当前位置:文档之家› 第四章 图像复原

第四章 图像复原

图像退化与复原

G(u,v) =F(u,v)+N(u, v) ⑶ 实验名称:图像退化与复原 实验目的 1. 了解光电图像的退化原因; 2. 掌握和理解基本的噪声模型,并能对图像进行加噪处理; 3. 了解点扩展函数(PSF)与光学传递函数(OTF)的关系,熟悉几种经典的退化模 型的 模拟试验和OTF 估计方法; 4. 熟悉和掌握几种经典的图像复原方法及其基本原理; 5. 能熟练利用MATLAB 或C/C++工具进行图像的各种退化处理, 并能编程实现 退化 图像的复原。 三. 实验原理 光电成像系统出现图像退化的过程是复杂多变的,为了研究的需要,通常情 况下都把退化简化为化为一个线性移不变过程,见下图 1所示。 障质过稈 | 屯原 图1光电图像退化与复原原理图 因此,在空域中退化过程可以表示如下: g (x,y) = f (x,y) * h(x,y) + h(x,y) (1) 只有加性噪声不存在情况下,退化过程可以模型化如下表达式: g(x,y) = f (x,y) + h(x,y) (2) 其频域表达式为 :

针对这种退化图像的复原,除了周期噪声以外,通常都可以采用空间域滤波 的方法进行图像复原,此时图像复原与图像增强几乎是没有区别的。常见的空间 域滤波方法有均值滤波器和统计排序滤波器。 当退化图像存在线性移不变退化时, 图像的复原不能采用简单空间域滤波器 来实现,要实现线性移不变退化图像的复原, 必须知道退化系统的退化函数,即 点扩展函数h(x,y)。在点扩展函数已知的情况下,常见图像复原方法有逆滤波 和维纳滤波两种。 在考虑噪声的情况下,逆滤波的原理可以表示如下: 通常情况下,N (u,v)是未知的,因此即使知道退化模型也不能复原图像 此外,当H (u,v )的任何元素为零或者值很小时,N (u,v )/H (u,v )的比值决定 着复原的结果,从而导致图像复原结果出现畸变。对于这种情况, 通常采用限制 滤波频率使其难以接近原点值,从而减少遇到零值的可能性。 维纳滤波则克服了逆滤波的缺点,其数学模型表示如下: 然而,为退化图像的功率谱很少是已知的,因此常常用下面表达式近似: 因此,本实验的内容就是利用上述经典图像复原的原理,对降质退化图像进 行复原。 四. 实验步骤 本次实验主要包括光电图像的退化模型和复原方法实现两大部分内容。 (一)图像的退化图像 1、大气湍流的建模 ° F(u,v) = G(u,v) U F(u,v) = G(u,v) H(u,v) F(u,v) + N(u,v) H(u,v) ° 犏 F (u,v)=犏 J _________ (u,v) H (u,v) H *(u,v)2 + S h (u,v)/S f (u,v) G(u,v)

图像增强和复原

图像增强和复原image enhancement and restora-tion 利用数字图像处理技术可以将图像中感兴趣部分加以强调,对不感兴趣的部分予以抑制,强调后的部分对使用者更为清晰,甚至能给出一定的数量分析或不同颜色的表示。这种技术常称为图像增强。图像复原是通过图像滤波实现的。 图象增强方法 图像增强常用的方法包括直方图均衡化法、图像平滑法、图像尖锐化法和伪彩色法。直方图指的是一幅图像亮暗的分布情况,均衡化就是将一幅分布极不均匀的图像使其均匀化,从而改善图像的质量;平滑化和尖锐化是针对图像的细节和轮廓,平滑化使图像变得柔和,尖锐化使图像变得清晰;伪彩色法是将原为黑白颜色的图像转变为彩色图像,不同灰度用不同的颜色表示,从而可以更明显地分辨出图像中灰度变化的细节。 增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。 中文名图像增强外文名image enhancement 类型频率域法和空间域法 目的改善图像的视觉效果 image enhancement 图像增强可分成两大类:频率域法和空间域法。 频率域法把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。 空间域法空间中具有代表性的算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。 图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。基于空域的算法处理时直接对图像灰度级做运算,基于频域的算法是在图像的某种变换域内对图像的变换系数值进行某

图像的增强与复原算法毕业设计论文

毕业设计(论文) 题目:图像的增强与复原算法

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 图像处理是一门迅速发展的学科,在大量领域有着极其广泛的应用。在景物成像的过程中可能出现的模糊、失真或噪声还有变形,会导致图像质量下降,从而降低了图形的科学性,也造成了经济损失。 数字图像处理是一个跨学科的前沿科技领域,在各个学科中得到广泛的应用,并显示了广阔的前景,成为计算机科学、信息科学、生物学、医学等学科的研究热点。而图像增强与复原作为数字图像的基本内容,有着更高的研究价值。 图像增强是指按一定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息,使之改善图像质量,加强图像判读和识别效果的处理技术。基于空间域的图像增强是图像处理的一个重要分支,它能有效改善图像整体或局部特征。直方图是图像处理中最重要的基本概念之一,它用于显示图像的灰度值分布状况,并且能有效地用于图像增强。本文论述了图像灰度调整实现、直方图均衡化、直方图规定化图像增强技术,并给出了相关的基本原理。并在介绍图像频域增强原理的基础上,讨论了频域内通过对低通滤波器、高通滤波器的图像增强以及基于小波变换的图像增强,介绍了相关的理论,并给利用MATLAB工具进行实现。实验证明,在质量较差的图像中,选择不同的算法对图像的增强在准确性上均有不同。 数字图像复原(简称图像复原)是数字图像处理的一个基本的和重要的课题,它是后期图像处理(如图像分析,图像理解)的前提。图像复原主要目的在于消减或减轻在图像获取及传输过程中造成的图像品质下降即退化现象,恢复图像的本来面目。本文论述了采用近似的方法应用线性系统的理论解决图像复原的问题,并用MATLAB语言实现了维纳滤波、规则化滤波、Lucy-Richardson复原程序、盲去卷积复原,实验证明相同的图像采用不同的复原方法产生的效果不同,可以根据自己的实际需要来选择所要使用的复原方法。 关键词:图像处理、图像增强、图像复原、滤波、MATLAB

有约束将质图像复原算法的研究毕业论文

有约束将质图像复原算法的研究毕业论文 目录 摘要............................................ 错误!未定义书签。第一章绪论 (4) 1.1 研究背景 (4) 1.2 国外研究状况 (5) 1.3 本文工作与结构 (6) 第二章运动模糊图像复原理论基础 (7) 2.1 噪声相关理论 (7) 2.2 运动模糊图像退化模型 (8) 2.2.1 模糊图像的一般退化模型 (8) 2.2.2 匀速直线运动退化模型 (8) 第三章运动模糊图像的去噪预处理 (12) 3.1 椒盐噪声的处理 (12) 3.2 高斯噪声的处理 (17) 第四章模糊运动参数的确定 (21) 4.1 运动模糊角度的确定 (21) 4.1.1 Hough变换 (22) 4.1.2 Sobel边缘检测算子 (23) 4.1.3 模糊运动角度检测实验及结果 (23) 4.2 运动模糊长度的确定 (30) 第五章基于运动估计的图像复原算法 (34)

5.1 运动模糊图像先验知识的估计 (34) 5.1.1 模糊运动角度检测 (34) 5.1.2 运动模糊长度的确定 (36) 5.2 逆滤波 (36) 5.3 维纳滤波 (38) 5.4 有约束最小二乘法 (39) 第六章总结与展望 (41) 6.1 论文工作总结 (42) 6.2 论文的创新点 (42) 6.3 展望 (42) 致谢 (43) 参考文献 (44) 附录 (46)

有约束将质图像复原算法的研究 ——运动模糊图像运动参数估计及复原算法的研究 电子与信息工程学院电子信息工程专业(城建) 2008级2班轲 指导教师邵慧 第一章绪论 1.1 研究背景 图像与我们的生活联系十分紧密,图像处理技术应运而生,从二十世纪六十年代数字图像理作为一门学科正式产生到现在,图像处理技术已经在军事、生活、通信、交通等领域得到了广泛的应用。图像复原是图像处理技术的一个重要分支。其目的是改善图像质量,使退化了的图像最大程度恢复原貌。常用的方法是分析图像退化机理,建立退化模型,在此基础上通过求逆过程复原图像,恢复原始图像信息。在图像的采集、传输、储存以及处理的过程中,不可避免的将会引入噪声而会不同程度上导致图像的退化。图像退化的典型表现是失真、噪声以及模糊等。造成图像退化的因素很多,如成像系统缺陷,外界因素干扰,传输过程引入噪声等,我们将要研究的运动模糊就是一种重要的图像退化原因,在图像采集的过程中,如果采集设备与目标之间存在足够大的相对运动,将会导致获得的图像模糊,这就是所谓的运动模糊。在日常生活中,运动模糊是相当常见的,它对我们的生活工作带来了很多不便。例如在城市交通管理中,由于越来越多的车辆导致了很多的交通事故,一个重要原因就是驾驶员超速及闯红灯。现在大多数交通路口都设置有电子眼,拍摄记录车辆的违章行为,但是一般情况下违规车辆的行驶速度都较高,由电子眼拍摄到的有违规行为的车辆照片或多或少都存在运动模糊,因而导致很难准确获取包括车牌在的车辆信息。如何利用图像复原技术对退化图像进行处理,得到相对清晰的图像就显得十分重要。另外,在国防航天等领域图像的运动退化问题也十分常见,对于图像复原技术的研究具有重要的理论价值与现实意义。

图像增强和复原以及图像变换的区别和特征

图像增强和复原以及图像变换的区别和特征 一、三者的共同点: 体现在都是对图像进行后处理,实现的共同目的是能够使图像表现出更好的视觉效果。 二、三者的区别和各自主要特征 图像增强:利用一定的技术手段,不用考虑图像是否失真(即原始图像在变换后可能会失真)而且不用分析图像降质的原因。针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。 图像复原:针对质量降低或者失真的图像,恢复图像原始的内容或者质量。图像复原的过程包含对图像退化模型的分析,再对退化的图像进行复原。图像退化是由于成像系统受各种因素的影响,导致了图像质量的降低,称之为图像退化。这些因素包括传感器噪声、摄像机聚焦不佳、物体与摄像机之间的相对移动、随机大气湍流、光学系统的象差、成像光源和射线的散射等。 图像复原大致可以分为两种方法: 一种方法适用于缺乏图像先验知识的情况,此时可对退化过程建立模型进行描述,进而寻找一种去除或消弱其影响的过程,是一种估计方

法; 另一种方法是针对原始图像有足够的先验知识的情况,对原始图像建立一个数学模型并根据它对退化图像进行拟合,能够获得更好的复原效果。 图像变换:图像可以看作是一个矩阵,所谓图像变换,就是通过变换矩阵,将图像矩阵变换成另一个矩阵。变换后的矩阵能得到某些图像的信息。通常,变换后的图像能体现图像的频率特征,可以用于图像的数据压缩和各种处理。 实现图像变换的手段有数字和光学两种形式,常用的有三种变换方法。①傅里叶变换②沃尔什-阿达玛变换③离散卡夫纳-勒维变换

相关主题
文本预览
相关文档 最新文档