当前位置:文档之家› 安全专业外语外文翻译

安全专业外语外文翻译

安全专业外语外文翻译
安全专业外语外文翻译

附录

Application of Gas Content Test Data to the Evaluation of Gas Emission and Hazards During Longwall Development

and Extraction

R. J. Williams GeoGAS Systems Pty. Ltd.

Abstract

This paper compares aspects of fast and slow desorption methods and attempts to provide guidelines for their application and associated sampling strategies.

The importance of determining Total Desorbable Gas Content (Q1+Q2+Q3) as opposed to Desorbable Gas Content (Q1+Q2) is highlighted. The former involves partial destruction of bore core, but provides considerably more accurate data. It is also more amenable for use in gas reservoir simulation modelling.

Fast desorption techniques are shown to have considerable advantages over slow desorption techniques. These are, greater accuracy in gas composition assessment, the potential to rationalise sampling, fast turnaround involving fewer resources, finalization of geological logs and early application of the data. Q3 can still be differentiated. A more sensitive indicator of gas desorption rate is incorporated in GeoGAS’s fast desorption method (GeoGAS Desorption Rate Index).

Gas reservoir size determination is facilitated by a sampling strategy where relationships between gas content and gas composition with depth and mineral matter are defined. This enables indirect assignment of gas content to those gas bearing strata not directly tested. The importance of testing/assigning gas contents to inferior coaly horizons is indicated. Gas content test results are basic input into any mining application. An overview of its application to modelling gas emission is given. Statistical analysis of the data enables modelling inputs and outputs to be expressed as means and probability distributions. Introduction

Gas content testing has become a routine part of most surface borehole exploration programs for underground coal mining. The gas content test data are basic input into costed approaches to gas, ventilation and spontaneous combustion control.

With the development over the past three years of fast desorption methods of gas content testing, the exploration geologist is confronted with additional choice of method and sampling strategy.

This paper compares aspects of fast and slow desorption methods and attempts to provide guidelines for their application and associated sampling strategies.

The most important of determinant of methodology is how the data will be used. Application to longwall development and extraction is broadly covered.

Gas Content Testing

Terminology

The following terminology is used in this paper. It should generally be accepted across the industry.

Total Desorbable Gas Content (TDGC) - the sum of Lost Gas (Q1), Desorbed Gas (Q2) and Residual Gas (Q3)

Lost Gas (Q1) - Gas lost from the sample between coring and sealing in a gas canister.

Desorbed Gas - The gas desorbed (per unit mass) from an uncrushed coal sample in the time between lost gas testing and crushing of the coal. The term is applied to fast desorption testing and is not the same as Q2.

Q2 - The gas desorbed (per unit mass) from an uncrushed coal sample held within a seam gas atmosphere, to the point in time where the partial pressure of the gases in the gas bomb is in equilibrium with the remaining gas in the core. The ambient pressure is approximately 1 atmosphere.

GeoGAS’s fast desorption method determines Q2 by difference by subtracting the separately determined Q3 value from the initial desorbed gas, plus the gas on crushing.

Q2 = (“desorbed gas” + “gas on crushing”) - Q3

Gas on Crushing - that gas released during crushing of the coal sample, at ambient pressure. Applies to fast desorption testing. The definition is not the same as Q3.

Residual Gas (Q3) - The volume of gas per unit mass desorbed at atmospheric pressure from the crushed coal sample after it has been allowed to desorb to its equilibrium gas content level in a seam gas atmosphere.

Desorbable Gas Content - the sum of Q1 and Q2.

GeoGAS DRI - A measure of the rate of gas desorption during crushing of the coal sample, corrected to the TDGC of the sample. (The gas volume generated after 30 seconds of crushing a 200 g sample corrected from the “Gas on Crushing” value to the TDGC value).

While AS 3980-1991 specifies reporting results to STP (0°C, 101.3 KPa), it is common practice in the industry to report results to 20°C and 101.3 KPa.

A Comparison of Fast and Slow Desorption Methods

Australian standard AS 3980-1991, Guide to the determination of the desorbable gas content of coal seams was developed to address the need to adopt a more uniform approach to gas content testing. Since then (1991), a number of limitations and deficiencies have been identified, to the point where a new standard, incorporating fast desorption techniques, is currently being developed.

Traditionally, gas content testing has been undertaken by the slow desorption method (USBM), with testing being mainly confined to Desorbable Gas Content Q1+Q2 determinations. With the emergence of the fast desorption methods and associated review of these and slow desorption methods (as in Working Group MN/1/5/3 - Standards Australia), limitations of these methods have been more clearly recognized.

The comments and comparisons th at follow refer only to GeoGAS’s method of fast desorption testing and experiences in its application. For a more complete view, the interested reader should contact other organizations who have developed fast desorption methods (ACIRL, BHP, CSIRO, KCC, Lunagas).

The fast and slow desorption methods primarily differ in a number of ways, among the most important being destruction of the bore core during the test, the time taken to achieve a result and the accuracy of the result (Table 1).

Table 1 Comparison of Slow and Fast Desorption

Slow Desorption Q1 + Q2

Slow

Desorption

With Q3

GeoGAS Fast

Desorption

Q1 + Q2 + Q3

Fast

Desorption

With Q3

Core left intact Yes No (2 ×200 g

crushed) No (2 ×200

g

crushed)

No (additional

2 ×200 g

crushed)

Result Timing 30 days +30 Days +< 1 day 30 days +

Accuracy re Gas Quantity Rough Potentially

good when

added to

Q 1 + Q 2

Good (+/ -0.5

m3/t to 95%

confidence)

Good

Accuracy re

Gas Composition Rough unless

pure CH4

Rough unless

pure CH4

Good. Define

CO2 and N2

Good define

CO2 and N2

Accuracy Desorption

Rate Rough N/A Good

GeoGAS DR

Index

N/A

Resources Requires lots

of gas

bombs/space. Requires lots

of gas

bombs/space.

Minimum with

quick reuse of

equipment

Uses glass jars,

but as many as

with slow

method.

Adjust

sampling

strategy “on

the fly

Not possible Not possible Yes Yes

Effect of slow

leak in system

High High Slight Slight

No. tests

required to

define

reservoir

Maximum Maximum Minimum Minimum

The main advantage for the slow desorption method (Q1+Q2 only) is that it can be used if the core is required intact for other analyses (eg washability testing), and there are no alternative sampling schemes. In the authors view, there is an unacceptable penalty on result accuracy.

Stopping the test on Q1+Q2 without proceeding to Q3 can result in underestimation of the gas content from between 1 to 4 m3/t. The Q3 component is important in mining and gas extraction.

The problem with measuring Q1+Q2 only, is that the test result is very much influenced by the equipment used, in particular, the void space in the gas bombs. Gas will stop desorbing in the canister when the partial pressure of the gas surrounding the core is in

equilibrium with the sorbed gas concentration remaining in the core. Finishing a test on “Q2” alone, normally gives high scatter, potentially misleading results because of this effect. The time of terminating the test can also be some what arbitrary.

In fast desorption testing, Q1+Q2+Q3 is determined in the one operation. It is useful to know the Q3 value, so with GeoGAS’s fast desorption method, a small scale “slow desorption” test has been added, to directly determine it. A sub sample (approx 600g) is taken for Q3 during the fast desorption test, and sealed it in a small “bomb” (glass j ar). It is left on line for a sufficiently long period to stop desorbing its gas. The “bomb” is packed full of coal, so that by the end of the test, the equilibrium end point for the desorption is one where the gas surrounding the coal pieces is near pure seam gas (unless the gas content is very low). This material is then crushed; the gas evolved being calculated as Q3.

Gas composition is more accurately determined with the fast desorption method. Gas samples from exploration cores are routinely analyzed for CO2, CH4, N2and O2. Slow desorption techniques do not adequately address CO2(which is readily lost even in acid brine baths) and are ambiguous regarding the question of N2 being a real component of the seam gas. With the fast desorption method, there is little time available for solution of CO2 in water, or for O2 to react with the core to produce excess N2.

Fast desorption testing allows quick turnaround (result in as little as 2 hours after the sample reaches the laboratory). This means that equipment needs are minimized. Fast turnaround of results frees core up for other tests, finalization of geological logs and application of the data. Importantly, gas content data can be evaluated as the drilling program progresses, so that decisions regarding sampling can be made in response to the evolving picture.

Gas content is a static measure. In as far as gas desorption rate is affected by gas content, it implies a rate of gas desorption. But other factors significantly affect the rate of gas desorption, these being gas composition, inherent structural characteristics of the coal, and moisture.

The rate of gas desorption is important to quantify. The following techniques are available: ?The initial rate of gas desorption as part of the Q1 determination. This is common to fast and slow desorption testing.

?The rate of gas desorption (desorption history curve) as part of the slow desorption test.

?The rate of gas desorption during coal crushing, as part of the fast desorption test.

Of the three options, the author has found the rate of gas desorption during coal crushing (GeoGAS DRI) to be highly sensitive, enabling differentiation of the effects on desorption rate from gas content, gas composition and inherent structural characteristics of the coal. From a database of over 3000 DRI determinations, characterization of the desorption rate of a particular coal is readily made, along with associated gas responses during mining, especially in relation to outburst phenomena.

Sampling and Testing Strategy

A generic aim for most gas testing programs is to define the stratigraphic and lateral distribution of gas content and gas composition. The extent of sampling required is ideally determined by statistical assessment of the data, with sufficient sampling being undertaken when the mean and probability distribution of the sample results are unaffected by further sampling (to say within 2%).

In an assessment of the effect of gas on mining, all gassy material (any carbonaceous material) will need to be assigned values of gas content and composition, mostly indirectly. It is not practical to test every piece of coal or carbonaceous material. The key is to define relationships between gas content and other parameters that will enable indirect assignment of gas content to those lithologies not tested. The main relationships are gas content and depth, gas content and mineral matter and gas composition and depth.

The lateral changes in these parameters need to be defined and controls also identified (eg. faulting can influence the distribution of carbon dioxide).

The extent to which these relationships are defined determines the amount of sampling required.

Regardless of how good or bad the relationship ends up being, for any particular value assigned to a gas bearing rock, a probability distribution should be associated with that value. GeoGAS modelling of gas emission uses a statistically modelling package called @RISK, where uncertain inputs are defined in terms of probability distributions. The model presents outputs as means and probability distributions, and a sensitivity ranking of the contribution of each input to the output distribution.

The point is more about knowing how the spread of gas content data affect the final calculation (ie input into a mine feasibility or pre feasibility study), and how important gas is to the particular circumstance. If gas content value uncertainty is shown to be a major contributor to assessment uncertainty, then the next stage of drilling can be more focused to overcome these deficiencies.

With slow desorption tests, assumptions need to be made about the gas content variability, and a rigid sampling program put in place. By the time the results are available, it would generally be too late to make adjustments in the sampling strategy - at least in the current drilling phase.

Fast desorption testing opens the opportunity for rationalisation of the sampling program during the current drilling campaign. For example, boreholes for gas content testing could be drilled on a wide spacing (say 4 km) and depth/gas content gradients from each borehole compared. The results would influence the extent of fill in drilling for gas content testing.

A more common approach is to limit the extent of sampling according to the budgetary con straints. With fast desorption testing and the “on the fly” sampling strategy, the opportunity is created to define the gas content and composition distribution with the least number of samples.

Note that Q1+Q2 only slow desorption testing, is inappropriate due to result scatter and error. The author believes that compromising gas content testing by undertaking Q1+Q2 only testing because of the need to keep the core intact is not an acceptable outcome.

All other forms of testing to define Q1+Q2+Q3 result in partial core destruction. Options to get around this limitation are:

?Test the non economic coal horizons for gas content and composition and leave the economic horizons for quality testing. This option only applies if there are sufficient minor coal seams in the sequence.

?Dedicate bore holes to gas content testing, or wedge off to obtain a coal quality core. The latter option is clearly preferred. While wedging off is more costly, in the end the better data should represent more value for money. If sample rationalisation strategies can be made to work, then the overall cost to define the gas content and composition distribution should be reasonable.

Definition of the Gas Reservoir Size

For longwall mining, quantification of gas sources in the region 200 m above the working seam to 60 m below the working seam is required. Any carbonaceous material can generate gas, so gas contents need to be assigned to all the potentially gas bearing materials present.

In using gas content data for gas reservoir definition, the effect of mineral matter must be taken into account. Gas content test results are normally expressed in units of m3/t (m3 of

gas per tonne of substance). If the material is always pure coal, the gas content results can be used directly - but this almost never occurs.

With variable amounts of mineral matter, expressing the results in m3/t becomes meaningless (m3of gas per tonne of what). It is important that each gas content determination have an associated density measurement. This facilitates conversion of the gas content data from m3/t to m3/m3 (m3 of gas / m3 of material). In this form it is useable.

eg a shaly coal unit has a gas content of 5.0 m3/t and a relative density of 1.6 g/cc. The gas content in m3/m3 is 5 x 1.6 = 8.0 m3/m3.

Most of the time, good quality coal is targeted for testing. This is fine, provided inferior coals make up only a small proportion of the total sequence. Where inferior coals are significant (eg Wongawilli seam) it is important to test a range of lithologies (carbonaceous shale, coaly shale, shaly coal, coal) and define a gas content/mineral matter relationship.

This type of analysis is facilitated by “bombing” relatively uniform samples - eg all coaly shale or all carbonaceous shale. Mixtures are sometimes unavoidable, and can be accommodated, but require more extensive laboratory testing involving:

?Defining and weighing each petrographic type.

?Undertaking sub-sampling and crushing of samples of each type.

?Calculating weighted average gas contents and densities for the combined material. It is also essential to exclude any material that does not contribute gas - eg clay bands.

For situations where only coal has been gas content tested, gas contents can be calculated for associated carbonaceous shaly strata by measuring the density of the carbonaceous shale and calculating the gas content.

eg A coal sample has a gas content of 5.0 m3/t and a density of 1.35 g/cc. An untested carbonaceous shale unit has a density of 1.9 g/cc. The density for zero gas content is (say) 2.4 m3/t (GeoGAS experience a range from 2.2 to 2.6 g/cc). The gas content of the carbonaceous shale can be calculated as a point on the straight line defined by the coal gas content and density (x1,y1) and the point at zero gas content and 2.4 g/cc density (x2,y2). The calculated carbonaceous shale gas content becomes 2.4m3/t.

In proceeding to calculate the gas reservoir size, the depth/gas content gradient data and gas content mineral matter data combined with stratigraphic logs enable assignment of gas contents for all potentially gassy material, complete with probability distributions reflecting the level of uncertainty in the data.

eg. Take the following sequence

Lithology Directly

Measured Depth

base

(m)

Thick

ness

(m)

Q1 +

Q2

+ Q3

(m3/t)

Q1 + Q2

+ Q3

(m3/m3)

Q1+Q2+Q3

(m3/m2)

ie/stratum

Carb. Shale No 190.0 2.6 N/A 2.4 6.24 Coal Yes 192.6 0.5 5.0 6.75 3.38 Claystone No 192.7 0.1 N/A 0 0 Coal Yes 193.7 1.0 4.7 6.34 6.34 Sandstone No 205.0 11.3 N/A N/A (1)

(1) Defined in m3/m2 units according to porosity and gas pressure

A more detailed account of this approach is contained in Williams and Maddocks (1993). Application to Mining

The gas desorption rate has direct application in situations where the coal has become detached from the rock mass, as in instantaneous outbursts of coal and gas and in gas emission from coal blocks in the goaf.

The GeoGAS DRI is a particularly important indicator of outburst proneness, enabling quite reasonable assessments to be carried out in the pre mining stage. For low permeability environments (<5 millidarcy), a GeoGAS DRI of >900 is deemed to be outburst prone. The reader is referred to Williams and Weissman (1995) for details on how desorption rate affects outburst proneness.

To assess the rate of gas desorption from goaf coal blocks, GeoGAS has developed a crushing test that measures the rate of gas desorption of coal core under conditions of complete exposure to air, exposure to air and seam gas, saturated moist and dry conditions. These data are then used to model the effect on gas desorption of different block sizes (in collaboration with Dr. A. Saghafi, CSIRO Division of Coal and Energy Technology).

With more emphasis being placed on spontaneous combustion control, the rate of gas desorption is becoming more important in gauging the time taken for a newly sealed off goaf to pass into and out of the explosive range. Too low a gas content could result in goaf gas mixture remaining in the explosive range for an unacceptably long period (pers comm. Andrew Self, Australian Coal Mining Consultants Pty. Ltd.).

Longwall gas emission is a highly complex process. Models that describe the emission process rely heavily on empirical data. GeoGAS uses three approaches:

?For Greenfield Sites/No Mine Access. The longwall specific emission is initially calculated. The model is an advance on traditional European methods in that the zone of

degassing accounts for the gas desorption pressures, and varying longwall geometries. None-the-less, this static value 9has then to be related to production by coefficients derived from past longwalls that ideally have similar features to the one being evaluated. The approach and its limitations are described in Williams, Maddocks and Gale (1992). The accuracy is “rough”. Results are given in terms of probability distributions utilizing @RISK modelling.

?For Mine Access/No Previous Longwalling. A longwall emission model is essentially custom built, taking into account the various gas sources that individually make up the total gas picture. At this level, more accurate definition is given on gas quantities and concentrations at different positions around the longwall. This includes differentiation of intake gas, gas generated from different sources within the goaf (ribs, coal blocks), gas during cutting of the face. The accuracy should be better, but has not been tested as yet (Dartbrook mine). Extensive use is made of probability distributions using @RISK modelling.

?Previous Longwall Experience. Provided a high standard of gas emission monitoring has been undertaken, empirical relationships are readily established linking return gas concentration to the main variables of production rate, ventilating air and gas capture described in Williams, Maddocks and Gale, (1992).

Provided there are no significant geological changes (and this frequently occurs),the results can be highly accurate (example Tahmoor Colliery, Williams,1991). Again, probability distributions using @RISK modelling are relevant here.

Basic to all these models are detailed assessmer nts of the gas reservoir size along the longwall pillar. Quite marked changes can occur in stratigraphy, gas content and composition, resulting in conditions at the start of a longwall being very different to conditions at the end of the pillar (100% change).

Gas reservoir simulators that model the fundamental characteristics of gas migration through coal are directly applicable to assessment of rib emission and design of gas drainage. Apart from gas content and composition data, basic model input includes permeability, relative gas/water permeability curves and gas sorption pressures (Meany et al., 1995). Permeability and relative permeability can be derived from surface bore hole well tests, with relative permeability determined from curve matching well test data using a gas reservoir simulator (eg SIMED II) or laboratory testing (Meany and Paterson, 1996).

Water has an enormous effect on the rate of gas flow from a reservoir. The relative

permeability curves enable modelling of this effect. None-the-less, for a Greenfield site,a high level of uncertainty remains. Measurements from within operating coal mines frequently show a high variability in gas flow and residual gas contents, reflecting changes in permeability and relative permeability (apart from more direct causes such as partially collapsed boreholes).

For gas drainage and ventilation design an approach used by GeoGAS involves: ?Drilling wide (say 100 m) spaced test in-seam boreholes, and taking a profile of cores for gas content determination along their length. The rib should be old enough that the gas content profile reflects the state of rib degassing. The tests can be carried out in orthogonal boreholes to measure the effect of directional permeability due to cleating or stress effects.

?The gas flow history from the test bore holes is measured.

?The history of rib emission is defined (ideally measured prior to the test borehole drilling).

?Model the measured gas content profile using curve matching in SIMED II.

?Validate the model by using it to define the gas flow rates from the borehole and the rib emission rates. If differences occur between the measured and simulated results, changes to the permeability and relative permeability flows are required until all three independent sets of data can be modelled. Having developed the model, runs can then be made assessing the effect of different hole spacings and drainage times on the remaining gas content.

For an operating mine requiring gas drainage, it is potentially an ongoing effort to balance bore hole spacings with the drainage time allowed by the mine plan, in an environment where the gas content and composition is changing laterally. Most mines are not set up to account for these changes and drill on a set spacing regardless of the drainage time available or changes in gas content.

Primarily used as a planning aid for gas drainage, gas extraction plant design and gas utilization, GeoGAS use another program called GASTOT. It draws on a data base built mainly from SIMED II simulation data, of all the possible combinations of gas content, gas composition and hole spacing applying to the deposit. On entering the mining and drilling schedule on a panel by panel basis, the model is run, involving “drilling” every borehole in what could be the life of the mine and totaling the gas drained. Results are given in terms of gas quantity and quality to the gas extraction plant and remaining gas content in the coal.

Areas where the remaining gas content is still too high can be flagged, and the mine plan adjusted accordingly.

Gas content data used in SIMED II models use Total Desorbable Gas Content (Q1+Q2+Q3) recalculated to zero absolute pressure (ie Q1+Q2+Q3+”Q4”) with the aid of gas sorption isotherms, where Q4 is that component of gas content between 1 bar and 0 bar absolute. The importance of determining Total Desorbable Gas Content rather than just Desorbable Gas Content (Q1+Q2) is reinforced in this application.

Conclusions

Assessment of gas reservoir size and distribution is another aspect of resource definition very much in the realm of the exploration or mine geologist to oversee. Geological training provides a sound basis for understanding the controls on the gas distribution and designing sampling and testing strategies to suit the particular situation.

Bore core requirements create pressure on the geologist to cut the gas content testing short, either through shortened desorption or by not proceeding to test for residual gas content (Q3). The author makes the point that Desorbable Gas Content (Q1+Q2) only testing compromises later application of the data. With increasing importance of gas in mining,Q1+Q2 testing should rarely be acceptable. With appropriate sampling strategies, there should be sufficient material for bore core testing and determination of Total Desorbable Gas Content.

Fast desorption methods are clearly preferred. Advantages over slow desorption methods are, greater accuracy in gas composition assessment, the potential to rationalise sampling, fast turnaround involving fewer resources, finalisation of geological logs and early application of the data. Q3 can still be differentiated. A more sensitive indicator of gas desorption rate is incorporated in GeoGAS’s fast desorption method (GeoGAS Desorption Rate Index).

References

Williams R.J.,1991. Carbon dioxide and methane emission at Tahmoor Colliery. Symp. on gas in Australian coals, Bambe rry and Depers Ed. Geol. Soc. Aust. Symp. Proc. 2 Uni. of NSW February

Williams R. J. , Maddocks P. I. ,Gale W.J.,1992. Longwall gas emission modelling. Symp. on Coal Bed Methane Research and Development in Australia,Townsville.

Williams R.J. and Maddocks P .I . ,1993. On gas content testing and data reduction. New

developments in coal geology,Coal geology group symp. Geol. Soc. Aust. Brisbane . Meany K. , Paterson L.,Stevenson M.D. , Pinczewski W.V.,1995. Advance in coal seam reservoir simulation for mine gas drainage. Int. Symp. cum Workshop on Management and Control of High Gas Emissionsand Outbursts, Wollongong.

Williams R. J. and Weissman J. J. ,1995. Gas emission and outburst assessment in mixed CO2 and CH4 environments. ACIRL Underground Mining Seminar Brisbane Sept. 95. Meany K. and Paterson L.,1996. Relative permeability in coal. 1996 SPE Asia Pacific Oil and Gas Conf. , Adelaide.

在长壁采煤法的提出和发展中,

瓦斯含量测量数据对瓦斯突出及其危害评估的应用。

R.J. Williams GeoGAS Systems Pty. Ltd.

摘要:

该论文比较了快、慢速解吸方法的方法,并且尝试着为他们的应用和关联的取样方法提供指导方针。

解吸瓦斯含量(Q1 + Q2)确定总解吸瓦斯含量(Q1 + Q2 + Q3)的重要性突出。前者涉及孔核心部分破坏,但提供了更准确的数据。这也更适合用于在气体储存仿真建模。

快速解吸法比缓慢解吸法有相当大的优势。快速解析法能够更精确的确定气体成分,潜在的合理化采样,快速周转,涉及更少的资源,落实地质日志和早期应用的数据。Q3仍然可以有所区别。气体解吸率更精确的指标被纳入在地气的快速解吸法(地气解吸率指数)。

气藏气田促进大小测定气体含量和气体成分随深度和矿物质之间的关系定义的抽样策略。这使那些没有直接测试的含气地层气体含量的间接转让。气体含量测试/指派下含煤视野的重要性表示。

气体含量测试结果是基本输入到任何采矿应用程序。给出的概述中的应用建模气体排放。统计分析的数据可以被表示为装置和概率分布的模拟输入和输出。

介绍

含气量测试仪已经成为一个表面钻孔勘探计划开采地下煤矿的日常工作的一部分。气体含量测试数据是计算成本的方法,计算燃气,通风和自然发火防治的基本投入。

随着时代的发展,在过去三年的快速解吸瓦斯含量测试方法,勘探地质学家面临额外的选择方法和抽样策略。

本文比较了快速和慢速解吸的方法,并尝试为他们的应用程序和相关的抽样策略提供指引。

行列式的方法,其中最重要的数据将如何被使用。被广泛覆盖到长壁发展和提取中的应用。

术语

本文中使用的下列术语。一般应在整个行业接受。

总解吸瓦斯含量(TDGC):损失瓦斯量(Q1)的总和,解吸气体(Q2)和剩余瓦斯量(Q3)

损失瓦斯量(Q3):气体从样品丢失取心和密封气体罐之间。

解吸的气体:解吸的气体从一个未破碎的煤样在丢失的气体之间的时间(每单位质量)测试和粉碎的煤。该术语适用于快速解吸测试,并作为Q2是不一样的。

Q2:(每单位质量)从持有内接缝气体气氛中的未破碎的煤样气体解吸,储气瓶中的气体的分压是在平衡与剩下的气体在核心的时间点。环境压力约1个大气压。

地气的快速解吸方法确定Q2破碎减去Q3值分别确定从最初的解吸气体,再加上气体的差异。

Q2 =(“粉碎”)解吸气体“+”气- Q3

破碎:破碎煤样时,在环境压力,释放的气体。适用于快速解吸测试。作为Q3的定义是不一样的。

剩余瓦斯量(Q3):气体的体积单位质量碎煤样品在大气压力下解吸后已获准解吸平衡气体含量在煤层瓦斯气氛。

解吸瓦斯含量:Q1和Q2的总和。

地气DRI - 在破碎煤样瓦斯解吸率的措施,纠正TDGC的样本。(200克的样品在30秒后破碎产生的气体体积校正气体“破碎”的值TDGC值) 。

而作为3980-1991指定报告结果STP ( 0℃,101.3千帕),它是常见的做法,在行业内报告结果到20°C和101.3千帕。

快速和慢速解吸方法比较

澳大利亚标准AS 3980-1991 ,脱附煤层瓦斯含量的测定指南解决需要采取更均匀的气体含量测试方法。从那时起(1991年)的局限性和不足之处,一些已经确定,结合快速解吸技术,目前正在制定一个新的标准。

传统上,含气量测试已进行缓慢解吸方法( USBM ) ,测试主要局限于解吸瓦斯含量Q1 + Q2决定。快速解吸方法和相关的审查和慢解吸方法(如工作组MN/1/5/3 - 澳大利亚标准)的出现,这些方法的局限性已经越来越清楚地认识到。

的意见和比较仅指地气的方法快速解吸在其应用程序的测试和经验。如需更完整的视图,有兴趣的读者应该已经开发出快速解吸方法( ACIRL ,必和必拓,CSIRO ,KCC ,Lunagas )等机构进行联系。

快和慢的解吸方法主要不同的多种方式,其中最重要的是破坏的孔芯在测试过程中,所花费的时间来实现的结果和结果的准确度(表1) 。

表一快、慢速解吸的对比

慢速解吸Q1 + Q2 Q3的慢速解吸GeoGAS

快速解吸

Q1 + Q2 + Q3

Q3的快速解

原封不动的核

心有没有

(2×200克破碎

的)

没有

(2×200克破碎

的)

没有

(额外的2×200

克破碎的)

结果时间30天+30天+< 1天30天+

气体量精确度粗略的当增加Q 1 + Q 2

时可能是精确的

精确地

(+/-0.5立方米/

吨可信度

95%)

精确的

气体成分精确

度粗略的,除了纯

CH4

粗略的,除了纯

CH4

精确定义

CO2和N2

精确定义

CO2和N2

解吸率的精确

度粗略的N/A 精确的

GeoGASDR

指数

N/A

资源需要大量的气体

爆炸/空间需要大量的气体

爆炸/空间

最低限度的快

速重新使用设

使用广口瓶,

但和慢速解吸

法数量一致

调整取样策略

“在风行中”

不可能不可能可能可能

系统内缓慢泄

露的影响

高高轻微的轻微的

编号测试需要

定义储层

最大限度的最大限度的最低限度的最低限度的缓慢解吸的方法( Q1 + Q2 )的主要优点是,它可以使用,如果需要的核心完好的其它分析(例如耐洗性测试),也有的抽样方案。作者认为,结果的准确性是不可接受的。

没有进入到Q3可以停止测试Q1 + Q2 Q3组件之间的1至4 m3/t.The是很重要的采矿和天然气开采的气体含量导致低估。

测量Q1 + Q2仅是测试结果的影响非常大,所使用的设备,特别是空隙空间气体中的炸弹。气体将停止解吸在碳罐的核心周围的气体的分压时,在留在核心与吸附气体的浓度达到平衡。整理测试“Q2”,常给人高分散,潜在的误导性的结果,因为这种效果。终止测试的时间也有些误差。

Q1 + Q2 + Q3在快速解吸的测试,确定在一个操作。它是有用知道第三季度值,所以与地气的快速解吸方法,一个小规模的“慢解吸”测试已经增加,直接决定了它。一个子样本(约600克)第三季度在快速解吸试验,并密封在一个小的“炸弹” (玻璃瓶) 。被留在一个足够长的期间内,停止解吸的气体线。“炸弹”被装得满满的煤,,使测试结束时,解吸平衡终点是一个纯煤层气(除非气体含量非常低)附近周围的气体煤块。此材料,然后粉碎,放出的气体被计算为Q3。

快速解吸方法更准确地确定气体成分。CO2,CH4,N2和O2气体样品从勘探核心的常规分析。慢速解吸技术不充分解决CO2(这是随手一丢,即使在酸性盐水浴)和暧昧有关的问题,成为一个真正的组成部分,煤层瓦斯N2。随着快速的解吸方法,有很少的时间,可用于二氧化碳在水中的溶液,或用于氧气进行反应的核心,以产生过量的氮气。

快速解吸测试,快速周转(结果样品到达实验室后,在短短2个小时内)。这意味着设备的需求最小化。业绩释放快速周转等检查,落实地质记录的数据和应用程序的核心。重要的是,气体的测定数据可以被评价为钻井程序的进展,所以可以在不断变化的数据图像中,决定采样。

气体含量是一个静态的措施。但是,其它因素显着影响气体解吸率,这些气体成分,煤的固有的结构特点,以及湿气。

气体解吸的速率是非常重要的,量化的。以下方法可供选择:

?最初的气体解吸率作为Q1的测定。这是常见的快速和慢速解吸测试。

?瓦斯解析率(解吸曲线)的慢解吸实验部分。

?气体解吸率的过程中破碎,快速解吸测试的一部分。

从三个选项中,作者发现在煤的粉碎瓦斯解吸率(地气DRI)是高度敏感的,能够从瓦斯解吸率的影响差异,对煤气成分和固有的结构特点。从一个数据库超过3000直接还原铁的测定,特别是煤的解吸率表征是现成的,随着天然气开采过程中相关的反应,特别是在关系到突出现象。

取样和测试策略

一个通用于大多数气体检测方案的目的是确定地层和横向分布的气体含量和气体成分。理想情况下,所需的采样范围由统计评估数据,有足够的采样时正在进行进一步取样(更不要说在2%以内)的样本结果的概率分布的均值和不受影响。

采矿气体的效果进行评估,所有瓦斯材料(任何含碳物质)将需要分配值气体的含量和组成,大多是间接的。来测试每一个作品的煤或碳质材料,这是不实际的。关键是要定义气体含量和其它参数,使气体含量的间接分配到那些未经测试的岩性之间的关系。的主要关系是气体含量和深度,气体含量和无机质和气体组成和深度。

在这些参数中的横向变化需要被定义控件还确定(如:断裂作用可影响二氧化碳的分布) 。

这些关系被定义在何种程度上决定了所需的采样量。

无论多么好或坏的关系最终被任何特定的值分配给气体轴承岩,概率分布应该与该值关联。地气气体排放建模采用了统计学建模软件包名为@ RISK不确定输入定义的概率分布。该模型的输出装置和概率分布,每个输入的输出分布的贡献的灵敏度排名。

问题的关键是知道如何传播的气体含量数据影响最后计算(即输入到一个矿井可行性研究或预可行性研究),以及如何重要的气体是在特定的情况下的。如果气体含量值的不确定性评估的不确定性是一个重大贡献,那么下一阶段的钻探可以更集中,以克服这些不足之处。

慢解吸测试,假设需要作出的气体含量的变异,和刚性的抽样方案落实到位。的时候,结果是可利用的,通常是取样策略作出调整,至少在目前的钻探阶段。

快速解吸测试打开抽样方案的合理化,在目前的钻探活动的机会。例如,钻孔瓦斯含量测试可以从每个钻孔钻(比如4公里),宽间距和深度/气体含量梯度比较。钻孔瓦斯含量测试结果将影响程度的填充。

更常见的做法是根据预算约束限制采样的程度。随着快速解吸测试“对飞”的抽样策略,创建的机会,用最少的样本数量来定义气体的含量和组成分布。

需要注意的是Q1 + Q2不仅速度慢解吸测试,是不合适的,因为导致散射和错误的。笔者认为,影响气体含量测试通过开展Q1 + Q2唯一的测试,因为需要保持核心不变,是不是一个可以接受的结果。

所有其它形式的测试,以确定Q1 + Q2 + Q3导致偏芯破坏。绕过这个限制的选项是

?测试气体的含量和组成的非经济煤炭的视野,离开经济的视野进行质量检验。此选项仅适用序列中是否有足够的小煤层。

气量测试专用钻孔或楔取得煤质量核心。后一种选择显然是首选。虽然楔入是较昂贵的,到底应该代表更多更好的数据物有所值。如果样品合理化策略可以工作,然后整体成本定义的气体含量和组成分布应该是合理的。

气藏面积的定义

气源在该地区的工作缝200米以上60米以下煤层长壁开采,量化是必需的。不限碳质材料可以产生气体,所以气体的内容需要被分配到所有潜在的气体轴承材料。

在使用气体的内容数据在气藏的定义中,无机质的效果,必须考虑在内。气体含量测试的结果通常以单位立方米/吨(立方米气体物质每吨) 。如果材料是纯煤,气体含量的结果可以直接使用- 但这种情况几乎不会发生。

可变数量的矿物质,表达立方米/吨的结果变得毫无意义(立方米天然气每吨)。重要的是,每一种气体含量的测定,具有相关联的密度测量。这有利于立方米/吨的气体含量数据的转换率m3/m3(立方米天然气/立方米的材料)。在这种形式下,它是可用的。

例如的泥质煤单元具有气体含量为5.0立方米/吨的相对密度为1.6克/立方厘米。率m3/m3气体含量为5 ×1.6 = 8.0率m3/m3。

大部分的时间,良好的质量的煤对象进行测试。这是好的,提供劣质煤只有一小部分的总序列弥补。劣等煤显着性(例如,焊缝)旺格维利重要的是要测试的范围内的岩性(泥质煤页岩,碳质页岩,煤,煤)和定义的气体含量/无机质的关系。

这种类型的分析是促进了“轰炸”相对统一的样本- 例如,所有煤页岩或全部碳质页岩。有时混合物是不可避免的,并且可被容纳,但需要更广泛的实验室测试,涉及:

?定义和称量每个岩型。

?承诺亚取样,每种类型的样品破碎。

?计算加权平均气体含量和密度的组合材料。它也是必不可少的,以排除任何材料,不利于气―如粘土带。

对于唯一的煤的情况下,已被测试的气体含量,气体含量可以通过测量密度的碳质页岩和计算的气体含量,计算出相关联的碳质页岩地层。

例如煤样有5.0立方米/吨,密度为1.35克/立方厘米的气体含量。一个未经考验的炭质页岩单元的密度为1.9克/立方厘米。气体含量为零的密度是(说) 2.4立方米/吨(地气体验范围从2.2至2.6克/立方厘米) 。煤气含量和密度( X1,Y1)和零气体含量和2.4

克/立方厘米的密度( X2,Y2)的点所定义的直线上的点可以计算为碳质页岩的气体含量。计算出的碳质页岩气含量变得/吨2.4立方米。

在继续计算气藏的大小,深度/气体含量的梯度数据及气体含量的矿物质数据结合地层日志可以使气体含量的分配的所有潜在瓦斯材料,完整的反映在数据的不确定性的概率分布。

例如。以顺序如下:

岩性直测量深度基

(M) 厚内斯

(M)

Q1+

Q2+3

(m3/t)

Q1 + Q2

+ Q3

(m3/m3)

Q1+Q2+Q3

(m3/m2)

即/地层

碳水化合物

页岩

No 190.0 2.6 N/A 2.4 6.24 煤炭Yes 192.6 0.5 5.0 6.75 3.38 陶石No 192.7 0.1 N/A 0 0 煤炭Yes 193.7 1.0 4.7 6.34 6.34 砂岩No 205.0 11.3 N/A N/A (1) (1)定义在M3/M2单位根据孔隙度和气体压力

这种方法的更详细的资料载在威廉姆斯和马多克斯(1993) 。

矿业中的应用

气体解吸率有直接应用的情况下,煤炭已成为脱离岩体,在瞬时爆发的煤与瓦斯和采空区煤炭板块气体排放。

地气DRI爆发倾向,是一个非常重要的指标,使相当合理的评估,在采矿前阶段进行。低渗透环境( < 5毫达西) > 900 ,地气DRI被视为爆发容易发生。读者威廉姆斯和韦斯曼(1995)被称为解吸率如何影响爆发倾向。

为了评估从采空区煤炭板块气体解吸率,已开发地气测量煤芯的气体解吸率的条件下,完全暴露在空气中,暴露于空气和瓦斯,饱和的湿润和干燥的条件下进行冲击测试。这些数据,然后使用不同的块大小(中的协作博士A. Saghafi的煤炭与能源技术,CSIRO部)的气体解吸的影响进行建模。

随着越来越多的重点放在自发的燃烧控制,气体解吸率变得越来越重要在衡量所花费的时间,一个新封锁爆炸范围内的进入和退出的采空区通过。气体含量过低,可

安全工程专业英语部分翻译

Unit 1 safety management system Accident causation models 事故致因理论 Safety management 安全管理Physical conditions 物质条件 Machine guarding 机械保护装置 House-keeping 工作场所管理 Top management 高层管理人员 Human errors 人因失误Accident-proneness models 事故倾向模型 Munitions factory 军工厂Causal factors 起因Risking taking 冒险行为Corporate culture 企业文化Loss prevention 损失预防Process industry 制造工业Hazard control 危险控制Intensive study 广泛研究Organizational performance 企业绩效 Mutual trust 相互信任Safety officer 安全官员 Safety committee 安全委员会Shop-floor 生产区Unionized company 集团公司Seniority 资历、工龄Local culture 当地文化 Absenteeism rate 缺勤率Power relations 权力关系Status review 状态审查 Lower-level management 低层管理者 Business performance 组织绩

效 Most senior executive 高级主管 Supervisory level 监督层Safety principle 安全规则Wall-board 公告栏Implement plan 执行计划Hazard identification 危险辨识 Safety performance 安全性能 One comprehensive definition for an organizational culture has been presented by Schein who has said the organizational culture is “a pattern of basic assumptions – invented, discovered, or developed by a given group as it learns to cope with its problems of external adaptation and internal integration –that has worked well enough to be considered valid and, therefore, to be taught to new members as the correct way to perceive, think, and feel in relation to those problems” 译文:Schein给出了组织文化的广泛定义,他认为组织文化是由若干基本假设组成的一种模式,这些假设是由某个特定团体在处理外部适应问题与内部整合问题的过程中发明、发现或完善的。由于以这种模式工作的有效性得到了认可,因此将它作为一种正确的方法传授给新成员,让他们以此来认识、思考和解决问题[指适应外部与整合内部的过程中的问题]。 The safety culture of an organization is the product of individual and group values, attitudes, perceptions, competencies, and patterns of behavior that determine the commitment to, and the style and proficiency of , an organization’s health and safety management. 译文:组织的安全文化由以下几项内容组成:个人和群体的价值观、态度、观念、能力和行为方式。这种行为方式决定了个人或团体对组织健康安全管理的责任,以及组织健康安全管理的形式和熟练程度。 Unit 2 System Safety Engineering System safety engineering 系统安全工程By-product 附带产生的结果

毕业论文英文参考文献与译文

Inventory management Inventory Control On the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion. The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility. Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored: First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments . Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field of

毕业论文外文翻译模版

吉林化工学院理学院 毕业论文外文翻译English Title(Times New Roman ,三号) 学生学号:08810219 学生姓名:袁庚文 专业班级:信息与计算科学0802 指导教师:赵瑛 职称副教授 起止日期:2012.2.27~2012.3.14 吉林化工学院 Jilin Institute of Chemical Technology

1 外文翻译的基本内容 应选择与本课题密切相关的外文文献(学术期刊网上的),译成中文,与原文装订在一起并独立成册。在毕业答辩前,同论文一起上交。译文字数不应少于3000个汉字。 2 书写规范 2.1 外文翻译的正文格式 正文版心设置为:上边距:3.5厘米,下边距:2.5厘米,左边距:3.5厘米,右边距:2厘米,页眉:2.5厘米,页脚:2厘米。 中文部分正文选用模板中的样式所定义的“正文”,每段落首行缩进2字;或者手动设置成每段落首行缩进2字,字体:宋体,字号:小四,行距:多倍行距1.3,间距:前段、后段均为0行。 这部分工作模板中已经自动设置为缺省值。 2.2标题格式 特别注意:各级标题的具体形式可参照外文原文确定。 1.第一级标题(如:第1章绪论)选用模板中的样式所定义的“标题1”,居左;或者手动设置成字体:黑体,居左,字号:三号,1.5倍行距,段后11磅,段前为11磅。 2.第二级标题(如:1.2 摘要与关键词)选用模板中的样式所定义的“标题2”,居左;或者手动设置成字体:黑体,居左,字号:四号,1.5倍行距,段后为0,段前0.5行。 3.第三级标题(如:1.2.1 摘要)选用模板中的样式所定义的“标题3”,居左;或者手动设置成字体:黑体,居左,字号:小四,1.5倍行距,段后为0,段前0.5行。 标题和后面文字之间空一格(半角)。 3 图表及公式等的格式说明 图表、公式、参考文献等的格式详见《吉林化工学院本科学生毕业设计说明书(论文)撰写规范及标准模版》中相关的说明。

计算机网络安全文献综述

计算机网络安全综述学生姓名:李嘉伟 学号:11209080279 院系:信息工程学院指导教师姓名:夏峰二零一三年十月

[摘要] 随着计算机网络技术的快速发展,网络安全日益成为人们关注的焦点。本文分析了影响网络安全的主要因素及攻击的主要方式,从管理和技术两方面就加强计算机网络安全提出了针对性的建议。 [关键词] 计算机网络;安全;管理;技术;加密;防火墙 一.引言 计算机网络是一个开放和自由的空间,但公开化的网络平台为非法入侵者提供了可乘之机,黑客和反黑客、破坏和反破坏的斗争愈演愈烈,不仅影响了网络稳定运行和用户的正常使用,造成重大经济损失,而且还可能威胁到国家安全。如何更有效地保护重要的信息数据、提高计算机网络的安全性已经成为影响一个国家的政治、经济、军事和人民生活的重大关键问题。本文通过深入分析网络安全面临的挑战及攻击的主要方式,从管理和技术两方面就加强计算机网络安全提出针对性建议。

二.正文 1.影响网络安全的主要因素[1] 计算机网络安全是指“为数据处理系统建立和采取的技术和管理的安全保护,保护计算机硬件、软件数据不因偶然和恶意的原因而遭到破坏、更改和泄漏”。计算机网络所面临的威胁是多方面的,既包括对网络中信息的威胁,也包括对网络中设备的威胁,但归结起来,主要有三点:一是人为的无意失误。如操作员安全配置不当造成系统存在安全漏洞,用户安全意识不强,口令选择不慎,将自己的帐号随意转借他人或与别人共享等都会给网络安全带来威胁。二是人为的恶意攻击。这也是目前计算机网络所面临的最大威胁,比如敌手的攻击和计算机犯罪都属于这种情况,此类攻击又可以分为两种:一种是主动攻击,它以各种方式有选择地破坏信息的有效性和完整性;另一类是被动攻击,它是在不影响网络正常工作的情况下,进行截获、窃取、破译以获得重要机密信息。这两种攻击均可对计算机网络造成极大的危害,并导致机密数据的泄漏。三是网络软件的漏洞和“后门”。任何一款软件都或多或少存在漏洞,这些缺陷和漏洞恰恰就是黑客进行攻击的首选目标。绝大部分网络入侵事件都是因为安全措施不完善,没有及时补上系统漏洞造成的。此外,软件公司的编程人员为便于维护而设置的软件“后门”也是不容忽视的巨大威胁,一旦“后门”洞开,别人就能随意进入系统,后果不堪设想。

房地产信息管理系统的设计与实现 外文翻译

本科毕业设计(论文)外文翻译 译文: ASP ASP介绍 你是否对静态HTML网页感到厌倦呢?你是否想要创建动态网页呢?你是否想 要你的网页能够数据库存储呢?如果你回答:“是”,ASP可能会帮你解决。在2002年5月,微软预计世界上的ASP开发者将超过80万。你可能会有一个疑问什么是ASP。不用着急,等你读完这些,你讲会知道ASP是什么,ASP如何工作以及它能为我们做 什么。你准备好了吗?让我们一起去了解ASP。 什么是ASP? ASP为动态服务器网页。微软在1996年12月推出动态服务器网页,版本是3.0。微软公司的正式定义为:“动态服务器网页是一个开放的、编辑自由的应用环境,你可以将HTML、脚本、可重用的元件来创建动态的以及强大的网络基础业务方案。动态服务器网页服务器端脚本,IIS能够以支持Jscript和VBScript。”(2)。换句话说,ASP是微软技术开发的,能使您可以通过脚本如VBScript Jscript的帮助创建动态网站。微软的网站服务器都支持ASP技术并且是免费的。如果你有Window NT4.0服务器安装,你可以下载IIS(互联网信息服务器)3.0或4.0。如果你正在使用的Windows2000,IIS 5.0是它的一个免费的组件。如果你是Windows95/98,你可以下载(个人网络服务器(PWS),这是比IIS小的一个版本,可以从Windows95/98CD中安装,你也可以从微软的网站上免费下载这些产品。 好了,您已经学会了什么是ASP技术,接下来,您将学习ASP文件。它和HTML文 件相同吗?让我们开始研究它吧。 什么是ASP文件? 一个ASP文件和一个HTML文件非常相似,它包含文本,HTML标签以及脚本,这些都在服务器中,广泛用在ASP网页上的脚本语言有2种,分别是VBScript和Jscript,VBScript与Visual Basic非常相似,而Jscript是微软JavaScript的版本。尽管如此,VBScript是ASP默认的脚本语言。另外,这两种脚本语言,只要你安装了ActiveX脚本引擎,你可以使用任意一个,例如PerlScript。 HTML文件和ASP文件的不同点是ASP文件有“.Asp”扩展名。此外,HTML标签和ASP代码的脚本分隔符也不同。一个脚本分隔符,标志着一个单位的开始和结束。HTML标签以小于号(<)开始(>)结束,而ASP以<%开始,%>结束,两者之间是服务端脚本。

建筑施工外文翻译---深基坑施工的安全监测和预警

中文4068字 附录 1. 外文资料原件及译文 (1)外文资料原件 Safety Monitoring and Early Warning for Deep Foundation Pit Construction Haibiao WANG【1】,Haixu YANG 【2】, Xibin DONG 【3】, and Songyuan NI【4】 1.School of Engineering Technique, Northeast Forestry University, Harbin,Heilongjiang 150040, China; PH (086) 451-82191771; email: whbcumt@https://www.doczj.com/doc/3214719361.html, 2.School of Civil Engineering , Northeast Forestry University, Harbin, Heilongjiang150040, China; PH (086) 451-82190402; email: yhxcumt@16 https://www.doczj.com/doc/3214719361.html, 3.School of Engineering Technique, Northeast Forestry University, Harbin,Heilongjiang 150040, China; PH (086) 451-82190392; email: yhxcumt@https://www.doczj.com/doc/3214719361.html, 4.School of Engineering Technique, Northeast Forestry University, Harbin,Heilongjiang 150040, China; PH (086) 451-82190335; email: sdrznsy@https://www.doczj.com/doc/3214719361.html, ABSTRACT Based on an engineering project, this paper initially establishes an observation point for foundation pit and then determines monitor warning value. During project construction, we carried out an experiment on the horizontal movement and settlement and inclination of adjacent buildings and promptly monitored the foundation pit., Scientific analysis of the data is presented. This work is designed to provide for effective measures to implement security alerts for foundation construction.Detailed analysis examines the causes of deformation of foundation pit and offers a reasonable treatment measure. Results offer some scientific basis and technical measures to guarantee deep foundation project construction security and more knowledgeable engineering construction.

安全工程专业英语词汇及翻译(司鹄版)

Unit6 Industry hygiene工业卫生physical hazard物理危害、物质危害nonionizing radiation非电离辐射adverse effects副作用loud noise嘈杂的声音chemical bum化学烧伤live electrical circuits 带电电路confined space密闭空间hearing loss听力丧失physical or mental disturbance身体或精神障碍annoyance烦恼power tools电动工具impulse脉冲sound level meter噪声计jet engine喷气式发动机time-weighted average时间加权平均heat stress热应力、热威胁shivering 颤抖hard labor辛苦工作fatigued疲劳的living tissue活组织plastic sealer塑料密封机biological hazard生物危害potable water饮用水sewage污水physical contact身体接触allergic reaction 过敏反应severe pain剧烈疼痛manual handing手工处理airborne空中的on a daily basis每天hazard communication standard危害通识规定stipulation规定、条款trade name商标名 工业卫生被定义为:“致力于预测、识别、评估和控制环境因素或压力的科学与技术,这些压力产生或来自与工作场所,能够造成疾病、损害人们的幸福安康、或是工程或社区居民的工作效率不高,并使他们感觉到很不舒服。(P67) 当噪音导致暂时或永久的听力丧失,使身体或精神发生紊乱,对语言交流产生干扰,或对工作、休息、放松、睡觉产生干扰时,它是一种非常严重的危害。噪音是任何不被期望的声音,它通常是一种强度变化但不包括任何信息的声音。他干扰人们对正常声音的辨别,可能是有害的,能使人烦恼,并干扰人们说话。(P68) Unit9 Accident investigation事故调查after-the-fact事实背后的take an investigation进行调查fact-finding process寻找事实的过程insurance carrier保险公司/承保人plance blame推卸责任permanent total disability永久全部劳动力丧失for simplicity为简单起见accident prevention 事故预防investigation procedures调查过程fact finding寻找事实operating procedures flow diagrams操作过程流程图maintenance chart维修图表bound notebook活页笔记本physical or chemical law物理或化学定律table of contens 目录narrative叙事的counter-measure干预措施 调查人员在调查过程中从各方面收集证据,从证人、旁观者及一些相关报道中得到信息,在事故发生后尽快的找目击证人谈话,在事故现场遭到改变前进行检查,对事故场景进行拍照并绘制草图,记录与地形相关的所有数据,并将所有的报道复印保存。记录常规的操作流程图、维修图表或对困难、异常现象的报告等非常有用。在活页笔记本中完整准确地记录。记录事故发生前的环境、事故顺序及事故发生后的环境情况等。另外,记录伤者、证人、机械能量来源和危害物质的位置。(P119) Unit10 Safety electricity安全用电electrical equipment电力设备fuse puller保险丝夹break contact断开接点/触电hot side高压端load side 负荷端line side线路/火线端groundfault circuit Interrupt 漏电保护器ground fault接地故障receptacle电源插座hot bubs热水澡桶underwater lighting水底照明fountains 人工喷泉ungrounded(hot)conductor 未接地(高压)单体/火线neutral conductor中性导体fault current载荷中心panelboard 配电板branch-circuit分支电路CB一种多功能插座plug-in插入式 上锁/挂牌成套设备也是可用的。上锁/挂牌套件中包含有必须满足OSHA上锁/挂牌标准的组件。上锁/挂牌套件中包含有可重复使用的危险标签、临时悬挂标志、各种闭锁、锁、磁性标志、及与上锁/挂牌相关的信息。无论什么原因停下工作或当天不能完成工作时,在返回

英语专业毕业论文翻译类论文

英语专业毕业论文翻译 类论文 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

毕业论文(设计)Title:The Application of the Iconicity to the Translation of Chinese Poetry 题目:象似性在中国诗歌翻译中的应用 学生姓名孔令霞 学号 BC09150201 指导教师祁晓菲助教 年级 2009级英语本科(翻译方向)二班 专业英语 系别外国语言文学系

黑龙江外国语学院本科生毕业论文(设计)任务书 摘要

索绪尔提出的语言符号任意性,近些年不断受到质疑,来自语言象似性的研究是最大的挑战。语言象似性理论是针对语言任意性理论提出来的,并在不断发展。象似性是当今认知语言学研究中的一个重要课题,是指语言符号的能指与所指之间的自然联系。本文以中国诗歌英译为例,探讨象似性在中国诗歌翻译中的应用,从以下几个部分阐述:(1)象似性的发展;(2)象似性的定义及分类;(3)中国诗歌翻译的标准;(4)象似性在中国诗歌翻译中的应用,主要从以下几个方面论述:声音象似、顺序象似、数量象似、对称象似方面。通过以上几个方面的探究,探讨了中国诗歌翻译中象似性原则的重大作用,在诗歌翻译过程中有助于得到“形神皆似”和“意美、音美、形美”的理想翻译效果。 关键词:象似性;诗歌;翻译

Abstract The arbitrariness theory of language signs proposed by Saussure is severely challenged by the study of language iconicity in recent years. The theory of iconicity is put forward in contrast to that of arbitrariness and has been developing gradually. Iconicity, which is an important subject in the research of cognitive linguistics, refers to a natural resemblance or analogy between the form of a sign and the object or concept. This thesis mainly discusses the application of the iconicity to the translation of Chinese poetry. The paper is better described from the following parts: (1) The development of the iconicity; (2) The definition and classification of the iconicity; (3) The standards of the translation to Chinese poetry; (4) The application of the iconicity to the translation of Chinese poetry, mainly discussed from the following aspects: sound iconicity, order iconicity, quantity iconicity, and symmetrical iconicity. Through in-depth discussion of the above aspects, this paper could come to the conclusion that the iconicity is very important in the translation of poetry. It is conductive to reach the ideal effect of “the similarity of form and spirit” and “the three beauties”. Key words: the iconicity; poetry; translation

大学毕业论文---软件专业外文文献中英文翻译

软件专业毕业论文外文文献中英文翻译 Object landscapes and lifetimes Tech nically, OOP is just about abstract data typing, in herita nee, and polymorphism, but other issues can be at least as importa nt. The rema in der of this sect ion will cover these issues. One of the most importa nt factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object con trolled? There are differe nt philosophies at work here. C++ takes the approach that con trol of efficie ncy is the most importa nt issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocatio n and release, and con trol of these can be very valuable in some situati ons. However, you sacrifice flexibility because you must know the exact qua ntity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided desig n, warehouse man ageme nt, or air-traffic con trol, this is too restrictive. The sec ond approach is to create objects dyn amically in a pool of memory called the heap. In this approach, you don't know un til run-time how many objects you n eed, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is runnin g. If you n eed a new object, you simply make it on the heap at the point that you n eed it. Because the storage is man aged dyn amically, at run-time, the amount of time required to allocate storage on the heap is sig ni fica ntly Ion ger tha n the time to create storage on the stack. (Creat ing storage on the stack is ofte n a si ngle assembly in structio n to move the stack poin ter dow n, and ano ther to move it back up.) The dyn amic approach makes the gen erally logical assumpti on that objects tend to be complicated, so the extra overhead of finding storage and releas ing that storage will not have an importa nt impact on the creati on of an object .In additi on, the greater flexibility is esse ntial to solve the gen eral program ming problem. Java uses the sec ond approach, exclusive". Every time you want to create an object, you use the new keyword to build a dyn amic in sta nee of that object. There's ano ther issue, however, and that's the lifetime of an object. With Ian guages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no kno wledge of its lifetime. In a Ianguage like C++, you must determine programmatically when to destroy the

网络安全外文翻译文献

网络安全外文翻译文献 (文档含英文原文和中文翻译) 翻译: 计算机网络安全与防范 1.1引言 计算机技术的飞速发展提供了一定的技术保障,这意味着计算机应用已经渗透到社会的各个领域。在同一时间,巨大的进步和网络技术的普及,社会带来了巨大的经济利润。然而,在破坏和攻击计算机信息系统的方法已经改变了很多的网络环境下,网络安全问题逐渐成为计算机安全的主流。

1.2网络安全 1.2.1计算机网络安全的概念和特点 计算机网络的安全性被认为是一个综合性的课题,由不同的人,包括计算机科学、网络技术、通讯技术、信息安全技术、应用数学、信息理论组成。作为一个系统性的概念,网络的安全性由物理安全、软件安全、信息安全和流通安全组成。从本质上讲,网络安全是指互联网信息安全。一般来说,安全性、集成性、可用性、可控性是关系到网络信息的相关理论和技术,属于计算机网络安全的研究领域。相反,狭隘“网络信息安全”是指网络安全,这是指保护信息秘密和集成,使用窃听、伪装、欺骗和篡夺系统的安全性漏洞等手段,避免非法活动的相关信息的安全性。总之,我们可以保护用户利益和验证用户的隐私。 计算机网络安全有保密性、完整性、真实性、可靠性、可用性、非抵赖性和可控性的特点。 隐私是指网络信息不会被泄露给非授权用户、实体或程序,但是授权的用户除外,例如,电子邮件仅仅是由收件人打开,其他任何人都不允许私自这样做。隐私通过网络信息传输时,需要得到安全保证。积极的解决方案可能会加密管理信息。虽然可以拦截,但它只是没有任何重要意义的乱码。 完整性是指网络信息可以保持不被修改、破坏,并在存储和传输过程中丢失。诚信保证网络的真实性,这意味着如果信息是由第三方或未经授权的人检查,内容仍然是真实的和没有被改变的。因此保持完整性是信息安全的基本要求。 可靠性信息的真实性主要是确认信息所有者和发件人的身份。 可靠性表明该系统能够在规定的时间和条件下完成相关的功能。这是所有的网络信息系统的建立和运作的基本目标。 可用性表明网络信息可被授权实体访问,并根据自己的需求使用。 不可抵赖性要求所有参加者不能否认或推翻成品的操作和在信息传输过程中的承诺。

管理信息系统外文翻译

管理信息系统外文翻译-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

英文文献翻译 二〇年月日

科技文章摘译 Definition of a Management Information System There is no consensus of the definition of the term "management information system". Some writers prefer alternative terminology such as "information processing system", "information and decision system", "organizational information system", or simply "information system" to refer to the computer-based information processing system which supports the operations, management, and decision-making functions of an organization. This text uses “MIS” because it is descriptive and generally understood; it also frequently uses “information system” instead of “MIS” to refer to an organizational information system. A definition of a management information system, as the term is generally understood, is an integrated, user-machine system for providing information to support operations, management, and decision-making functions in an organization. The system utilizes computer hardware and software; manual procedures; models for analysis planning, control and decision making; and a database. The fact that it is an integrated system does not mean that it is a single, monolithic structure; rather, it means that the parts fit into an overall design. The elements of the definition are highlighted below. 1 Computer-based user-machine system Conceptually, management information can exist without computer, but it is the power of the computer which makes MIS feasible. The question is not whether computers should be used in management information system, but the extent to which information use should be computerized. The concept of a user-machine system implies that some tasks are best performed by humans, while others are best done by machine. The user of an MIS is any person responsible for entering input data, instructing the system, or utilizing the information output of the system. For many problems, the user and the computer form a combined system with results obtained through a set of interactions between the computer and the user. User-machine interaction is facilitated by operation in which the user’s input-output device (usually a visual display terminal) is connected to the computer. The computer can be a personal computer serving only one user or a large computer that

相关主题
文本预览
相关文档 最新文档