极惯性矩p I 变化,亦或材料不同(切变模量G 变化),则应通过积分或分段计算出各段的扭转角,然后代数相加,即:

在工程中,对于受扭转圆轴的刚度通常用相对扭转角沿杆长度的变化率x d d ?来度量,用θ表示,称为单位长度扭转角。即:

p

d d GI T x ==?θ (5.8) 5.5.2 圆轴扭转刚度条件

工程中轴类构件,除应满足强度要求外,对其扭转变形也有一定要求,例如,汽车车轮轴的扭转角过大,汽车在高速行驶或紧急刹车时就会跑偏而造成交通事故;车床传动轴扭转角过大,会降低加工精度,对于精密机械,刚度的要求比强度更严格。下式即为刚度条件

[]θθ≤max (5.9)

在工程中,[]θ的单位习惯用)(

(度/米)表示,将上式中的弧度换算为度,得 对于等截面圆轴,即为

许用扭转角[]θ的数值,根据轴的使用精密度、生产要求和工作条件等因素确定,对一般

传动轴,[]θ为m )(5.0 ~m )(1 ,对于精密机器的轴,[]θ常取在)(15.0 m )(30.0~

之间。

例题5.4 图示轴的直径mm 50=d ,切变模量GPa 80=G ,试计算该轴两端面之间的扭转角。

例题5.4图

解:两端面之间扭转角AD ?为

1、作扭矩图(图b )

2、分段求扭转角

式中, 44444p ππ(50)mm 61.3610mm 3232

d I ==?=?

例题5.5 主传动钢轴,传递功率kW 60=P ,转速m in r 250=n ,传动轴的许用切应力[]MPa 40=τ,许用单位长度扭转角[])(5.0

=θ,切变模量GPa 80=G ,试计算传动轴所需的直径。

解:1、计算轴的扭矩

2、根据强度条件求所需直径

3、根据圆轴扭转的刚度条件,求直径

故应按刚度条件确定传动轴直径,取mm 76=d 。

本章小结

1、圆轴扭转横截面上任一点的剪应力与该点到圆心的距离成正比,在圆心处为零。最大剪应力发生在截面外周边各点处,其计算公式如下:

p I T ρτρ=, p

max max W T =τ 2、圆轴扭转的强度条件为:

利用它可以完成强度校核、确定截面尺寸和许可荷截等三类强度计算问题。

3、圆轴扭转变形的计算公式为:

圆轴扭转的刚度条件是:

思 考 题

5.1 直径相同,材料不同的两根等长的实心圆轴,在相同的扭矩作用下,其最大切应力m ax τ和最大单位扭转角m ax θ是否相同?

5.2 横截面面积相同的空心圆轴和实心圆轴相比,为什么空心圆轴的强度和刚度都较大?

习 题

5.1 试作下列各轴的扭矩图。

题5.1图

5.2 图示传动轴,转速m in r 300=n ,A 轮为主动轮,输入功率kW 50=A P ,B 、C 、D 为从动轮,输出功率分别为kW 10=B P ,kW 20==D C P P 。⑴试作轴的扭矩图;⑵如果将轮A 和轮C 的位置对调,试分析对轴受力是否有利。

题5.2图 题5.3图

5.3 T 为圆轴横截面上的扭矩,试画出截面上与T 对应的切应力分布图。

5.4 图示圆截面空心轴,外径mm 40=D ,内径mm 20=d ,扭矩m kN 1?=T ,试计算mm 15=ρ的A 点处的扭转切应力A τ以及横截面上的最大和最小的扭转切应力。

题5.4图

5.5 一直径为mm 90的圆截面轴,其转速为min r 45,设横截面上的最大切应力为MPa 50,试求所传递的功率。

5.6 将直径mm 2=d ,长m 4=l 的钢丝一端嵌紧,另一端扭转一整圈,已知切变模量GPa 80=G ,求此时钢丝内的最大切应力m ax τ。

5.7 某钢轴直径mm 80=d ,扭矩m kN 4.2?=T ,材料的许用切应力[]MPa 45=τ,单位长度许用扭转角[]m )(5.0

=θ,切变模量GPa 80=G ,试校核此轴的强度和刚度。 5.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。已知由轮3输入的功率为N 3=3kW ,轮1输出的功率为N 1=13kW ,轴作匀速转动,转速n =200r/min ,材料的许用切应力[]MPa 60=τ,GPa 80=G ,许用扭转角[]m 2

=θ=。试校核轴的强

度和刚度。

题5.8图

5.9 一钢轴受扭矩m kN 2.1?=T ,许用切应力[]MPa 50=τ,许用扭转角

[]m 5.0 =θ,切变模量GPa 80=G ,试选择轴的直径。

5.10 桥式起重机题5.10图所示。若传动轴传递的力偶矩m kN M e ?=08.1,材料的许用切应力[]MPa 40=τ,GPa 80=G ,同时规定=][θ0.5°/m 。试设计轴的直径。

题5.10图

5.11 某空心钢轴,内外径之比8.0=α,转速m in r 250=n ,传递功率kW 60=N ,已知许用切应力[]MPa 40=τ,许用扭转角[]m )(8.0

=θ,切变模量GPa 80=G ,试设计钢轴的内径和外径。

5.12 某传动轴,横截面上的最大扭矩m kN 5.1?=T ,许用切应力[]MPa 50=τ,试按下列两种方案确定截面直径:⑴横截面为实心圆截面;⑵横截面为9.0=α的空心圆截面。

5.13 横截面面积相等的实心轴和空心轴,两轴材料相同,受同样的扭矩T 作用,已知实心轴直径m m 301=d ,空心轴内外径之比值8.0==

D d α。试求二者最大切应力之比及单位长度扭转角之比。

5.14 钢质实心轴和铝质空心轴(内外径比值

6.0=α)的横截面面积相等,钢轴许用应力[]MPa 801=τ,铝轴许用应力[]MPa 502=τ,若仅从强度条件考虑,哪一根轴能承受较大的扭矩?

5.15 实心轴和空心轴通过牙嵌式离合器连接在一起,已知轴的转速m in r 100=n ,传递功率kW 5.7=N ,材料的许用切应力[]MPa 40=τ,试选择实心轴直径1d 和内外径比值5.0=α的空心轴外径2D 。

题5.15图

5.16 已知传动轴的功率分别为kW 300=A N ,kW 200=B N ,kW 500=C N ,若AB 段和BC 段轴的最大切应力相同,试求此两段轴的直径之比及两段轴的扭转角之比。

题5.16图

5.17 已知轴的许用切应力[]MPa 21=τ,切变模量GPa 80=G ,许用单位扭转角[]m )

(3.0 =θ,试问此轴的直径d 达到多大时,轴的直径应由强度条件决定,而刚度条件

总可满足。 5.18 长度、材料、外力偶矩相同的两根圆轴,一根是实心轴,直径为1d ,另一根为空心轴,内外径之比8.022==D d α,试求两轴具有相等强度时的重量比和刚度比。

5.19 图示圆轴承受集度为m 的均匀分布的扭力矩作用,已知轴的抗扭刚度p GI 和长度l ,试求B 截面的扭转角B ?。

题5.18图 题5.19图

5.20 传动轴外径mm 50=D ,长度mm 510=l ,1l 段内径m m 251=d ,2l 段内径m m 382=d ,欲使轴两段扭转角相等,则2l 应是多长。

圆轴扭转练习带答案

第六章圆轴的扭转 一、填空题 1、圆轴扭转时的受力特点是:一对外力偶的作用面均_______于轴的轴线,其转向______。 2、圆轴扭转变形的特点是:轴的横截面积绕其轴线发生________。 3、在受扭转圆轴的横截面上,其扭矩的大小等于该截面一侧(左侧或右侧)轴段上所有外力偶矩的 _______。 4、圆轴扭转时,横截面上任意点的切应力与该点到圆心的距离成___________。 5、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。 6、圆轴扭转时,在横截面上距圆心等距离的各点其切应力必然_________。 7、从观察受扭转圆轴横截面的大小、形状及相互之间的轴向间距不改变这一现象,可以看出轴的横截面上无____________力。 8、圆轴扭转时,横截面上切应力的大小沿半径呈______规律分布。 10、圆轴扭转时,横截面上内力系合成的结果是力偶,力偶作用于面垂直于轴线,相应的横截面上各点的切应力应垂直于_________。 11、受扭圆轴横截面内同一圆周上各点的切应力大小是_______的。 12、产生扭转变形的一实心轴和空心轴的材料相同,当二者的扭转强度一样时,它们的_________截面系数应相等。 13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是 ________同的,扭转角是_______同的。 17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的 _________。 18、两材料、重量及长度均相同的实心轴和空心轴,从利于提高抗扭刚度的角度考虑,以采用 _________轴更为合理些。 二、判断题 1、只要在杆件的两端作用两个大小相等、方向相反的外力偶,杆件就会发生扭转变形。() 2、一转动圆轴,所受外力偶的方向不一定与轴的转向一致。() 3、传递一定功率的传动轴的转速越高,其横截面上所受的扭矩也就越大。() 4、受扭杆件横截面上扭矩的大小,不仅与杆件所受外力偶的力偶矩大小有关,而且与杆件横截面的形状、尺寸也有关。() 5、扭矩就是受扭杆件某一横截面在、右两部分在该横截面上相互作用的分布内力系合力偶矩。()

第四章扭转的强度与刚度计算.

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

扭转习题解答

第7章圆轴扭转 主要知识点:(1)圆轴扭转的概念、扭矩和扭矩图; (2)圆轴扭转时的应力和强度计算; (3)圆轴扭转时的变形和刚度计算。 圆轴扭转的概念、扭矩和扭矩图 1.已知圆杆横截面上的扭矩,试画出截面上与T对应的切应力分布图。 解:截面上与T对应的切应力分布图如下: 2.用截面法求下图所示各杆在1-1、2-2、3-3截面上的扭矩。 图7-2 解:a)采用截面法计算扭矩(见图7-2a)。

取1-1截面左侧外力偶矩计算,可得m kN T ?-=-311。 取2-2截面左侧外力偶矩计算,由平衡方程062122=+?-+-T m kN )(,可得m kN T ?=-322。 取3-3截面右侧外力偶矩计算,可得m kN T ?=-133。 b) 采用截面法计算扭矩(见图7-2b )。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-511。 取2-2截面左侧外力偶矩计算,由平衡方程05522=+?+-T m kN )( ,可得m kN T ?-=-1022。 取3-3截面右侧外力偶矩计算,由平衡方程03333=+?+-T m kN )( ,可得m kN T ?-=-633。 3. 作下图各杆的扭矩图。 解:a)采用截面法计算扭矩(见图7-3a )。取1-1截面左侧外力偶矩计算,可得m kN T ?=-411。取2-2截面右侧外力偶矩计算,可得m kN T ?-=-222。作出扭矩图。 a) b) 图7-3 b) 由力矩平衡方程可得e A M M 2-=(负号表示与图中假设方向相反)。采用截面法计算 扭矩(见图7-3b )。取1-1截面左侧外力偶矩计算,可得e M T 211-=-。取2-2截面右侧外力偶矩计算,可得e M T -=-22。作出扭矩图。 圆轴扭转时的应力和强度计算 4. 实心圆轴和空心轴通过牙嵌离合器而连接,如图所示。已知轴的转速n =100r/min ,传递的功率P=7.5kW ,材料的许用应力][τ=40MP a ,试通过计算确定 (1) 采用实心轴时,直径d 1和的大小; (2) 采用内外径比值为1/2的空心轴时,外径D 2的大小。 解:计算外力偶矩,作用在轴上的外力偶矩: m N m N n P T ?=??==716100 5.795509550 (1)采用实心轴时,直径d 1的大小应满足下式:

第9讲 圆轴扭转时的变形和刚度条件

第9讲教学方案——圆轴扭转时的变形和刚度条件非圆截面杆的扭转

§3-5 圆轴扭转时的变形和刚度条件 扭转角是指受扭构件上两个横截面绕轴线的相对转角。对于圆轴,由式(4-10) p GI Tdx d =φ 所以 p l 0p l GI Tl dx GI T d = ==? ?φφ(rad ) (4-17) 式中p GI 称为圆轴的抗扭刚度,它为剪切模量与极惯性矩乘积。p GI 越大,则扭转角φ越小。 让dx d φ ?= ,为单位长度相对扭角,则有p GI T = ?(rad/m ) 扭转的刚度条件: []??≤= P max GI T (rad/m ) (4-18) 或 []?π ?≤?= 180GI T P max (°/m ) (4-19) 例3-3 如图4-13的传动轴,500=n r/min ,5001=N 马力,2002=N 马力,300 3=N 马力,已知[]70=τMPa ,[]1=?°/m ,80=G GPa 。求:确定AB 和BC 段直径。 解: 1)计算外力偶矩 70247024 1 ==n N m A (N ·m ) 6.28097024 2 ==n N m B (N ·m ) 4.42147024 3 ==n N m C (N ·m ) 作扭矩T 图,如图4-13b 所示。 2)计算直径d AB 段:由强度条件,

[]τπτ≤== 3 1max 16d T W T t [] 8010 707024 16163 6 3 1≈???=≥πτπT d (mm ) 由刚度条件 []?ππ?≤?= 18032 d G T 4 1 6.841 1080180 702432][G 180T 32d 42 94 21=?????=?≥π?π(mm ) 取 6.841=d mm BC 段:同理,由扭转强度条件得 672≥d mm 由扭转刚度条件得 5.742≥d mm 取5.742=d mm 例3-4 如图4-14所示等直圆杆,已知 10m 0=KN ·m ,试绘扭矩图。 解:设两端约束扭转力偶为A m ,B m (1)由静力平衡方程0=∑x m 得 000=-+-B A m m m m B A m m = (a ) 此题属于一次超静定。 (2)由变形协调方程(可解除B 端约束),用变形叠加法有

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

轴扭转计算

第5章扭转 5.1 扭转的概念及外力偶矩的计算 5.1.1、扭转的概念 在工程实际中,有很多以扭转变形为主的杆件。例如图示 5.1,常用的螺丝刀拧螺钉。 图5.1 图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。 图5.2 图示5.3,载重汽车的传动轴。 图5.3 图示5.4,挖掘机的传动轴。 图5.4 图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。 图5.5 分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。以扭转变形为主要变形的直杆称为轴。 图5.6

本章着重讨论圆截面杆的扭转应力和变形计算。 5.1.2、外力偶矩的计算 工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为: n N m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ?; N-----轴传递的功率,单位为kW ; n------轴的转速,单位为r/min 。 图5.7 5.2 圆轴扭转时横截面上的内力及扭矩图 5.2.1 扭矩 已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。图5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系 内力偶矩T 称为扭矩。 扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。 图5.8 图示5.8的b 和c ,从同一截面截出的扭矩均为正号。扭矩的单位是m N ?或m kN ?。 5.2.2 扭矩图 为了清楚地表示扭矩沿轴线变化的规律,以便于确定危险截面,常用与轴线平行的x 坐标表示横截面的位置,以与之垂直的坐标表示相应横截面的扭矩,把计算结果按比例绘在图上,

轴的强度计算.

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:][2.01055.936T T T d n P W T ττ≤?== Mpa (11-1) 设计公式: 3036][1055.95n P A n P d T =??≥τ(mm )?轴上有键槽 放大:3~5%一个键槽;7~10%二个键槽。?取标准植 ][T τ——许用扭转剪应力(N/mm 2) ,表11-3 T ][τ——考虑了弯矩的影响 A 0——轴的材料系数,与轴的材料和载荷情况有关。注意表11-3下面的说明 对于空心轴:340) 1(β-≥n P A d (mm )? 6.0~5.01≈=d d β, d 1—空心轴的内径(mm ) 注意:如轴上有键槽,则d ?放大:3~5%1个;7~10%2个?取整。 二、按弯扭合成强度条件计算 条件:已知支点、距距,M 可求时 步骤:如图11-17以斜齿轮轴为例 1、作轴的空间受力简图(将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力(图11-17a ) 2、求水平面支反力R H1、R H2作水平内弯矩图(图11-17b ) 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图(图11-17c ) 4、作合成弯矩图22V H M M M +=(图11-17d ) 5、作扭矩图T α(图11-17e ) 6、作当量弯矩图22)(T M M ca α+= α——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴α与扭矩变化情况有关 1][][11=--b b σσ ——扭矩对称循环变化 α= 6.0][][01≈-b b σσ——扭矩脉动循环变化 3.0][][11≈+-b b σσ——不变的扭矩 b ][1-σ,b ][0σ,b ][1+σ分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。

轴扭转计算

第5章扭转 扭转的概念及外力偶矩的计算 5.1.1、扭转的概念 在工程实际中,有很多以扭转变形为主的杆件。例如图示,常用的螺丝刀拧螺钉。 图 图示,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。 图 图示,载重汽车的传动轴。 图

图示,挖掘机的传动轴。 图 图所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图),雨蓬梁处于受扭状态。 图 分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图所示。以扭转变形为主要变形的直杆称为轴。

图 本章着重讨论圆截面杆的扭转应力和变形计算。 5.1.2、外力偶矩的计算 工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为: n N m 9550 = () 式中 m----作用在轴上的外力偶矩,单位为m N ?; N-----轴传递的功率,单位为kW ; n------轴的转速,单位为r/min 。 图

圆轴扭转时横截面上的内力及扭矩图 5.2.1 扭矩 已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。图5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。假设在n m -截面将圆轴截开,取左部分为研究对象(图),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系 e M T = 内力偶矩T 称为扭矩。 扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。 图 图示的b 和c ,从同一截面截出的扭矩均为正号。扭矩的单位是m N ?或m kN ?。 5.2.2 扭矩图 为了清楚地表示扭矩沿轴线变化的规律,以便于确定危险截面,常用与轴线平行的x 坐标表示横截面的位置,以与之垂直的坐标表示相应横截面的扭矩,把计算结果按比例绘在图上,正值扭矩画在x 轴上方,负值扭矩画在x 轴下方。这种图形称为扭矩图。 例题 图示传动轴,转速m in r 300=n ,A 轮为主动轮,输入功率kW 10=A N ,B 、C 、

范钦珊版材料力学习题全解第4章圆轴扭转时的强度与刚度计算.

解:1、轴的强度计算M T τ 轴max = x = 1 3 ≤ 60 × 10 6 Wp1 π d 16 T1 ≤ 60 × 10 6 × 2、轴套的强度计算π × 66 3 × 10 ?9 = 3387 N ? m 16 习题 4-6 图τ 套 max = Mx T2 = ≤ 60 × 106 3 68 4 ? Wp2 πD ??1 ? ( ? 16 ? 80 ? 6 ?? 17 ? 4 ? π × 80 3 ?9 T2 ≤ 60 × 10 × × 10 ?1 ? ??? = 2883 N ? m 16 ??? 20 ??? 3、结论Tmax ≤ T2 = 2883 N ? m = 2.883 kN ? m 4-7 图示开口和闭口薄壁圆管横截面的平均直径均为 D、壁厚均为δ ,横截面上的扭矩均为 T = Mx。试:习题 4-7 图1.证明闭口圆管受扭时横截面上最大剪应力 6 τ max ≈ τ max ≈ 2M x δπ D2 3M x 2.证明开口圆管受扭时横截面上最大剪应力δ 2πD 3.画出两种情形下,剪应力沿壁厚方向的分布。解:1.证明闭口圆管受扭时横截面上最大剪应力由于是薄壁,所以圆环横截面上的剪应力可以认为沿壁厚均匀分布(图 a1),于是有习题 4-7 解图Mx = ∫ A D D ? τd A = ? τ ? π Dδ 2 2 由此得到δπ D 2 δπ D2 2.证明开口圆管受扭时横截面上最大剪应力根据狭长矩形扭转剪应力公式,有3M x 3M x 3M x τ max = = = 2 2 hb π D ?δ δ 2π D τ= 2M x 即:τ max = 2M x 3.画出两种情形下,剪应力沿壁厚方向的分布两种情形下剪应

第 4 章 圆轴扭转时的强度与刚度计算

基础篇之四 第4章 圆轴扭转时的强度与刚度计算 杆的两端承受大小相等、方向相反、作用平面垂直于杆件轴线的两个力偶,杆的任意两横截面将绕轴线相对转动,这种受力与变形形式称为扭转(torsion )。 本章主要分析圆轴扭转时横截面上的剪应力以及两相邻横截面的相对扭转角,同时介绍圆轴扭转时的强度与刚度设计方法。 4-1 外加扭力矩、扭矩与扭矩图 作用于构件的外扭矩与机器的转速、功率有关。在传动轴计算中,通常给出传动功率P 和转递n ,则传动轴所受的外加扭力矩M e 可用下式计算: [][] e kw 9549 [N m]r /min P M n =? 其中P 为功率,单位为千瓦(kW );n 为轴的转速,单位为转/分(r/min )。如功率P 单位用马力(1马力=735.5 N ?m/s ),则 e [] 7024 [N m][r /min] P M n =?马力 外加扭力矩M e 确定后,应用截面法可以确定横截面上的内力—扭矩,圆轴两端受外加扭力矩M e 作用时,横截面上将产生分布剪应力,这些剪应力将组成对横截面中心的合力矩,称为扭矩(twist moment ),用M x 表示。 图4-1 受扭转的圆轴 用假想截面m -m 将圆轴截成Ⅰ、Ⅱ两部分,考虑其中任意部分的平衡,有 M x -M e = 0 由此得到

图4-3 剪应力互等 M x = M e 与轴力正负号约定相似,圆轴上同一处两侧横截面上的扭矩必须具有相同的正负号。因此约定为:按右手定则确定扭矩矢量,如果横截面上的扭矩矢量方向与截面的外法线方向一致,则扭矩为正;相反为负。据此,图4-1b 和c 中的同一横截面上的扭矩均为正。 当圆轴上作用有多个外加集中力矩或分布力矩时,进行强度计算时需要知道何处扭矩最大,因而有必要用图形描述横截面上扭矩沿轴线的变化,这种图形称为扭矩图。绘制扭矩图的方法与过程与轴力图类似,故不赘述。 【例题4-1】 变截面传动轴承受外加扭力矩作用,如图4-2a 所示。试画出扭矩图。 解:用假想截面从AB 段任一位置(坐标为x )处截开,由左段平衡得: M x = -2M e 0x l ? ≥≥ 因为扭矩矢量与截面外法线方向相反,故为负。 同样,从BC 段任一位置处将轴截为两部分,由右段平衡得到BC 段的扭矩: M x = +3M e 2l x l + ≥≥ 因为这一段扭矩矢量与截面外法线方向相同,故为正。 建立OM x x 坐标,将上述所得各段的扭矩标在坐标系中,连图线即可作出扭矩图,如图4-2b 所示。 从扭矩图可以看出,在B 截面处扭矩有突变,其突变数值等于该处的集中外加扭力矩的数值。这一结论也可以从B 截面处左、右侧截开所得局部的平衡条件加以证明。 4-2 剪应力互等定理 剪切胡克定律 4-2-1 剪应力互等定理 考察承受剪应力作用的微元元体(图4-3),假设作用在微元左、右面上的剪应力为τ ,这两个面上的剪应力与其作用面积的乘积,形成一对力,二者组成一力偶。为了平衡这一力偶,微元的上、下面上必然存在剪应力τˊ,二者与其作用面积相乘 后形成一对力,组成另一力偶,为保持微元的平衡 图4-2 例题4-1图

轴的强度计算

轴的强度计算 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条件:Mpa (11-1> 设计公式:

1、作轴的空间受力简图<将分布看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力<图11-17a)b5E2RGbCAP 2、求水平面支反力RH1、RH2作水平内弯矩图<图11-17b) 3、求垂直平面内支反力RV1、RV2,作垂直平面内的弯矩图<图11-17c) 4、作合成弯矩图<图11-17d) 5、作扭矩图<图11-17e) 6、作当量弯矩图 ——为将扭矩折算为等效弯矩的折算系数 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关 ——扭矩对称循环变化 = ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——Mcamax 处;Mca较大,轴径d较小处。 Mpa (11-6> W——抗弯截面模量 mm3,见表11-4不同截面的W。

扭转的强度计算—例题分析.

扭转的强度条件—例题分析 例题1-1 一电机传动钢轴,直径d = 40mm ,轴传递的功率30kW ,转速n = 1400r/min 。轴的许用切应力[]τ= 40MPa ,试校核此轴的强度。 解:(1)计算扭力偶矩和扭矩。扭力偶距为 x m = 9550n P = 95501400 30?= 204×103 (N ·mm ) 由截面法求得轴横截面上的扭矩为: 320410(N mm)x T m ==?? (2) 强度校核。 轴的抗扭截面系数为 3 3 4320 1.25510(mm )22R W ρππ?===? 3max max 42041016.3(MPa)1.25510 T W ρτ?==? 因为 max []40(MPa)ττ<= 轴满足扭转强度条件。 例题1-2 如图所示为汽车传动轴简图,轴选用无缝钢管,其外半径45mm R =,内半径 42.5mm r =。许用剪应力[]τ=60MPa ,根据强度条件,求轴能承受的最大扭矩。 例题1-2图 解:按强度条件确定最大扭矩。 42.50.94445 r R α=== 3 3 44345(1)(10.944)29400(mm )22R W ρππα?=-=-= 由强度条件得 3max []6029400176410(N mm)1764(N m)T W ρτ≤=?=??=? 轴能承受的最大扭矩为1764N m ?。

例题1-3 某传动轴,轴内的最大扭矩max 1.5kN m T =?,若许用切应力[]τ=50MPa ,试按下列两种方案确定轴的横截面尺寸,并比较其重量。①实心圆截面轴;②空心圆截面轴,其内、外半径的比值9.022=R r 。 解:(1)确定实心圆轴的半径。根据强度条公式可得 []max T W ρτ≥ 将实心圆轴的抗扭截面系数3 2R W ρπ=代入上式得 6max 33122 1.51026.73(mm)[]50T R πτπ??≥==? 取 )(271mm R = (2)确定空心圆轴的内、外半径。将空心圆轴的抗扭截面系数()34 12R W ρπα= -代入强度条件式可得 6 m a x 3324422 1.51038.15(mm)[].(1)50(10.9)T R πταπ??≥==-??- 其内半径相应为 220.90.938.1534.34(mm)r R ==?= 取 239(mm)R = 234(mm)r = (3)重量比较。上述空心与实心圆轴的长度与材料均相同,所以,二者的重量比β等于其横截面面积之比,即 5.027 3439)(22 2212222=-=-=R r R ππβ 上述数据充分说明,在强度相同的情况下,空心轴远比实心轴轻。

圆轴扭转时的变形和刚度条件

第10讲教学方案 ——圆轴扭转时的变形和刚度条件 非圆截面杆的扭转 基 本 内 容 圆轴扭转时的变形和刚度条件、矩形截面杆扭转时的应力与变形 教 学 目 的 1、掌握圆轴扭转时变形及变形程度的描述与计算。 2、掌握刚度条件的建立及利用刚度条件进行相关计算。 3、了解圆柱形密圈螺旋弹簧的应力和变形计算。 4、了解矩形截面杆扭转时的横截面上的应力分布与变形计算。 重 点 难 点 本节重点:圆轴扭转时变形及变形程度的描述与计算,刚度条件的建立及相关计算。 本节难点:对圆轴变形程度的理解。

§4-6 圆轴扭转时的变形和刚度条件 扭转角是指受扭构件上两个横截面绕轴线的相对转角。对于圆轴,由式(4-10) p GI Tdx d =φ 所以 p l 0p l GI Tl dx GI T d ===∫ ∫φφ(rad ) (4-17) 式中称为圆轴的抗扭刚度,它为剪切模量p GI 与极惯性矩乘积。越大,则扭转角p GI φ越小。 让dx d φ ?= ,为单位长度相对扭角,则有p GI T = ?(rad/m ) 扭转的刚度条件: []??≤= P max GI T (rad/m ) (4-18) 或 []?π ?≤×= 180GI T P max (°/m ) (4-19) 例4-3 如图4-13的传动轴,500=n r/min ,5001=N 马力,2002=N 马力,马力,已知[]300 3=N 70=τMPa ,[]1=?°/m ,GPa 。求:确定AB 和BC 段直径。 80=G 解: 1)计算外力偶矩 70247024 1 ==n N m A (N ·m ) 6.28097024 2 ==n N m B (N ·m ) 4.42147024 3 ==n N m C (N ·m ) 作扭矩T 图,如图4-13b 所示。 2)计算直径 d AB 段:由强度条件,

第四章扭转(讲稿)

第四章扭转 同济大学航空航天与力学学院顾志荣 一、教学目标与教学内容 1、教学目标 (1)掌握扭转的概念; (2)熟练掌握扭转杆件的内力(扭矩)计算和画扭矩图; (3)了解切应力互等定理及其应用,剪切胡克定律与剪切弹性模量; (4) 熟练掌握扭转杆件横截面上的切应力计算方法和扭转强度计算方法; (5) 熟练掌握扭转杆件变形(扭转角)计算方法和扭转刚度计算方法; (6)了解低碳钢和铸铁的扭转破坏现象并进行分析。 (7)了解矩形截面杆和薄壁杆扭转计算方法。 2、教学内容 (1) 扭转的概念和工程实例; (2) 扭转杆件的内力(扭矩)计算,扭矩图; (3) 切应力互等定理, 剪切胡克定律; (4) 扭转杆件横截面上的切应力, 扭转强度条件; (5) 扭转杆件变形(扭转角)计算,刚度条件; (6) 圆轴受扭破坏分析; (7) 矩形截面杆的只有扭转; (8) 薄壁杆件的自由扭转。 二、重点和难点

1、重点:教学内容中(1)~(6)。 2、难点:切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别,扭转切应力连接件中切应力的区别。通过讲解,多媒体的动画演示扭转与剪切的变形和破坏情况,以及讲解例题来解决。 三、教学方式 通过工程实例建立扭转概念,利用动画演示和实物演示表示扭转时的变形,采用启发式教学,通过提问,引导学生思考,让学生回答问题。 四、建议学时 6学时 五、实施学时 六、讲课提纲 工程实例:

图4-1 **扭转和扭转变形 1、何谓扭转? 如果杆件受力偶作用,而力偶是作用在垂直于杆件轴线的平面内,则这杆件就承受了扭转。换言之,受扭杆件的受力特点是:所受到的外力是一些力偶矩,作用在垂直于杆轴的平面内。 2、何谓扭转变形? 在外力偶的作用下,杆件的任意两个横截面都绕轴线发生相对转动。杆件的这种变化形式称为扭转变形。换言之,受扭转杆件的变形特点是:杆件的任意两个横截面都绕轴线发生相对转动。

材料力学第6四章扭转

第6章 圆轴的扭转 6.1 扭转的概念 扭转是杆件变形的一种基本形式。在工程实际中以扭转为主要变形的杆件也是比较多的,例如图6-1所示汽车方向盘的操纵杆,两端分别受到驾驶员作用于方向盘上的外力偶和转向器的反力偶的作用;图6-2所示为水轮机与发电机的连接主轴,两端分别受到由水作用于叶片的主动力偶和发电机的反力偶的作用;图6-3所示为机器中的传动轴,它也同样受主动力偶和反力偶的作用,使轴发生扭转变形。 图6—1 图6—2 图6—3 这些实例的共同特点是:在杆件的两端作用两个大小相等、方向相反、且作用平面与杆件轴线垂直的力偶,使杆件的任意两个截面都发生绕杆件轴线的相对转动。这种形式的变形称为扭转变形(见图6-4)。以扭转变形为主的直杆件称为轴。若杆件的截面为圆形的轴称为圆轴。 图6—4 6.2 扭矩和扭矩图 6.2.1 外力偶矩 作用在轴上的外力偶矩,可以通过将外力向轴线简化得到,但是,在多数情况下,则是通过轴所传递的功率和轴的转速求得。它们的关系式为 n P M 9550 (6-1) 其中:M ——外力偶矩(N ·m ); P ——轴所传递的功率(KW ); n ——轴的转速(r /min )。 外力偶的方向可根据下列原则确定:输入的力偶矩若为主动力矩则与轴的转动方向相同;输

入的力偶矩若为被动力矩则与轴的转动方向相反。 6.2.2 扭矩 圆轴在外力偶的作用下,其横截面上将产生连续分布内力。根据截面法,这一分布内力应组成一作用在横截面内的合力偶,从而与作用在垂直于轴线平面内的外力偶相平衡。由分布内力组成的合力偶的力偶矩,称为扭矩,用n M 表示。扭矩的量纲和外力偶矩的量纲相同,均为N·m 或kN·m 。 当作用在轴上的外力偶矩确定之后,应用截面法可以很方便地求得轴上的各横截面内的扭矩。如图6-5(a )所示的杆,在其两端有一对大小相等、转向相反,其矩为M 的外力偶作用。为求杆任一截面m-m 的扭矩,可假想地将杆沿截面m-m 切开分成两段,考察其中任一部分的平衡,例如图6-5(b )中所示的左端。由平衡条件 0)(=∑F M X 可得 M M n = 图6—5 注意,在上面的计算中,我们是以杆的左段位脱离体。如果改以杆的右端为脱离体,则在同一横截面上所求得的扭矩与上面求得的扭矩在数值上完全相同,但转向却恰恰相反。为了使从左段杆和右段杆求得的扭矩不仅有相同的数值而且有相同的正负号,我们对扭矩的 正负号根据杆的变形情况作如下规定:把扭矩当矢量,即用右手的四指表示扭矩的旋转方向,则右手的大拇指所表示的方向即为扭矩的矢量方向。如果扭矩的矢量方向和截面外向法线的方向相同,则扭矩为正扭矩,否则为负扭矩。这种用右手确定扭矩正负号的方法叫做右手螺旋法则。如图6-6所示。 按照这一规定,园轴上同一截面的扭矩(左与右)便具有相同的正负号。应用截面法求扭矩时,一般都采用设正法,即先假设截面上的扭矩为正,若计算所得的符号为负号则说明扭矩转向与假设方向相反。 当一根轴同时受到三个或三个以上外力偶矩作用时,其各 图6-6 扭矩正负号规定 段横断面上的扭矩须分段应用截面法计算。 6.2.3 扭矩图 为了形象地表达扭矩沿杆长的变化情况和找出杆上最大扭矩所在的横截面,我们通常把扭矩随截面位置的变化绘成图形。此图称为扭矩图。绘制扭矩图时,先按照选定的比例尺,以受扭杆横截面沿杆轴线的位置x 为横坐标,以横截面上的扭矩n M 为纵坐标,建立n M —x 直角坐标系。然后将各段截面上的扭矩画在n M —x 坐标系中。绘图时一般规定将正号的

圆轴扭转里分析

6.1 圆轴扭转的概念扭转变形Torsion 轴Shaft ——发生扭转变形的杆件。 圆轴扭转Torsional Loads on Circular Shafts 工程背景Background: 力学模型model 扭转变形的特点:

1)受力特点在杆件两端垂直于杆轴线的平面内作用一对大小相等,方向相反的外力偶。 2)变形特点横截面绕轴线发生相对转动,出现扭转变形。 6.2 扭矩和扭矩图 首先计算作用于轴上的外力偶矩,再分析圆轴横截面的内力,然后计算轴的应力和变形,最后进行轴的强度及刚度计算。 6.2.1外力偶矩的计算 式中,M e 为外力偶矩Torque (N·mm ); P Power 为功率(kW ); n为转速Rotational velocity (r/min )。 主动轮的输入功率所产生的力偶矩转向与轴的转向相同; 从动轮的输出功率所产生的力偶矩转向与轴的转向相反。 6.2.2圆轴扭转时的内力——扭矩torque 截面法求横截面的内力 规定扭矩的正负(右手螺旋法则):

以右手手心对着轴,四指沿扭矩的方向屈起,拇指的方向离开截面,扭矩为正,反之为负。 6.2.3扭矩图 例输入一个不变转矩Me1 ,不计摩擦,轴输出的阻力矩为Me2 =2Me1 /3,Me3 =Me1 /3,外力偶矩Me1 、Me2 、Me3 将轴 分为AB和BC两段,应用截面法可求出各段横截面的扭矩。 扭矩图——用平行于杆轴线的x 坐标表示横截面的位置,用垂直于x 轴的坐标M T 表示横截面扭矩的大小,描画出截面扭矩随截面位置变化的曲线。 6.3 圆轴扭转时横截面上的应力和强度计算 6.3.1圆轴扭转时横截面上的应力 ?受扭圆轴横截面上有何应力? ?应力如何计算?

扭转习题解答

扭转习题解答 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

第7章 圆轴扭转 主要知识点:(1)圆轴扭转的概念、扭矩和扭矩图; (2)圆轴扭转时的应力和强度计算; (3)圆轴扭转时的变形和刚度计算。 圆轴扭转的概念、扭矩和扭矩图 1. 已知圆杆横截面上的扭矩,试画出截面上与T 对应的切应力分布图。 解:截面上与T 对应的切应力分布图如下: 2. 用截面法求下图所示各杆在1-1、2-2、3-3截面上的扭矩。 图7-2 解:a)采用截面法计算扭矩(见图7-2a )。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-311。 取2-2截面左侧外力偶矩计算,由平衡方程 062122=+?-+-T m kN )(,可得m kN T ?=-322。 取3-3截面右侧外力偶矩计算,可得m kN T ?=-133。 b) 采用截面法计算扭矩(见图7-2b )。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-511。 取2-2截面左侧外力偶矩计算,由平衡方程 05522=+?+-T m kN )(,可得m kN T ?-=-1022。 取3-3截面右侧外力偶矩计算,由平衡方程 03333=+?+-T m kN )(,可得m kN T ?-=-633。 3. 作下图各杆的扭矩图。 解:a)采用截面法计算扭矩(见图7-3a )。取1-1截面左侧外力偶矩计算,可得m kN T ?=-411。取2-2截面右侧外力偶矩计算,可得m kN T ?-=-222。作出扭矩图。 a) b) 图7-3 b) 由力矩平衡方程可得e A M M 2-=(负号表示与图中假设方向相反)。采用截面法计算扭矩(见图7-3b )。取1-1截面左侧外力偶矩计算,可得e M T 211-=-。取2-2截面右侧外力偶矩计算,可得e M T -=-22。作出扭矩图。 圆轴扭转时的应力和强度计算 4. 实心圆轴和空心轴通过牙嵌离合器而连接,如图所示。已知轴的转速n =100r/min ,传递的功率P=,材料的许用应力][τ=40MP a ,试通过计算确定 (1) 采用实心轴时,直径d 1和的大小; (2) 采用内外径比值为1/2的空心轴时,外径D 2的大小。 解:计算外力偶矩,作用在轴上的外力偶矩: (1)采用实心轴时,直径d 1的大小应满足下式: 解得 mm m T d 0.451040716 ][36 16 3161=??=?≥ππτ (2)采用内外径比值α=1/2的空心轴时,外径D 2的大小应满足下式:

圆轴的扭转习题+答案

一、填空题 1、圆轴扭转时的受力特点是:一对外力偶的作用面均_______于轴的轴线,其转向______。 2、圆轴扭转变形的特点是:轴的横截面积绕其轴线发生________。 3、在受扭转圆轴的横截面上,其扭矩的大小等于该截面一侧(左侧或右侧)轴段上所有外力偶矩的_______。 4、在扭转杆上作用集中外力偶的地方,所对应的扭矩图要发生________,_________值的大小和杆件上集中外力偶之矩相同。 5、圆轴扭转时,横截面上任意点的剪应变与该点到圆心的距离成___________。 6、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。 7、圆轴扭转时,在横截面上距圆心等距离的各点其剪应变必然_________。 8、从观察受扭转圆轴横截面的大小、形状及相互之间的轴向间距不改变这一现象,可以看出轴的横截面上无____________力。 9、圆轴扭转时,横截面上剪应力的大小沿半径呈______规律分布。 11、受扭圆轴横截面内同一圆周上各点的剪应力大小是_______的。 12、产生扭转变形的一实心轴和空心轴的材料相同,当二者的扭转强度一样时,它们的_________截面系数应相等。 13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。 16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是________同的,扭转角是_______同的。 17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的_________。 18、两材料、重量及长度均相同的实心轴和空心轴,从利于提高抗扭刚度的角度考虑,以采用_________轴更为合理些。 二、判断题 1、只要在杆件的两端作用两个大小相等、方向相反的外力偶,杆件就会发生扭转变形。() 3、传递一定功率的传动轴的转速越高,其横截面上所受的扭矩也就越大。() 4、受扭杆件横截面上扭矩的大小,不仅与杆件所受外力偶的力偶矩大小有关,而且与杆件横截面的形状、尺寸也有关。() 5、扭矩就是受扭杆件某一横截面在、右两部分在该横截面上相互作用的分布内力系合力偶矩。() 7、扭矩的正负号可按如下方法来规定:运用右手螺旋法则,四指表示扭矩的转向,当拇指指向与截面外法线方向相同时规定扭矩为正;反之,规定扭矩为负。() 9、对于产生扭转变形的圆杆,无论处于弹性变形阶段还是塑性变形阶段,其剪应力总是与庐点到圆心的距离成正比。() 10、横截面为圆形的直杆在产生扭转变形时作出的平面假设仅在弹性范围内成立。() 13、一空心圆轴在产生扭转变形时,其危险截面外缘处具有全轴的最大剪应力,而危险截面内缘处的剪应力为零。( ) 14、粗细和长短相同的二圆轴,一为钢轴,另一为铝轴,当受到相同的外力偶作用产生弹性扭转变形时,其横截面上最大剪应力是相同的。() 17、圆轴横截面上的扭矩为T,按强度条件算得直径为d,若该横截面上的扭矩变为,则按强度条件可算得相应的直径。() 22、实心圆轴材料和所承受的载荷情况都不改变,若使轴的直径增大一倍,则其单位长度扭转角将减小为原来的1/16。() 23、两根实心圆轴在产生扭转变形时,其材料、直径及所受外力偶之矩均相同,但由于两轴的长度不同,所以短轴的单位长度扭转角要大一些。() 三、选择题 1、汽车传动主轴所传递的功率不变,当轴的转速降低为原来的二分之一时,轴所受的外力偶的半偶矩较之转速降低前将() A、增大一倍数 B、增大三倍数 C、减小一半 D、不改变 2、圆轴AB扭转时,两端面受到力偶矩为m的外力偶作用于,若以一假想截面在轴上C处将其截分为左、右两部分(如图所示),则截面C上扭矩T、Tˊ的正负应是() A、T为正,Tˊ为负

相关主题
文本预览
相关文档 最新文档