当前位置:文档之家› 砷的处理方法

砷的处理方法

砷的处理方法
砷的处理方法

砷的处理方法

公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

砷的处理方法

废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。

在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃℃℃加热灼烧,可以使沉淀稳定,砷不易渗出[60]。如结合其它方法,可以使出水中的砷含量降至<L[61]。也可以用电石糊,如一含490mgAs/L的废水,先用次氯酸钠溶液进行氧化,再用电石糊将pH调至≥,经过滤后,滤液中的砷含量可以降至L[62]。如用硫酸镁作为沉淀剂,pH应控制在左右[63]。可在用氯化镁时,加入石灰,使pH调整至~[64],使用硫酸镁可以使砷的浓度降至5mg/L[65],当镁/砷比为200:1时,出水中砷浓度可以降至

≤L[66]。

废水中的三价砷也可以先用微生物 Pseudomonas Putida 及Alcaligenes eutrophus 处理,再用磷酸盐及石灰处理的方法去除[67]。

其它沉淀法

含砷废水如与能水解产生钛酸的化合物作用,则可以共沉淀的原理将砷除去。如在pH2~8的范围内将含的合成含砷废水用钛酸四异丙酯作用,并在40℃搅拌16小时,经过滤后,废水中的砷含量可以降至~μgAs/ml[68]。

废水中砷还可以用有机胺进行离子浮选法进行处理,如可以用十六烷胺醋酸盐或十八烷胺醋酸盐,与砷反应生成疏水性的沉淀而被去除,当pH值为~时,出水中砷的含量可以降至<L,但如有氯离子及硫酸根离子存在时,会影响砷的去除[69]。

吸附法

用稀土属物质来去除废水中的有害阴离子, 如F, As及Se等。有些稀土物质在工业中未找到用途, 但量大, 可用来处理废水, 如镧盐可用来沉定砷盐, 固体的镧及钇可用来吸附其它有害负离子, 也可将镧或钇离子载于多孔的硅胶上以改进其吸附作用[70]。载有铁的天然或人工沸石也可以有效地从废水中将砷去除[71]。制铝工业的红泥也可以用来作为砷的吸附剂,在的条件下有利于三价砷的去除,而在~则有利于五价砷的去除,三价砷的吸附过程是一个放热过程,而五价砷的吸附过程则是一个吸热过程[72]。

由碳酸锰及碳酸铋(Mn:Bi=:)混合物在400℃加热小时制成的氧化锰可以用来吸附废水中的砷,其中含的铋可以提高氧化锰对砷的吸附,在pH为~时,及As的浓度为10mg/L时,其吸附容量为g,可以使砷的浓度降至L[73][74]。由低温电解而制得的二氧化锰,在投加量为2g/L及pH为2 时,10ppm的砷可以降至,并可以用氢氧化钠溶液再生[75]。

水滑石(Mg3Al(OH)8)2CO3xH2O,可以从废水中吸附砷,当砷的初始浓度分别为75,100,150mg/L时,其最大的去除率分别为,及%。在pH为时其吸附容量最大,其吸附模式符合Langmuir吸附等温线。吸附后的砷并可用的氢氧化钠洗

脱下来[76]。锐钛型的二氧化钛可以用来吸附废水中的砷,如当废水中的砷含量为3ppm,当与100克/10升的上述二氧化钛悬浮液处理,出水中的砷含量可以降至30ppb的水平[77]。

吸附还可以用载铝的沸石[78]、载钼的壳聚糖珠[79]、在用载铁(5%-30%)的灼烧过的硅藻土[80]、膨润土及D202树脂[81]来去除废水中的砷。

铁或氧化铁可以吸附地热水中的砷,如铸铁屑可以用作吸附剂,并可用酸将吸附的砷洗脱下来[82]。一些制备锌过程产生的含铁废渣,也可以用来作为砷的吸附剂,如废渣中含氢氧化铁45~52%,氢氧化铝%,氢氧化锌13~20%及水25~30%可用来吸附砷[83]。一种由Fe(OH)3处理过的石灰石,可以用来吸附砷。其砷的吸附容量取决于石灰石上所载的铁量。在pH2~10的范围内,吸附不受pH 的影响,并不受Cl-,NO3-,SO4-及ClO4-所影响,但磷酸根的存在会大大地影响其吸附性能。而在~10的范围内,吸附在上的砷并无明显的解吸作用[84]。石灰石最好是来源于珊瑚,这种多孔的石灰石除铁外,铝,镁或再加上戊二醛对砷都有较好的吸附作用[85]。而沸石载有二价锰或三价铁后都有明显的吸附砷的作用[86]。

活性炭可以用来吸附水中的砷,如用锆,铁,镍,钴或铝在350℃下进行改性,其吸附性能更好,其中以含锆的炭为最好,其次为铁,吸附过程认为是一种对AsO42-的化学吸附,磷酸盐对吸附有抑制作用,含锆炭可以用~氢氧化钠进行再生[87]。

活性炭对砷的吸附,在pH为4~5时为最好,其机理主要是静电吸引及形成特殊的化学键,活性炭的型号对砷的吸附也有较为重要的作用,废水中存在有机污染物对砷的吸附影响不大,但二价铁的存在可以提高对砷的吸附速度,并提高

其去除率,强酸或碱可以从活性炭中回收五价砷,但不能完全恢复活性炭的吸附能力[88]。对活性炭的来源研究发现在碱性条件下,煤>果壳>木材,吸附的砷主要是H2AsO4-及HAsO4-,但在pH低于8时,H3AsO3不能被吸附,但一旦被氧化成 H3AsO4,就能很快地被吸附。由于活性炭对亚砷酸有很强的催化氧化的能力,在空气的存在下,很快地被氧化成砷酸而被吸附。催化的最佳pH为5~6,而在酸性条件下,其活性炭吸附能力依其来源为木材>果壳>煤。

废水中的砷可以用软锰矿(MnO2),磁性黄铁矿(FeS),方铅矿(PbS),纤锌矿(ZnS)等矿石所吸附FeS对三价砷及五价砷的吸附容量分别为及g[89]。

强碱性的苯乙烯树脂在处理含砷废水时,其去除率可达>%[90]。在用阴离子交换树脂吸附之前,先用阳离子交换树脂进行处理,可以改善阴离子交换树脂对砷的吸附能力[91]。

分子中含有 CH2N(R)CH2[CH(OH)]nCH2OH结构的螯合型树脂,其中R=H或

C1~5的烷基,以及n=1~6,如Amberlite IRA 743, 可以用来吸附废水中的砷,其吸附容量为30mgAs3+/mL树脂[92]。

载有单斜或立方晶体水合氧化锆的多孔树脂可以用来吸附锆,这种树脂可以用多孔球形高分子珠体用八水氧氯化锆处理,再经水解及热处理。水合氧化锆沉积在树脂的一些较大的孔径孔道中,在弱酸性或中性条件下对五价砷有良好的吸附作用,而三价砷要在pH9~10才有较好的吸附作用。用这种方法处理可以达到日本的工业排放标准(),吸附后可以用1M的氢氧化钠进行再生,而在吸附或再生过程中,锆的渗出是极微小的,所以吸附树脂可反复使用[93][94][95]。

钼酸盐浸渍的壳聚糖颗粒可以~的范围内有效地吸附五价砷,其机理是砷与其中钼酸盐发生复合的原因,即使浓度较低,其吸附容量仍很高,可以用来作为

废水治理中最后净化的手段,磷酸盐的存在对吸附有一定的抑制作用,其吸附过程符合Langmuir吸附等温线[96]。

可以用季铵化的稻谷来吸附废水中的五价砷,吸附基本上是属于离子交换过程,并符合Langmuir吸附等温线,其最大吸附容量在28±2℃及pH为时为g。硫酸根对吸附有抑制作用[97]。

用合成的针铁矿来吸附废水中五价砷,并用气浮法进行固液分离[98]。

用铜浸渍过的锯木炭来吸附三价砷,吸附过程是一级反应,并呈吸热过程,当废水浓度为100mg/L时,在pH1~12间,三价砷的吸附率从%增加至%,过程符合Langmuir吸附等温线,阴离子如氯离子,醋酸根,高氯酸根,碳酸根及磷酸根对过程均无明显影响,含15%的H2O2的 HNO3可用来作为再生剂[99]。

三价砷可以用瓷土进行吸附,过程符合Langmuir吸附等温线,在pH8时有最大的去除能力[100]。而五价砷的最大去除能力时的pH为[101]。

三氧化二铝也可以用来吸附废水中砷,吸附后可以膜技术进行微滤固液分离,吸附剂可以再生回用[102]。经过2小时的处理,出水中的砷含量可以降至≤50ppb[103]。

在用氯,次氯酸钠或臭氧预处理后,将三价砷氧化成五价态后,砷还可以用粒状的由电解制得的二氧化锰来吸附去除。吸附过程不需要对pH进行控制[104]。

飞灰吸附砷时符合Freundlich吸附等温线,其吸附性能与活性炭一样良好,其它存在的离子对吸附影响不大[105]。

可用来吸附废水中的砷的吸附剂还有斜发沸石[106]。

离子交换法

废水中的砷酸盐和亚砷酸盐还可以有效地用强碱型或弱碱型离子交换树脂去除。弱碱性阴离子交换树脂 Ionic A-260 处理含砷 68毫克/升的砷酸盐废水, 在 pH值时, 去除率可达 82~100%, 中等碱性或强碱性树脂(Ionic A-300, A-540, A-550)效果较差。一般而言, 弱碱性树脂宜在较低的 pH环境下工作, 而中性树脂宜在接近中性的条件下工作较好, 而强碱性离子交换树脂则可在较宽广的pH条件下工作[107][108]。用铝载的聚羟肟酸螯合树脂可以在pH3~下对废水中的砷进行吸附,吸附过程符合 Langmuir模式,最大吸附容量为 mmol/g树脂,

常见的阴离子如氯根,硝酸及硫酸根不影响砷的吸附,但磷酸根有明显的影响,此法可以用来处理半导体工业及木材处理工业[109]。载铁的亚氨基醋酸盐螯合

树脂(载铁量为168mg/g树脂)用来处理含砷废水时,在时砷的吸附量最大,砷的吸附量可达~60mg As/g树脂[110]。此外还可载有锆Zr(IV)-EDTA的螯合树脂进行进行交换吸附[111]。

砷可以用含巯基的大孔树脂来吸附去除,这种树脂可以从甲基丙烯酸-2,3-

环硫丙基酯-二乙烯苯聚合而得。它显示出对三价砷的良好吸附作用,所吸附的NaAsO2可以用稀氢氧化钠溶液解吸,可以多次循环作用[112]。

萃取法

含三价和五价砷的硫酸废水,可以用等体积的疏水性萃取剂在50℃进行萃取分离,所用的萃取剂有Cyanex923, Cyanex925,Cyanex301及新癸酰异羟肟酸在

甲苯中的溶液[113]。也可以用含有细小吸附颗粒及铵盐的溶剂对含五价砷的废水进行处理,即使废水中的砷浓度很低,砷仍能很容易地被去除,可以用来处理电子元件蚀刻废水[114]。另外还有报导用磷酸三丁酯作为萃取剂对砷的萃取[115]。

生物法

水葫芦(Eichhomia crassipes(Mart)Solms)可以水中吸收砷对水质进行净化。由于砷还有可能从水葫芦中渗沥出,所以当水体中有水葫芦存在时,对水体中的砷的环境评价要特别注意[116]。

Seopullariopsis brevicaulis可使废水中的砷酸盐转化成胂及三甲胂,废水中的砷去除率可以达到93~99%,其产生的气体经加热热解回收高品质的砷,而Penicillium chrysogenum 可还原碲化合物成元素碲或二甲基碲,回收率可达89~98%的碲[117]。

废水除砷的效果还可以通过生化的方法来改进,如在生化池中加入金属铁,铁细菌如等量的Deptothrix ochracea, D. crassa及jallionella ferruginea,硫酸盐还原菌及锯末等[118]。含砷废水也可以用生化的方法,如利用Scopulariopsis brevicaule霉菌在时处理6天,可有~%的去除率,将废水中的砷离子转变成气态的三甲砷,将此含砷气体进行热分解,可以获得高纯度的砷[119]。

砷的处理方法

神的处理方法 砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20?40°C下进行处理,所得的硫化砷用硫酸铜在70°C进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在〉70 C通入空气或氧,使砷 成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂, 其废水可以先在90 C加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3ASO4可以用20%的NR3 (R = C8?16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97?98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至0.005?0.007mg/L[2]。 5.3沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法,或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矶土吸附或离子交换。

5.3.1铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除 直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。 由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10?30倍[16]。结合 铁盐处理,出水中的砷含量可以降至0.05?0.1mg/L[17]。铁盐法可以用在饮用 水的净化中去[18] 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中 的砷的去除率可达99.7%,克服了传统的含砷废水处理工艺投资高,占地大, 运行成本高,处理后水质不稳定的弱点,滤清液无色,清澈,透明,可以达标排放或降级回用[19]。 用硫酸铁或其它三价铁盐可以有效地去除废水中的砷化合物。当初始浓 度为0.31?0.35毫克/升时,用硫酸铁处理,砷的去除率可达91?94%,如再经双层滤料过滤,去除率还可增加5?7%,总去除率可达98?99%,出水砷含量可降至0.003?0.006毫克/升[20]。在用硫酸铁作为凝聚剂时,当用量在500毫克/升时,可以使水中的含砷量从25毫克/升降至5毫克/升以下。其机理是共沉淀法,在铁沉淀的同时,将砷也从废水中络合除去。砷酸盐和亚砷酸盐都可以用这种方法处理。如在处理前用氧化的方法进行预处理,使亚砷酸盐先氧化或高锰酸钾氧化成砷酸盐,其去除效果会更好[21][22]。其沉淀的pH值可以控制在>2 在沉降时加入高分子絮凝剂其效果更好[23]。采用石灰-聚合硫酸铁法对硫酸生产中含砷废水进行了处理,实验了pH值、m(Fe)/m(As)(质量比)、石灰加入量等条件对As去除率的影响。结果表明,当p H 值为&8—10.6, m ( Fe) /m (As)不小于5时,处理后的废水中As的质量浓度小于1 mg/L,符合国家排标准[24]。当用漂白粉作为氧化剂,结合铁盐处理,可以得到铁盐沉淀,出水中的砷含量可降至0.3?0.5mg/L,产生的砷酸钙含砷及锑分别为20及22%,可在玻璃工

砷的处理方法

废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至~L[2]。 沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至~L[17]。铁盐法可以用在饮用水的净化中去[18]。 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的

土壤砷污染治理

一土壤砷污染治理的思路 根据土壤防治基本原则中的生态恢复原则,对已受到污染的土壤必须采取有效的措施,降低污染和防止污染扩散,以达到污染土壤的再利用并保证生态和人体的健康。 目前,国内外治理砷污染土壤的途径有两种: 1.1毒性强度抑制 采用一定的方法改变砷在土壤中的存在形态,或使其固定,降低其活性,使其钝化,脱离食物链,以降低其在环境中的迁移性和生物可利用性,在未改变污染元素砷总量的情况下减轻污染的危害效应。 1.2毒性容量限制 利用各种技术从土壤中去除砷,使砷在土壤中的存在量达到或接近背景值,并回收砷,可在降低土壤中砷总量的同时降低其毒性活性。二土壤砷污染治理技术概况 根据以上两条途径,众多的土壤砷污染治理技术可分为如下两类: 2.1强度抑制技术 在控制砷毒性的途径下,主要利用污染物稀释,隔离,稳定化和固化的原理。相应的技术包括客土法,翻土法,生物稳定法,物理化学和化学稳定法,固化和玻璃化法等。由于砷仍然存在于土壤中,在

自然条件改变和人为活动作用下,土壤理化性质的变化容易使砷毒性再次活化,造成二次污染。 2.2容量限制技术 控制砷总量的途径可以永久地去除土壤中的砷,避免了直接砷的二次污染,主要通过改变砷的迁移性和吸附性,利用物理上,化学上和生物上的作用力使砷脱离出土壤,或者直接采用工程措施将砷污染土壤连土带砷一起转移,并置以未受污染的新土。相应的技术有化学淋洗(或萃取),植物吸收和挥发,根际菌和植物协同作用,电动修复,渗透性反应墙-电动法联用,换土法等。 三土壤砷污染治理技术 砷作为类金属元素,和重金属有类似的性质,同样在进入土壤后以溶解,络合,吸附和氧化还原等不同的作用方式与土壤中的各组成成分反应,形成了不同的存在形态。因此其迁移性和生物有效性同样受到土壤理化性质的影响,所以根据相同的原理很多重金属的物理,化学和生物治理技术可以通用,具体反应和设置按砷的特性而有不同。 3.1常用治理技术 3.1.1改土法 改土法包括客土法,翻土法和换土法,是常用的工程措施。客土法是将从外面运来的新鲜无污染的土壤覆盖在污染土壤上;翻土法是

石灰沉淀法是一种常用的含砷废水处理方法

石灰沉淀法是一种常用的含砷废水处理方法,其基本原理是向含砷废水中加入氧化钙、氢氧化钙等沉淀剂,利用可溶性砷与钙离子形成难溶的化合物,如各种亚砷酸钙和砷酸钙盐沉淀,从而达到从废水中去除砷的目的。但石灰沉淀法除砷过程中形成的砷酸钙盐在堆放过程中如果与空气中的CO2接触,会影响其溶解度和稳定性。Robins(1981,1983)的研究结果表明,砷酸钙与空气中的CO2接触会分解成碳酸钙和砷酸,砷会从砷酸钙盐沉淀中析出,重新进入环境中[1,2];张昭和、彭少方(1995)研究了大气中CO2对Ca3(AsO4)2溶解度的影响,结果表明在砷渣露天堆放的开放体系中由于CO2的作用,砷酸钙向碳酸钙转化,砷又进入水中从而造成二次污染,应引起足够的重视[3]。石灰沉淀法除砷过程中,随着Ca/As摩尔比和pH值的不同,除生成Ca3(AsO4)2外,还可以生成一系列其他的砷酸钙盐,而这些砷酸钙盐因组成和结构的不同,在水环境中的稳定性与溶解度也存在一定的差异,其受CO2影响的程度也未见报道。本文通过前期砷酸钙盐沉淀和溶解实验所得到的热力学数据,对平衡系统中的Ca3(AsO4)2·xH2O、Ca5(AsO4)3(OH)和Ca4(OH)2(AsO4)2·4H2O三种砷酸钙盐进行不同CO2分压条件下的化学模拟计算和热力学分析,预测CO2对砷酸钙盐在水中稳定性和溶解度的影响,研究结果为含砷酸钙盐废弃物的最终处置场所与方法的选择,避免砷被天然水体浸取

具有实际的指导意义。 1含砷废水中和沉淀过程中形成的砷酸钙的类型 石灰沉淀法除砷一直以来被认为是一种有效的含砷废水处理方法并得到普遍应用,所以其沉淀产物砷酸钙盐在自然条件下的稳定性一直受到人们的关注。Nishimura等(1985)曾用Ca3(AsO4)2·Ca(OH)2表示石灰沉淀法去除五价砷形成的砷酸钙盐的物质结构[4];Swash和Monhemius(1995)在常温条件下进行实验,结果说明沉淀物的组成很可能是CaHAsO4·xH、Ca5H2(AsO4)4和Ca3(AsO4)2结构的化合物[5];Bothe和Brown(1999)通过实验确定,在向含砷(V)的废水中投加石灰时,会形成Ca4(OH)2(AsO4)2·4H2O、Ca5(AsO4)3OH和Ca3(AsO4)2·3H2O等[6];Donahue 和Hendry(2003)在高Ca/As比条件下,确定含砷尾矿废水中和产生的沉淀主要是Ca4(OH)2(AsO4)2·4H2O[7]。 混合沉淀过程中生成的砷酸钙化合物的组成与结构主要取决于溶液的Ca/As摩尔比和pH值。在我们实验的Ca/As 摩尔比(10、125、15、167、20和40)和pH值(1~14)条件下,生成的砷酸钙盐利用X射线衍射(XRD, Brucker D8Advance)、扫描电镜(SEM, Joel JSM-5610LV)和热重分析(TGA,TA Instruments Model 2050)对其性质进行研究,发现主要存在三种类型的砷酸钙盐,即Ca3(AsO4)2·xH2O、

某半导体芯片生产项目含砷废水处理方案

某半导体芯片生产项目含砷废水处理方案浅析 摘要:随着半导体行业的高速发展,半导体芯片生产将产生大量的含砷废水。同时,日趋严格的废 水排放标准对含砷废水处理提出了更高的要求。本文针对半导体集成电路芯片生产产生的含砷废水,结合 工程实际情况,分析了袋滤-氢氧化钙-氯化铁混凝沉淀的处理方法,并采用膜分离技术及离子交换技术对 废水进行深度处理,取得了良好的除砷效果,将出水总砷稳定地控制在0.1mg/L以下,达到污染排放标准, 降低了对环境的影响。 关键词:半导体;砷化镓;含砷废水;共沉淀;超滤;离子交换 随着信息技术和通讯产业的高速发展,化合物半导体材料在微电子和光电子领域发挥越来越重要的作用。在半导体材料发展过程中,半导体材料主要经历了以硅(Si)、锗(Ge)为代表的第一代元素半导体,以砷化镓(GaAs)、磷化铟(InP)为 代表的第二代化合物半导体,以及以氮化镓(GaN)、碳化硅(SiC)为代表的第三代宽禁带半导体材料三大阶段[1]。作为第二代半导体材料,砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。相对于硅,砷化镓具有较大的禁带宽度,更高的电子迁移率和饱和迁移速率[2],其不仅可直接研制光电子器件,以砷化镓为衬底制备的集成电路芯片是实现高速率光线通信及高频移动通信必不可少的关 键部件[3],在光电子、微电子及移动通信中应用愈加广泛。近年来,砷化镓半导体材料市场需求迅速增长。我国的砷化镓产业也在不断发展,近几年成立了多家砷化镓芯片生产企业。 基于自身材料和生产工艺,在砷化镓芯片的生产过程中排放的废气和废水中均含有砷化合物,其含砷废水的处理也成为砷化镓生产项目亟待解决的问题之一。砷及其化合物对人体及其他生物体均有广泛的毒害作用,已被国际防癌研究机构和美国疾病控制中心确定为第一类致癌物[4]。由于砷的高毒性和致癌性,在 GB8978-1996《污水综合排放标准》[5]中总砷被列于第一类污染物,最高允许排放浓度为0.5mg/L。而一些经济较为发达的城市和地区针对废水中总砷制定了更为严格的地方标准。DB31/374-2006《上海市地方标准——半导体行业污染物排放标准》[6]中,砷化镓工艺的总砷最高允许排放浓度为0.3mg/L。DB11/307-2013《北京市地方标准——水污染物综合排放标准》[7]中,排入公共污水处理系统的砷排放限值为0.1 mg/L,均高于国家标准。半导体行业排放监管的日趋严格,对含砷废水的处理工艺也提出了更高的要求。本文以某半导体芯片生产项目为例,浅析其含砷废水综合处理方案,以期为含砷废水处理达标排放提供思路。 1 含砷废水来源 半导体集成电路芯片制造是采用半导体平面工艺在衬底上形成电路并具备 电学功能的生产过程,其生产工艺十分复杂,包括外延片清洗、光刻、湿法蚀刻、

某硫精矿降砷浮选试验研究

龙源期刊网 https://www.doczj.com/doc/3c4011995.html, 某硫精矿降砷浮选试验研究 作者:罗木华 来源:《城市建设理论研究》2013年第14期 【摘要】皖南宝山某硫精矿因外购大量的高砷高银铅锌矿石,选厂生产出的铅、硫精矿含 砷高,影响到矿山经济效益,且使冶炼复杂化、成本高、污染环境严重等,针对这类高砷高银铅锌矿石,进行了系统的实验室试验,并在选厂进行了生产验证。以混合药剂作捕收剂,石灰作砷黄铁矿的抑制剂,可获得含砷0.55%、含铅67.02%的铅精矿,含砷0.32%、含锌48.25%的硫精矿,银富集在铅精矿中,铅、锌回收率分别为92.19%、93.37%。本文笔者结合自己多年来的研究和实际工作经验,对于硫精矿降砷浮选试验进行研究和分析。 【关键字】硫精矿,降砷浮选试验,研究分析 中图分类号:O741+.2 文献标识码:A 文章编号: 一.前言 我国在硫精矿降砷浮选试验方面的研究起步比西方的发达国家较晚,当然,对其的研究也就落后与西方。因此,有必要加强对硫精矿降砷浮选试验方面的研究,从而促进我国硫精矿降砷浮选试验方面的研究和硫精矿的发展。 二.矿石性质 原矿的化学元素和粒度分析结果分别见表1和表2。 表1原矿化学多元性分析结果 表2粒级分析结果 由表1可知,原矿含硫 36.92%,含砷 1.19%,含金 1.70g/t,属于高硫含砷低品位难处理 金矿石。由表2可知,试样粒度较细,-0.074mm 粒级含量达69.13%,硫、砷的分布率分别为68.92% 和 82.16%。其中 -0.043mm粒级中硫、砷的分布率分别达到了33.36% 和 27.33%,从浮选角度上来看,这部分矿物会影响分离时抑制剂的选择性,增加了浮选难度。 三.浮选试验研究 目前砷硫分离主要使用浮选方法,若使用强氧化抑制剂,会氧化黄铁矿表面,对黄铁矿有一定的抑制作用,但硫的回收率不是很高,另外需要多种药剂配合使用,且药剂用量大,强氧化抑制剂毒性也大,不利于环境保护。有机抑制剂对毒砂等硫化矿物的抑制有两种可能机理: 一是抑制剂和捕收剂在矿物表面的共吸附,有机抑制剂在与矿物表面吸附时不影响矿物表面的

砷对人体的危害及处理方法

砷对人体的危害及处理方法 砷是地壳的组成成分之一,多以化合物的形式存在。砷在地壳中的自然分布不均匀,砷矿物常与其他有色金属(锡、铅、锌等)矿床共同伴生。伴随这些金属矿物的开采、选矿、冶炼以及砷矿物的自然风化,砷以原矿或砷的氧化物的形式逸散到周围环境中,对大气、水体、农作物等造成污染。人体摄入被砷污染的食品或吸入砷烟尘,除了导致急慢性砷中毒外,还可使多种癌症发病率上升。1979年,国际癌症研究中心(IARC)确认无机砷是人类皮肤及肺的致癌物。砷污染对人体健康造成损害的同时,也给国民经济带来很大的损失。 一、砷的性质及来源 1.砷的化学性质和用途 砷为有毒元素,原子序数为33。砷可以表现出多种价态,最常见的是-3、+3和+5价。砷有两种放射性核素76As和77As,它们的半衰期分别为26.7小时和39.0小时。 固态单质砷的结构为三角形,气态砷的分子实际上是由4个砷原子构成的正四方体结构。As4加热到800℃时开始分解,到1750℃时全部分解为As2。 固态砷的密度为57.8gcm3,熔点817℃,616℃砷开始升华。砷有黄、灰、黑三种同素异形体,,在普通温度下稳定的结构是灰砷。灰砷是脆的晶体,能传热、导电。灰砷在空气中不易氧化,但加热到400℃时被氧化成三氧化二砷,灰砷气体很快冷却可得黄砷,黄砷是淡黄色的晶体,能溶于二硫化碳。黄砷不稳定,加热即可变成灰砷,在空气中被氧化成As4O6,同时发出冷光。黑砷是灰砷和黄砷的中间体,砷蒸汽慢慢地凝结即成黑砷,黑砷是无定形的,270℃以上单向地变成灰砷。 砷元素燃烧具有浅蓝色火焰并生成浓密的白色三氧化二砷烟雾。砷可与卤族元素、浓硝酸、热浓盐酸、热浓硫酸反应。自然环境中单质砷很少存在,常以砷化氢、砷的氧化物、硫化物等状态存在。 三氧化二砷又名亚砷酐,俗称砒霜或白砒,有剧毒,是人类最早使用的毒药或杀虫剂之一。亚砷酸有正亚砷酸H3AsO3和偏亚砷酸HAsO2,但都不存在,只能得到其盐类,亚砷酸盐常用作杀虫剂、除草剂以及用来保存生皮等。醋酸亚砷酸铜俗称巴黎绿,为深绿色粉末,在水中能水解,在空气中受二氧化碳作用生成亚砷酸,巴黎绿除用作颜料外,农业上可作杀虫剂,工业上用来制作船底防污油漆和木材防腐

砷的处理方法图文稿

砷的处理方法 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃℃℃加热灼烧,可以使沉淀稳定,砷不易渗出[60]。如结合其它方法,可以使出水中的砷含量降至<0.3mg/L[61]。也可以用电石糊,如一含490mgAs/L的废水,先用次氯酸钠溶液进行氧化,再用电石糊将pH调至≥9.5,经过滤后,滤液中的砷含量可以降至6.4mg/L[62]。如用硫酸镁作为沉淀剂,pH应控制在8.5左右[63]。可在用氯化镁时,加入石灰,使pH调整至 10.0~10.5[64],使用硫酸镁可以使砷的浓度降至5mg/L[65],当镁/砷比为200:1时,出水中砷浓度可以降至≤0.5mg/L[66]。 废水中的三价砷也可以先用微生物 Pseudomonas Putida 及Alcaligenes eutrophus 处理,再用磷酸盐及石灰处理的方法去除[67]。 5.3.5 其它沉淀法 含砷废水如与能水解产生钛酸的化合物作用,则可以共沉淀的原理将砷除去。如在pH2~8的范围内将含97.08的合成含砷废水用钛酸四异丙酯作用,并

含砷废水处理研究进展

含砷废水处理研究进展 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 摘要:含砷废水的传统处理方法,如物理法和化学法的不足之处在于费用高,二次污染大,工程化程度小。微生物法在含砷废水处理方面的研究取得了显著进展,研究成果已投入工程应用。本文认为活性污泥法对含砷废水的处理有着广阔的应用前景。 随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大[1]。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中

砷的中毒事件[2]。 含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为时,溶液中砷主要以无机砷的形态存在,当pH为时,有机砷为其主要存在形态[3]。但由于含砷废水的来源并不单一,其成分也是复杂多变的。 含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。 本文通过对含砷废水的传统处理方法如物化法和化学法进行系统论述,找出其存在的问题,详细考察微生物法处理含砷废水的研究进展,旨在为进一步发展活性污泥法处理含砷废水的处理技术提供重要的参考依据。 1化学法处理含砷废水处理含砷废

水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。 中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。 絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。

“天书降神”新议——北宋与契丹的文化竞争一

“天书降神”新议——北宋与契丹的文化竞 争(一) 小引 “澶渊之盟”是北宋武力收复五代以来北方失地的最後一次认真努力。这次战役虽然以小胜结束,但最终订立的盟约,却是宋廷每年向辽输纳白银十万两,绢二十万匹,名副其实地“化干戈为玉帛”。[i]古云:“天子之事,唯祀与戎。”既然戎事不行,精力自然转向“祀”来。据说和议成立後,“上(宋真宗)既罢兵,垂意典礼”,[ii]也是“偃武修文”的意思。这种反复倒也和太祖太宗的政策相距不远。但对于宋真宗赵恒而言,“澶渊之盟”的输款结好,无论如何唤不起踵武汉唐的感觉来。既欲彰显盛世,则无论远述秦皇汉武,近譬唐代玄宗,致力祀事都是标明盛世,点缀太平之一大景观。 值得注意的是,由于无平等结盟的先例可循,宋与契丹的澶渊之约是用赌咒发誓的方式订盟的。据载宋人的盟书写明: “质于天地神祗,告于宗庙社稷,子孙共守,传之无穷。有渝此盟,不克享国。昭昭天监,共当殛之!” 契丹文书亦有“孤虽不才,敢尊誓约。有渝此盟,神明殛之”等语。[iii]可知盟誓双方都具有共同的,至少是相当的天地神祗信仰系统。后来宋徽宗约金灭辽,违背了这个誓言,不久金兵入汴,徽钦二宗“北狩”,“斧声烛影”以后当政的赵光义一系宗室亲贵,几乎都被掳往漠北,受尽凌辱,异乡为鬼。赵构只身南渡,却终因无後,传位给赵匡胤之後裔。南宋与金亦曾有类似的诅神盟誓,只是辈份矮了一节,屈

身为“侄”,但後来约蒙伐金,如出一辙,结局也差似。故宋遗民曾感慨系之,曰: “国家与辽结欢。两国之誓,败盟者祸及九族。宣和伐燕之谋,用其降人马植之言,由登、莱航海,以使于女真,约尽取辽地而分之。子女玉帛归女真,土地归本朝。时主其事者王黼也。时论多以为不可。宇文虚中在西掖,昌言开边之非策,论事亶亶数千言。设喻以为犹富人有万金之产,与寒士为邻,欲肆吞并以广其居,乃引暴客而与谋曰:“彼之所处,汝居其半;彼之所畜。汝得其全。”暴客从之,寒士既亡。虽有万金之富,日为切邻强暴所窥。欲一日高枕安卧,其可得乎?种师道亦言今日之举,如寇入邻家不能救,又乘之分其室也。两喻最为切当。当事者既失之于女真,复用之于蒙古,而社稷随之矣。”[iv] 这种“渎神背盟,该遭报应”的宿命,就像一个压在中华民族心底的梦魇,即使在今天看来,仍然不脱某种荒诞的巫术味道。如果我们明白“恢复情结”和“神道设教”这两个主题词,实际上与有宋一代,特别是崇道的真宗、徽宗两帝共相始终的话,那么会更容易理解这节文字论述的重心所在。 有关宋代国君崇道传统,以及“天书封禅”、“蚩尤作乱”与关羽崇拜的关系,笔者已有论述。[v]此节所论,是“天书降神”究竟只是一场短暂的闹剧,还是一个影响深远的政治文化设计之开始。这对于我们理解关公崇拜所以大兴于元、明、清三代,是很有必要的。 天书降神 《续资治通鉴长编》景德四年(1007年)十一月条记载说,殿中侍御

砷的处理方法.

砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至0.005~0.007mg/L[2]。 5.3沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 5.3.1 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至0.05~0.1mg/L[17]。铁盐法可以用在饮用水的净化

含砷废水处理技术

含砷废水处理技术 1 化学法处理含砷废水 处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。 中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。 絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。 铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣[5]。Nakazawa Hiroshi 等研究指出[6],在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1 h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升曾[7]从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。 马伟等报道[8],采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。国外曾[9]有人提出在高度厌氧的条件下,在硫化物沉淀剂的作用下生成难溶、稳定的硫化砷,从而除去砷。 化学沉淀法作为含砷废水的一种主要处理方法,工程化比较普遍,但并不是采用单一的处理方式,而是几种处理方式的综合处理,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。但由于化学法普遍要加入大量的化学药剂,并成为沉淀物的形式沉淀出来。这就决定了化学法处理后会存在大量的二次污染,如大量废渣的产生,而这些废渣的处理目前尚无较好的处理处置方法,所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用。 2 物化法处理含砷废水 物化法一般都是采用离子交换、吸附、萃取、反渗透等方法除去废液中的砷。物化法大都是些近年来发展起来的较新方法,实用的尚不多见,但是有众多学者在这方面做了深入的研究,并取得了显著的成果。 陈红等曾[10]利用MnO2对含As(III)废水进行了吸附实验,结果表明,MnO2对As(III)有着较强的吸附能力,其饱和吸附量为44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),阴离子的存在使MnO2吸附量有所下降,一些阳离子(如Ga3+、In3+)可增加其吸附量,吸附后的MnO2经解吸后可重复使用。

某高硫砷铁矿降砷工艺研究

1 矿石性质 1.1 矿石结构构造 矿石结构构造主要有自形、半自形、他形粒状 的填隙结构、压碎结构、包含结构、边缘结构、次文象结构等.1.2 矿石组成与化学成分 主要有用价值元素分析、主要矿物组成分析和砷物相分析,见表1、表2和表3. 由表1、表2中可知,试样中硫和铁为主要回收矿物,硫和铁含量已达到回收的品位要求.铁以黄铁矿,磁黄铁矿为主,其次是白铁矿,主要脉石矿物为石英、方解石、菱铁矿等.由表3中可知,砷元素赋存状态以毒砂矿物为主,其含量2.12%,占有率为61.11%,砷酸盐矿物砷次之,占有率达36.51%,有利于选硫降砷.1.3 主要矿物的嵌布特性 (1)黄铁矿(FeS 2).多为立方体及其集合体.根据 结晶颗粒大小及形态,可分二个世代,第一世代以粗大的自形—半自形晶产出, 粒径多在2mm 以上,大者可达数厘米,呈压碎结构,碎粒间有磁黄铁矿、黄铁矿充填并胶结.第二世代以半自形-他自形粒状产出,其中常包含非金属杂质微包体,具碎裂现象,裂隙中常见黄铜矿、磁黄铁矿及脉石结脉充填,粒径一般0.5-3mm. (2)磁黄铁矿(Fe 1~x S ).呈他形晶集合体和致密块状、单晶粒径一般为0.2-2.0mm ,据颜色及矿物共生组合不同显示出不同世代,其一为古铜黄色至古铜红色,呈他形粒状填于自形黄铁矿、 毒砂之间并收稿日期:2008-11-19 作者简介:叶雪均(1951-),男,教授. 第30卷第3期 Vol.30,No.32009年6月Jun .2009 江西理工大学学报 JOURNALOF JIANGXI UNIVERSITYOF SCIENCE ANDTECHNOLOGY 文章编号:1007-1229(2009)03-0001-03 某高硫砷铁矿降砷工艺研究 叶雪均,丰章发,刘丽,肖金雄,吕炳军 (江西理工大学资源与环境工程学院,江西赣州341000) 摘要:采用先浮选后磁选方案,确定流程方案进行详细研究,研究结果表明,在充气氧化条件下实现硫砷分离,药方简单,获得较好的试验指标.关键词:毒砂;硫砷分离;浮选;磁选中图分类号:TD952 文献标识码:A Study on the Craft of Reducing Arsenic in Some High-sulphide Iron Ore YE Xue-jun ,FENG Zhang-fa ,LIU Li ,XIAO Jin-xiong ,L üBing-jun (Faculty of Resource and Environmental Engineering ,Jiangxi University of Science and Technology,Ganzhou 341000,China ) Abstract :A scheme of adopting floatation then the magnetic separation is made.A flow program is taken to carry out detailed study.The results show that sulphide-arsenic separation can be realized with higher test index and simpler prescription under the conditions of charge and oxidation Key words :arsenopyrite ;sulphide-arsenic separate ;floatation ;magnetic separation 表1主要有价元素分析结果 /% 元素S As Fe 含量 37.54 1.99 51.75 表2 主要矿物组成分析/% 矿物 磁黄 铁矿 黄铁矿毒砂白铁矿菱铁矿石英方解石黄铜矿其它含量40.8430.019.55 3.50 4.03 3.77 6.56 0.42 1.43 表3 砷物相分析结果/% 类别氧化砷中As 硫化砷中As 毒砂中As 砷酸盐中As 合计 含量0.0140.080 2.31 1.38 3.78占有率 0.87 2.12 61.11 36.51 100

含砷废水的处理方法

砷和含砷废水 更新时间:09-1-5 13:59 砷在地壳中含量并不大,但是它在自然界中到处都有。砷在地壳中有时以游离状态存在,不过主要是以硫化物矿的形式存在如雌黄(As2S3)、雄黄(As2S2)和砷黄铁矿(FeAsS)。无论何种金属硫化物矿石中都含有一定量砷的硫化物。砷的硫化物矿自古以来被用作颜料和沙虫剂、灭鼠药。硫化合物具有强烈毒性,砷和它的可溶性化合物都有毒。砷作合金添加剂生产铅制弹丸、印刷合金、黄铜(冷凝器用)、蓄电池栅板、耐磨合金、高强结构钢及耐蚀钢等。黄铜中含有重量砷时可防止脱锌。高纯砷是制取化合物半导体砷化镓、砷化铟等的原料,也是半导体材料锗和硅的掺杂元素,这些材料广泛用作二极管、发光二极管、红外线发射器、激光器等。砷的化合物还用于制造农药、防腐剂、染料和医药等。用于制造硬质合金;黄铜中含有微量砷时可以防止脱锌;砷的化合物可用于杀虫及医疗。砷和它的可溶性化合物都有毒。 随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长4.4%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长4.2%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中砷的中毒事件。 含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为5.0时,溶液中砷主要以无机砷的形态存在,当pH为6.5时,有机砷为其主要存在形态。但由于含砷废水的来源并不单一,其成分也是复杂多变的。 含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。 砷污染及砷污染的来源

砷及砷化物的无害化处理

砷及砷化物的无害化处理 摘要:砷及砷化物有毒,若处置不当,通过土壤、大气和水介质等各种途径进入环境,严重影响人类的生存环境。因此对舍砷废水、废料资源化利用和无害化处理一直是重点研究课题。对含砷废水、废料来源、稳定性评价方法和资源化综合利用技术进行分析,在此基础上提出含砷废水、废料资源化利用和无害化处置建议。 关键词:砷及砷化物;含砷废水废料;硫化砷渣;无害化;资源化 Harmless treatment of arsenic Abstract:Arsenic and arsenide are toxic materials,It will come into environment through the media of soil,air and water to damage the living environment if it is treated improperly. The resource utilization and harmless treatment of wastes bearing arsenic is the important research project of environment protection.The source of wastes bearing arsenic,the stability evaluation method and comprehensive utilization technology of resource are analyzed.The suggestions of resource utilization and harmless treatment of wastes bearing arsenic are presented. Key word: arsenic and arsenide; waste and effluent; arsenic sulfide residue; harmless; resource 1.前言 我国砷矿资源探明储量占世界70%,其中、、3省分别占全国总储量41.50%、15.50%和8.80%,合计占全国2/3。砷可用于制取杀虫剂、木材防腐剂、玻璃澄清脱色剂等,在农业、电子、医药、冶金、化工等领域具有特殊用途,随着科技发展,砷的市场需求不断增加,目前全世界砷年产量(以As:O,计)约5万t。 砷是累积性中毒毒物,砷及其化合物主要会影响神经系统和毛细血管通透性,对皮肤和黏膜有刺激作用,中毒后出现恶心、呕吐、腹痛、四肢痛性痉挛,最后导致昏迷、抽搐、呼吸麻痹而死亡。如果慢性中毒,也会导致肝肾损害与多发性周围神经炎,最终可致肺癌、皮肤癌。常人服入As:0,(砒霜)0.0l~0.05g 即中毒;服入0.06~0.2g可致死;在含砷化氢为1mg/L空气中,呼吸5~10分钟,可发生致命性中毒。 环境中砷污染主要是含砷金属矿石的开采、焙烧、冶炼、化工、炼焦、火电、造纸、皮革等生产过程中排放的含砷烟尘、废水、废气、废渣造成的,其中以砷冶炼及其化合物生产使用过程中排放砷量最高。自然界中的砷多数与有色金属矿伴生,并随精矿进人有色金属冶炼厂,在有色金属的提取过程中以硫化物或盐的状态不同程度地进人烟气、废水和废渣中,烟气和废水处理后,含砷物质大多转移到污泥中形成了含砷污泥,在冶化生产过程中,约有30%砷进入废水、废气中。含砷废渣主要来自冶炼废渣、处理含砷废水和废酸沉渣、电子工业的含砷废物以及电解过程中产生的含砷阳极泥等。从有色冶金系统来看,进入冶炼厂的砷除一部分直接回收成产品白砷外,其它含砷中间产物几乎都进入含砷废渣中[1]。长期以来,含砷废料大多采用囤积贮存的方法处置,随着高浓度含砷废料越积越多,对其无害化处理成为亟待解决的问题。 2.含砷废渣的无害化处理 目前少有成熟的工程化技术既能回收含砷废料中有价金属,又回收砷或对砷

砷的处理方法

砷的处理方法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃℃℃加热灼烧,可以使沉淀稳定,砷不易渗出[60]。如结合其它方法,可以使出水中的砷含量降至<L[61]。也可以用电石糊,如一含490mgAs/L的废水,先用次氯酸钠溶液进行氧化,再用电石糊将pH调至≥,经过滤后,滤液中的砷含量可以降至L[62]。如用硫酸镁作为沉淀剂,pH应控制在左右[63]。可在用氯化镁时,加入石灰,使pH调整至~[64],使用硫酸镁可以使砷的浓度降至5mg/L[65],当镁/砷比为200:1时,出水中砷浓度可以降至 ≤L[66]。 废水中的三价砷也可以先用微生物 Pseudomonas Putida 及Alcaligenes eutrophus 处理,再用磷酸盐及石灰处理的方法去除[67]。 其它沉淀法 含砷废水如与能水解产生钛酸的化合物作用,则可以共沉淀的原理将砷除去。如在pH2~8的范围内将含的合成含砷废水用钛酸四异丙酯作用,并在40℃搅拌16小时,经过滤后,废水中的砷含量可以降至~μgAs/ml[68]。

废水中砷还可以用有机胺进行离子浮选法进行处理,如可以用十六烷胺醋酸盐或十八烷胺醋酸盐,与砷反应生成疏水性的沉淀而被去除,当pH值为~时,出水中砷的含量可以降至<L,但如有氯离子及硫酸根离子存在时,会影响砷的去除[69]。 吸附法 用稀土属物质来去除废水中的有害阴离子, 如F, As及Se等。有些稀土物质在工业中未找到用途, 但量大, 可用来处理废水, 如镧盐可用来沉定砷盐, 固体的镧及钇可用来吸附其它有害负离子, 也可将镧或钇离子载于多孔的硅胶上以改进其吸附作用[70]。载有铁的天然或人工沸石也可以有效地从废水中将砷去除[71]。制铝工业的红泥也可以用来作为砷的吸附剂,在的条件下有利于三价砷的去除,而在~则有利于五价砷的去除,三价砷的吸附过程是一个放热过程,而五价砷的吸附过程则是一个吸热过程[72]。 由碳酸锰及碳酸铋(Mn:Bi=:)混合物在400℃加热小时制成的氧化锰可以用来吸附废水中的砷,其中含的铋可以提高氧化锰对砷的吸附,在pH为~时,及As的浓度为10mg/L时,其吸附容量为g,可以使砷的浓度降至L[73][74]。由低温电解而制得的二氧化锰,在投加量为2g/L及pH为2 时,10ppm的砷可以降至,并可以用氢氧化钠溶液再生[75]。 水滑石(Mg3Al(OH)8)2CO3xH2O,可以从废水中吸附砷,当砷的初始浓度分别为75,100,150mg/L时,其最大的去除率分别为,及%。在pH为时其吸附容量最大,其吸附模式符合Langmuir吸附等温线。吸附后的砷并可用的氢氧化钠洗

相关主题
文本预览
相关文档 最新文档