当前位置:文档之家› 线性方程组的解空间

线性方程组的解空间

线性方程组的解空间
线性方程组的解空间

第六章 向量空间 6、1 定义与例子 6、2 子空间

6、3 向量的线性相关性 6、4 基与维数 6、5 坐标

6、6 向量空间的同构

6、7 矩阵的秩齐次线性方程组的解空间 返回教案总目录

6、7矩阵的秩,齐次线性方程组的解空间 一、教学思考

1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。

2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。

3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。

二、内容要求

1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。

2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。

三、教学过程

1、矩阵的秩的几何意义

几个术语:设)(F M A n m ?∈,???

?

?

??=mn m n a a

a a A ΛΛΛ

ΛΛ

1111,A 的每一行瞧作n F 的一个元素,叫做A 的行向量,用),2,1(m i i Λ=α表示;由),2,1(m i i Λ=α生成的n F 的子空间

),,(1m L ααΛ叫做矩阵A 的行空间。

类似地,A 的每一列瞧作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。

注:)(F M A n m ?∈的行空间与列空间一般不同,分别就是n F 与m F 的子空间;下证其维数相同。

引理6、7、1设)(F M A n m ?∈,

1)若PA B =,P 就是一个m 阶可逆矩阵,则B 与A 有相同的行空间; 2)若AQ C =,Q 就是一个n 阶可逆矩阵,则C 与A 有相同的列空间。 分析:设()

()()m m ij n m ij n

m ij

p P b B a A ???===,,,),2,1(m i i Λ=α就是A 的行向

量,),2,1(m j j Λ=β就是B 的行向量;只需证这两组向量等价。

由题述关系PA B =得:???

?

? ??==m im i im i i p p A p p ααβM ΛΛ111),,(),,(

=),,2,1(;11m i p p m im i ΛΛ=++αα

即B 的每个行向量都可以由A 的行向量线性表示;因为P 可逆,有B P A 1-=,同上得A 每个行向量都可以由B 的行向量线性表示,这样这两组向量等价。

定理6、7、2矩阵)(F M A n m ?∈的行空间的维数等于列空间的维数,等于这个矩阵的秩。

证法:设r A r =)(,分别证行、列空间的维数为r 。由维数的定义及行空间的概念,只需证行(列)空间的生成元的极大无关组含r 个向量;为此不直接讨论A ,由引理讨论讨论与A 有相同行空间的一个矩阵,可结合有关矩阵的结论:存在m 阶可逆

矩阵P 与n 阶可逆矩阵Q ,使得???

?

??=οοοr I PAQ 。

证明:设r A r =)(,则存在m 阶可逆矩阵P 与n 阶可逆矩阵Q ,使得???? ??=οοοr I PAQ (1),两边右乘1

-Q 得1-???

? ??=Q I PA r οοο,上式右端中后r m -行全

为0,而前r 行即为1-Q 的前r 行;由于1-Q 可逆,所以它的行向量线性无关,因而它的前r 行也线性无关,由此得上式右端乘积矩阵的行空间的维数为r ,由引理A 的行空间的维数为r 。

由(1)类似得?

??

? ??=-οο

οr I P AQ 1,可得A 的列空间的维数也为r 。 定义:矩阵A 的行(列)向量组的极大无关组所含(行(列)空间的维数)向量的个数,叫做矩阵A 的秩。

2、线性方程组的解的结构

1)再证线性方程组有解的判定定理:“数域F 上线性方程组有解的充要条件就是它的系数矩阵与增广矩阵的秩相同。”

证明:设线性方程组???

??=++=++m n mn m n n b

x a x a b x a x a ΛΛΛΛ1

111111 (1)令n αα,,1Λ表示(1)的系

数矩阵A 的列向量,????

? ??=m b b M 1β,则(1)可写为:

βαα=++n n x x Λ11 (2)

必要性)若(1)有解,即存在n x x ,,1Λ使(2)成立,即β可由n αα,,1Λ线性表示,从

而n αα,,1Λ与βαα,,,1n Λ等价,进而L (n αα,,1Λ)=

L (βαα,,,1n Λ),即A 与A 的列空间相同,由定理)()(A r A r =。

充分性)若)()(A r A r =,由定理2),,,(dim ),,(dim 11βααααn n L L ΛΛ=即A 与A 的列空间维数相同,又因n αα,,1Λ的极大无关组一定就是βαα,,,1n Λ的线性无关组,所以),,,(),,(11βααααn n L L ΛΛ=,即),,(1n L ααβΛ∈,因而β可由n αα,,1Λ线性表示,所以(1)有解。

2)齐次线性方程组的解空间

设?????=++=++0

01

11111n mn m n n x a x a x a x a ΛΛ

ΛΛ (3)就是数域F 上一个齐次线性方程组,令A 为其系数矩阵,则(3)可写为???

?

?

??=????? ??001M M n x x A (4)或ο=AX ;(3)的每一个解都可以瞧

作n F 的一个向量,叫做(3)的一个解向量。令S 表示(3)的全体解向量构成的集合;首先:因S ∈ο,所以Φ≠S ;

其次:F b a S ∈?∈?,,,ηξ,有οηξηξ=+=+bA aA b a A )(,即S b a ∈+ηξ。因此S 作成n F 的一个子空间,这个子空间叫做齐次线性方程组(3)的解空间。 注:当ο=AX 仅有零解时,{}ο=S ;

当ο=AX 有非零解时,上述讨论反映了齐次线性方程组的解的两个重要性质:1)两解之与为解;2)一解之倍数仍为解。从而有无穷多解,那么这些解就是否可用有限个解表出,上知(3)的解集S 就是n F 的一个子空间,从而说明这就是可以的,只需求出S 的一个基即可。下面就来解决这个问题,即求(3)的解空间的一个基。

重新回顾解线性方程组的过程:设(3)的系数矩阵A 的秩为)(n r <,则A 可经过

一系列(行)初等变换化为?

??

? ??----r n r m r r m r n r r

C I ,,,οο,与此相应的齐次线性方程组为:(5)????

?

??????===+++=+++++++0000001111111ΛΛΛΛΛΛn rn r rr r n n r r y c y c y y c y c y ,这里n y y ,,1Λ就是n x x ,,1Λ的重新编号。(5)

有r n -个自由未知量n r y y ,,1Λ+,依次让它们取)1,,0,0(,),0,,1,0(),0,,0,1(ΛΛΛΛ,

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

解线性方程组直接解法

第2章 解线性方程组的直接解法 §0 引言 11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=??? ?+++=?L L L L 1112121 22212112,(,,,),()n n T T n n n n nn a a a a a a A x x x x b b b a a a ??????===??? ??? ? ?L L L L L L L Ax b = 若A 非奇异,即det()0A ≠,方程组Ax b =有唯一解。由 Cramer 法则,其解 det(),1,2,,det() i i A x i n A = =L 其中i A 为用b 代替A 中第i 列所得的矩阵。当n 大时, 1n +个行列式计算量相当大,实际计算不现实。 121212(,)12det()(1)n n n i i i i i i n i i i A a a a τ=-∑L L L §1 Gauss 消去法 (I )Gauss 消去法的例子 (1)1231123 212336 ()123315()18315() x x x E x x x E x x x E ++=??-+=??-+-=-? 2131()12(),()(18)()E E E E -?--? (2) 12312342356 ()15957()211793()x x x E x x E x x E ++=?? --=-??+=?

方程组13()()E E -与方程组145(),(),()E E E 同解 541 ()21( )()15 E E --得 (3)1231234366()15957()3() x x x E x x E x E ++=?? --=-??=? 由(3)得3 213,2,1x x x === 123(,,)(1,2,3)T T x x x = (3)的系数矩阵为11 10159001????--?????? ,上三角 矩阵。 (II )Gauss 消去法,矩阵三角分解 Ax b = 1112 11,12122 22,112 ,1 n n n n n n nn n n a a a a a a a a A b a a a a +++????????=?????????? L M L M L L M M L M 令(1) ,1,2,,;1,2,,,1ij ij a a i n j n n ===+L L (1)(1)A b A b ??=?? ???? 第1次消去 (1) 110a ≠, 令 (1)1 1(1)11 , 2,3,,i i a l i n a ==L 作运算:11()()i i i l E E E -+→ i E 表示第i 个方程(第i 行) 2,3,,i n =L (2)(1)(1) 111110 2,3,,i i i a a l a i n =-==L

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

线性方程组-练习

1.设向量组123,,ααα线性无关,向量1β可由123,,ααα线性表示,而向量2β不能由123,,ααα线性表示,则对于任意常数k ,必有( )A (A) 12312,,,k αααββ+线性无关; (B )12312,,,k αααββ+线性相关; ( C) 12312,,,k αααββ+线性无关; (D) 12312,,,k αααββ+线性相关 2.n 维向量组)1(,,,21n s s ≤≤ααα 线性无关的充要条件是 ( D ) (A) 存在一组不全为零的s k k k ,,21 ,使得02211=+++s s k k k ααα (B) s ααα ,,21 中的任何两个向量都线性无关 (C) s ααα ,,21 中存在一个向量,它不能被其余向量线性表示 (D) s ααα ,,21 中的任何一个向量都不能被其余向量线性表示 3. (1)若两个向量组等价,则它们所含向量的个数相同; (2)若向量组}{21r ααα,,, 线性无关,1+r α可由r ααα ,21,线性表出,则向量组}{121+r ααα,,, 也线性无关; (3)设}{21r ααα,,, 线性无关,则}{121-r ααα,,, 也线性无关; (4)}{21r ααα,,, 线性相关,则r α一定可由121,-r ααα ,线性表出;以上说法正确的有( A )个。 A .1 个 B .2 个 C .3 个 D .4个 4.向量组A :12,,,n ααα 与B :12,,,m βββ 等价的充要条件为( C ). A .()()R A R B =; B .()R A n =且()R B m =; C .()()(,)R A R B R A B ==; D .m n = 5.讨论a ,b 取什么值时,下面方程组有解,对有解的情形,求出一般解。 1234123423412341322235433x x x x x x x x a x x x x x x x b +++=??+++=??++=??+++=?。 答案:a =0,b =2有解;其他无解。 (-2,3,0,0)’+k1(1,-2,1,0)’+k2(1,-2,0,1)’ 6.试就k 的取值情况讨论以下线性方程组的解,并在有无穷的解时求出通解:

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

线性方程组习题课

线性方程组求解 习题课

一、给定方程组123211*********x x x -???????????? =? ???????????-?????? 试考察用Jacobi 迭代法和Seidel 迭代法求解的收敛性。 解:对Jacobi 迭代法,迭代矩阵为 -1J 00.50.5B =I-D A=1010.50.50-?? ??--?????? 因为3 5 04 J I B λλλ-=+=,得特征值 1230,,22i i λλλ===- 得( )12J B ρ=> ,由定理知 Jacobi 迭代法发散。 对Seidel 迭代法,迭代矩阵为 ()1 S B D L U -=-=1 20001100.50.511000100.50.5112000000.5---?????? ??????-=--?? ??????????--?? ???? 显然,其特征值为1230,0.5λλλ===-

故()0.51s B ρ=<,由定理知Seidel 迭代法收敛。 二、设线性方程组111211212222a a x b a a x b ?????? = ??? ??????? ,11220a a ≠, 112221120a a a a -≠。证明:解线性方程组的Jacobi 迭代法和Gauss-Seidel 迭代法同时收敛或不收敛。 证明: 121 1111 122221 21 22 0000 00J a a a a B a a a a -??- ?-???? ?== ? ? ?-????- ??? ()2 1221 1122det J a a I B a a λλ-=-,故( )J B λ= ( )J B ρ= 。 1211111 1221 2212211122000000S a a a a B a a a a a a -??- ?-???? ?== ? ? ????? ?? ?

线性方程组的平方根解法

浅析线性方程组的平方根解法 在求解线性方程组时, 直接解法有顺序高斯消元法、列主元高斯消元法、全主元高斯消元法、高斯约当消元法、消元形式的追赶法、LU分解法、矩阵形式的追赶法,当我们遇到对称正定线性方程组时,我们就要用到平方根法(对称LLT 分解法)来求解,为了熟悉和熟练运用平方根法求解线性方程组,下面对运用平方根法求解线性方程组进行解析。一、运用平方根法求解线性方程组涉及到的定理及定义 我们在运用平方根法求解线性方程组时,要判定线性方程组Ax=b 的系数矩阵A 是否是对称正定矩阵,那么我们就要了解正定矩阵的性质和如下定理及定义: 1、由线性代数知,正定矩阵具有如下性质: 1)正定矩阵A 是非奇异的 2)正定矩阵A的任一主子矩阵也必为正定矩阵 3)正定矩阵A的主对角元素均为正数 4)正定矩阵A 的特征值均大于零 5)正定矩阵A的行列式必为正数 定义一线性方程组Ax=b的系数矩阵A是对称正定矩阵,那么Ax=b是对称正定线性方程组。 定义二如果方阵A满足A=AT那么A是对称阵。 2.1.4 平方根法和改进的平方根法 如果A是n阶对称矩阵,由定理2还可得如下分解定理: 定理2若A为n阶对称矩阵,且A的各阶顺序主子式都不为零,则A可惟一分解为:A= LDLT,其中L为单位下三角阵,D为对角阵。 证明因为A的各阶顺序主子式都不为零,所以A可惟一分解为:A= LU 因为,所以可将U 分解为:

i DU i 其中D 为对角矩阵,Ui 为单位上三角阵?于是:A = LDU 仁L(DUI) 因为A 为对称矩阵,所以,A = AT = UITDTL 七U 仃(DLT),由A 的LU 分解的惟一 性即得:L = UIT,即 Ui = LT ,故 A = LDLT 工程技术中的许多实际问题所归结出的线性方程组,其系数矩阵常有对称正定 性,对于具有此类特殊性质的系数矩阵,利用矩阵的三角分解法求解是一种较好 的有效方法,这就是对称正定矩阵方程组的平方根法及改进的平方根法, 这种方 法目前在计算机上已被广泛应用。 定理3对称矩阵A 为正定的充分必要条件是A 的各阶顺序主子式大于零。 2对称正定矩阵的三角分解 定理(Cholesky 分解)设A 为n 阶对称正定矩阵,则存在惟一的主对角线元素 都是正数的下三角阵L ,使得:A = LLT 。 分解式A = LLT 称为正定矩阵的Cholesky 分解,利用Cholesky 分解来求解系数 矩阵为对称正定矩阵的方程组AX ^ b 的方法称为平方根法。 设A 为4阶对称正定矩阵,则由定理 4 知,A = LLT ,即: a ii a i2 a i3 a i4 l ii 0 0 0 l ii l 2i l 3i l 4i a 21 a 22 a 23 a 24 l 2i l 22 0 0 0 l 22 l 32 l 42 a 3i a 32 a 33 a 34 l 3i l 32 l 33 0 0 l 33 l 43 a 4i a 42 a 43 a 44 l 4i l 42 l 43 144 l 44 将右端矩阵相乘, 并令两端矩阵的元素相等, 于是不难算得矩阵 L 的元素的计算 公式为: 平方根法的计算框图见图 用平方根法求解系数矩阵对称正定的线性方程组时,计算过程是数值稳定 U ii U 22 U l2 U in U ii 1 U nn U 2n U 22 U nn

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

线性方程组练习题

线性方程组练习题 §1 向量的线性关系 1.判断下列向量组是否线性无关: (1)????? ??-11 2,????? ??-840,????? ??-311; (2)??????? ??01014,??????? ??1521,??????? ??1202,?????? ? ??7024。 2.讨论下面向量组的线性相关性: ???????? ??12211,???????? ??-15120,???????? ??-141b a 。 3.设????? ??=1111a ,????? ??=3211a ,???? ? ??=t 311a 。 (1)问当t 为何值时,321,,a a a 线性相关? (2)问当t 为何值时,321,,a a a 线性无关? (3)当321,,a a a 线性相关时,问3a 是否可以由1a ,2a 线性表示?若能,写出具体表达式。 4.设有向量组 ??????? ??+=11111t a ,??????? ??+=22222t a ,??????? ??+=33333t a ,?????? ? ??+=t 44444a 。 问:(1)当t 为何值时,4321,,,a a a a 线性相关? (2)当t 为何值时,4321,,,a a a a 线性无关? 5.设321,,a a a 线性无关,问当参数l ,m 满足何种关系时,12a a -l ,23a a -m ,31a a -也线性无关? 6.设m a a a ,,,21 线性无关,作 211a a b +=,322a a b +=,…,m m m a a b +=--11,1a a b +=m m 。 判别m b b b ,,,21 的线性相关性。 7.设21,a a 线性无关,b a b a ++21,线性相关,问b 能否由21,a a 线性表示? 8.设321,,a a a 线性相关,432,,a a a 线性无关。问: (1)1a 能否由32,a a 线性表示; (2)4a 能否由321,,a a a 线性表示。 9.若T k k ),,0(2=b 能由T k )1,1,1(1+=a ,T k )1,1,1(2+=a ,T k )1,1,1(3+=a 唯一

线性方程组的直接解法 实验报告

本科实验报告 课程名称:数值计算方法B 实验项目:线性方程组的直接解法 最小二乘拟合多项式 实验地点:ZSA401 专业班级:学号:201000 学生姓名: 指导教师:李志 2012年4月13日

线性方程组的直接解法 一、实验目的和要求 实验目的:合理利用Gauss 消元法、LU 分解法或追赶法求解方程组。 实验要求:利用高斯消元法,LU 分解法或追赶法进行编程,求解题中所给的方程组。 二、实验内容和原理 实验内容:合理利用Gauss 消元法、LU 分解法或追赶法求解下列方程组: ① ?? ?? ? ?????=????????????????????13814142210321321x x x ②??? ? ?? ??????=????????????????????? ?? ? ??--?-2178.4617.5911212592.1121130.6291.513 14 .59103.043 2115x x x x ③?? ??? ??? ? ???????----=????????????????????????????????-55572112112112121 n n x x x x (n=5,10,100,…) 实验原理:这个实验我选用的是高斯消元法。高斯消元法:先按照 L ik =a ik^(k-1)/a kk^(k-1) , a ij^(k)=a ij^(k-1)-l ik a kj^(k-1) [其中k=1,2,…,n-1;i=k+1,k+2,…,n;j=k+1,k+2,…,n+1] 将方程组变为上三角矩阵,再经过回代,即可求解出方程组的解。 三.计算公式 通过消元、再回代的求解方法称为高斯消元法。特点是始终消去主对角线 下方的元素。 四、操作方法与实验步骤 #include "Stdio.h" #define N 3 main() { double a[N][N+1],b[N]; int i,j,k,x=0; for(i=0;i

线性方程组练习题(免费下载)

《线性代数》第三章练习题 一、思考题 1、设有线性方程组b AX =,其中A 为n 阶方阵,j A 为A 中第j 列元素换为b 所得行列式的值,判断下列命题是否正确? (1)若0≠A ,则b AX =有唯一解; (2)若0=A ,且至少有一)1(0n j A j ≤≤≠,则b AX =无解; (3)若0=A ,且),,2,1(0n j A j ==,则b AX =有无穷多解。 2、判断下列命题是否正确?其中A 为n m ?矩阵。 (1)非齐次线性方程组b AX =,当n m <时,有无穷多解;当n m =时,有唯一解;当n m >时,无解; (2)齐次线性方程组0=AX ,当n m <时,必有非零解; (3)非齐次线性方程组b AX =,当m A r =)(时,必相容。 3、设向量组4321,,,αααα线性无关,判断向量组14433221,,,αααααααα++++是否也线性无关。 4、判断下列命题是否正确? (1)若向量组m ααα,,,21 线性相关,则存在全不为零的数m k k k ,,,21 ,使得 02211=+++m m k k k ααα ; (2)若向量组m ααα,,,21 线性相关,且有02211=+++m m k k k ααα ,则 m k k k ,,,21 必不全为零; (3)若当数021====m k k k 时,02211=+++m m k k k ααα ,则向量组m ααα,,,21 线性无关; (4)若02211=+++m m k k k ααα ,必有021====m k k k ,则向量组m ααα,,,21 线性无关; (5)向量β不能由m ααα,,,21 表示,则βααα,,,,21m 线性无关; (6)若向量组m ααα,,,21 线性无关,则其中每一个向量都不能表示成其余向量的线性组合; (7)若向量组m ααα,,,21 线性无关,向量组s βββ,,,21 线性无关,则向量组 m ααα,,,21 ,s βββ,,,21 线性无关。 二、单项选择题 1. 设321,,X X X 是b AX =的三个特解,则下列哪个也是b AX =的解 ( ) (A )332211X k X k X k ++; (B )332211X k X k X k ++,1321=++k k k ; (C )321)(X X X k ++ ; (D ) 32211)(X k X X k +-。 2.设321,,ξξξ是0=AX 的一组基础解系,则下列哪组也是0=AX 的一基础解系( ) (A )133221,,,ξξξξξξ+-; (B )312321,,ξξξξξξ++-; (C ) 13321,ξξξξξ-++ ; (D ) 3121,,ξξξξ- 。 3.设A 是n 阶矩阵,并且0=A ,则A 的列向量中 ( ) (A )必有一个向量为零向量 ; (B)必有两个向量的对应分量成比例; (C )必有一个向量是其余向量的线性组合 ; (D )任一向量是其余向量的线性组合。 4.如果4),,,(21=m r ααα ,则下列正确的是 ( ) (A )如果 m ααα,,,21 的一个部分组线性无关 ,则该部分组包含的向量个数一定不超过4;

解线性方程组直解法

第2章 解线性方程组的直接解法 §0 引言 11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=????++ +=? 1112121 22212112,(,,,),()n n T T n n n n nn a a a a a a A x x x x b b b a a a ??????===???????? Ax b = 若A 非奇异,即det()0A ≠,方程组Ax b =有唯一解。由 Cramer 法则,其解 det(),1,2,,det()i i A x i n A == 其中i A 为用b 代替A 中第i 列所得的矩阵。当n 大时, 1n +个行列式计算量相当大,实际计算不现实。 121212(,)12det()(1)n n n i i i i i i n i i i A a a a τ=-∑ §1 Gauss 消去法 (I )Gauss 消去法的例子 (1)1231123212336()123315()18315()x x x E x x x E x x x E ++=??-+=??-+-=-? 2131()12(),()(18)()E E E E -?--? (2) 12312342356()15957()211793()x x x E x x E x x E ++=??--=-??+=?

方程组13()()E E -与方程组145(),(),()E E E 同解 541 ()21()()15E E --得 (3)1231234366 () 15957() 3() x x x E x x E x E ++=??--=-??=? 由(3)得3213,2,1x x x === 123(,,)(1,2,3)T T x x x = (3)的系数矩阵为11 10159001?? ?? --?????? ,上三角 矩阵。 (II )Gauss 消去法,矩阵三角分解 Ax b = 111211,1 212222,1 12,1 n n n n n n nn n n a a a a a a a a A b a a a a +++????????=?????????? 令(1) ,1,2,,;1,2,,,1 ij ij a a i n j n n ===+ (1)(1)A b A b ??=?????? 第1次消去 (1) 110a ≠, 令 (1) 1 1(1)11 ,2,3,,i i a l i n a == 作运算:11()()i i i l E E E -+→ i E 表示第i 个方程(第i 行) 2,3,,i n = (2)(1)(1) 1111102,3,,i i i a a l a i n =-==

相关主题
文本预览
相关文档 最新文档