当前位置:文档之家› 三片式平行分度凸轮传动装置CADCAM系统研究

三片式平行分度凸轮传动装置CADCAM系统研究

三片式平行分度凸轮传动装置CADCAM系统研究
三片式平行分度凸轮传动装置CADCAM系统研究

圆柱分度凸轮机构的设计及凸轮的数控加工

文章编号:1004-2539(2002)04-0050-03 圆柱分度凸轮机构的设计及凸轮的数控加工 (山东大学自动化研究所, 山东济南 250061)  金作成 (山东诸城锻压机床股份有限公司, 山东诸城 262200) 陈龙宝 摘要 空间分度凸轮机构主要应用于冲压机械、包装机械、制药机械及需要固定转位的自动化机械 中。根据应用的场合、应用精度及分度数的不同,空间分度凸轮机构分为平行分度凸轮机构、弧面分度凸轮机构和圆柱分度凸轮机构3大类。本文主要介绍圆柱分度凸轮机构的设计及凸轮的数控加工。 关键词 圆柱分度凸轮 设计 数控加工 1 圆柱分度凸轮机构的设计 图1为圆柱分度凸轮机构的结构示意图,凸轮作 为主动轴,分度盘作为从动轴旋转。由于凸轮曲线是由曲线部分和直线部分组成,就形成了分度盘的间歇运动。圆柱分度凸轮机构尤其适用于分度数较多的自动机械中 。 图1 圆柱分度凸轮机构的结构示意图 1.1 分度数和分度角 分度数n 的大小是由所应用的自动机械决定的。这种形式的分度机构一般适合于n =6~60的情况。 n 太小时压力角太大,传动特性很差;n 过大时,结构 很复杂,分度盘尺寸过大,转动惯量限制其不能高速运转或消耗功率过大。n 确定之后,分度盘的分度角则为Q 10=Q h =360°/2n 。1.2 分度盘直径 分度盘的直径与机构的外形尺寸和分度数有关,从图1可见,从动滚子之间的距离H 应大于工作机构 的最大外形尺寸A 。留一定空隙的σ。一般σ=10mm ~20mm ,于是从动盘滚子中心的节圆半径可用下式计算 l = H 2sin πn = A +σ 2sin π n 1.3 滚子尺寸 滚子半径通常取r 1=(0.25~0.30)H 滚子宽度通常取b 1=(0.8~1.2)r 1 1.4 凸轮尺寸 凸轮尺寸的确定原则是在保证接触应力最大值小于许用应力的前提下,尽可能紧凑一些。根据压力角计算公式可推出,圆柱凸轮的基圆直径可由下式算出 D 2= 2H V m Q 2h tan a m 式中,V m 为最大无因次速度;a m 为最大压力角。 圆柱凸轮的外径则为D 2e =D 2+b 0,凸轮槽深度 h 一般应略大于滚子宽度b 0。在确定凸轮体宽度B 2 时,为了保证分度运动时的连续性,应有适当的啮合重叠段为宜。在图1所示的机构中,B 2的取值范围为2(1-r 1)>B 2>H 。1.5 中心距 中心距是凸轮中心线与分度盘中心线之间的距离。可以用下式求得 c =l cos π n ±a 式中,a 为凸轮中心线偏离滚子起始与终止位置中心连线的距离,一般情况下a =0。凸轮中心线与分度盘基准面的距离取决于凸轮体外径D 2e 、滚子销轴向尺寸和分度盘厚度等结构参数的选取,应尽量使凸轮外缘靠近分度盘底面,以减少滚子销轴的悬臂分度。1.6 结构形式 圆柱分度的结构形式大体分3种,一种是凸脊定位,另有偏凸脊定位,还有槽定位。由于凸脊定位精度高,所以凸脊定位形式较常见。1.7 凸轮的动程角与动静比 由于分度凸轮主要功能就是实现间歇运动,因此对动静比的要求就非常严格,对动程角也有一定要求。动程角的大小是由用户提出的。但是通常希望动静比 5 机械传动 2002年

弧面分度凸轮的设计

毕业设计 题目弧面分度凸轮的设计 学院机械工程学院 专业工业工程 姓名冯堃 学号 20050407069 指导教师王红岩 二OO九年六月十日

弧面分度凸轮的设计 The Design of Roller Gear Indexing Cam 专业:工业工程 学生:冯堃 指导教师:王红岩 济南大学机械工程学院 二零零九年六月

目 录 摘 要 ............................................................i ABSTRACT .. (ii) 第一章 绪论 ...................................................- 1 - 1.1 课题研究的背景和意义 .................................................................. - 1 - 1.2 分度运动 .......................................................................................... - 1 - 1.3 从动系统的工作原理 ...................................................................... - 2 - 1.4 凸轮驱动系统分度机构 .................................................................. - 3 - 1.4.1精密分度凸轮机构的基本类型 ............................................... - 3 - 第二章 弧面凸轮设计中基本参数的确认 .............................- 5 - 2.1 弧面分度凸轮机构的基本形式与工作特点 ..................................... - 5 - 2.2 运动的必要条件——凸轮曲线的选择 ............................................. - 6 - 2.3 选择曲线时考虑的运动学参数 ......................................................... - 8 - 2.4 弧面分度凸轮机构的主要运动参数 ................................................. - 9 - 2.4.1 凸轮分度廓线头数H、转盘滚子数Z与转盘分度书I之间的 关系 .................................................................................................................... - 9 - 2.4.2 凸轮与转盘在分度期与停歇期的运动参数 .......................... - 9 - 2.4.3动停比k 与运动系数τ ......................................................... - 10 - 2.4.4 啮合重叠系数ε .................................................................... - 10 - 2.5弧面分度凸轮机构的主要几何尺寸计算 ........................................ - 11 - 2.5.1凸轮节圆半径1p r ,转盘节圆半径2p r 与中心距C ............... - 11 - 2.5.2许用压力角p a ...................................................................... - 11 - 2.5.3转盘节圆半径2p r .................................................................... - 11 - 2.5.4滚子数z 、相邻两滚子轴线间夹角z φ、滚子半径ρ与宽度b . - 11 - 2.5.5凸轮的主要尺寸 ..................................................................... - 12 - 2.5.6装上滚子后转盘的尺寸 ......................................................... - 13 -

圆柱分度凸轮机构的分析与设计

圆柱分度凸轮机构的分析与设计 【摘要】如何分析圆柱分度机构。 【关键词】分度盘;圆柱凸轮 根据机构运动分配图所确定的原始数据,分别设计各组独立的执行机构。进行凸轮机构尺寸设计时,通常需完成以下过程。 1.凸轮机构选型 在设计计算凸轮几何参数前,要先确定采用何种形式的凸轮机构,其中包括凸轮的几何形状、从动件的几何形状、从动件的运动方式、从动件和凸轮轮廓维持接触的方式等。选型设计的灵活性很强,同一工作要求可以由多种不同的凸轮机构类型来实现: (1)从动件的运动方式可以与执行机构的运动方式相同,也可以不同。他们之间可通过适当的传动机构进行变换,即移动变为摆动,或者摆动变为移动。 (2)凸轮的几何形状(平面的或空间的)选择要考虑到它在机床中的安装位置,目的是尽量简化由从动件至执行机构之间的传动机构。 (3)平面凸轮机构可用各种形式的从动件,即尖底、滚子或平底的,而空间凸轮机构中通常只能采用滚子从动件。 2.计算从动件的主要运动参数 根据执行构件的运动要求计算出凸轮机构的从动件行程(最大位移量或最大旋转角度)。对于执行构件与凸轮机构的从动件固定连接的情况,运动要求是一致的。对于执行构件与凸轮机构的从动件两者之间还具有运动传递机构的情况,则需要采用机构位置分析方法进行计算。如果执行机构件在运动过程中有一个或数个驻点位置需要保证与其它执行构件的运动协调关系,则也需计算出与这些驻点对应的从动件位置参数。 3.确定从动件的运动规律 从动件在整个运动范围内的运动特性,诸如位移、转角、速度等(有驻点要求时还包括通过驻点位置时的运动特性),是与执行构件工作特性密切相关的,也与所选定的凸轮机构的类型之间存在一定制约因素。因此,在确定从动件的运动规律时需要分析各种有关的影响因素。 4.凸轮机构的基本尺寸设计

凸轮机构习题作图题

凸轮机构考试复习与练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A.惯性力难以平衡B.点、线接触,易磨损 C.设计较为复杂D.不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A.可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A.摆动尖顶推杆B.直动滚子推杆 C.摆动平底推杆D.摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A.偏置比对心大B.对心比偏置大 C.一样大D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A.等速运动规律B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律) 6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A.增大基圆半径B.改用滚子推杆 C.改变凸轮转向D.改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线 13.凸轮轮廓曲线上各点的压力角是()。

4种常见的间歇运动机构

在各类机械中,常需要某些构件实现周期性的运动和停歇。能够将主动件的连续运动转换成从动件有规律的运动和停歇的机构称为间歇运动机构。 而实现间歇运动的四种常用机构分别为:棘轮机构、槽轮机构、凸轮式间歇运动机构和不完全齿轮机构。 一、棘轮机构棘轮机构的类型很多,从工作原理上可 分为轮齿啮合式和摩擦式棘轮机构;从结构上可分为外啮合 式和内啮合式棘轮机构;从传动方向上分为单向(单动和双 动)式和双向式棘轮机构。棘轮机构是把摇杆的摆动转变为 棘轮的间歇回转运动。其优点轮齿式棘轮机构运动可靠,棘 轮转角容易实现有级调节,但在工作过程中棘爪在齿面上滑 行,齿尖易磨损并伴有噪音,同时为使棘爪能顺利落入棘轮 槽,摇杆摆角应略大于棘轮转角,这样就不可避免地存在空 程和冲击,在高速时尤其严重,所以常用在低速、轻载 下实现间歇运动。摩擦式棘轮机构传递运动平稳、无噪声, 棘轮转角可作无级调节。图1 单向轮齿啮合式棘轮 但由于运动准确性差,不 宜用于运动精度要求高的场合。在工程实践中,棘轮机构 常用于实现间歇送进(如牛头刨床)、止动(如起重和牵 引设备中)和超越(如钻床中以滚子楔块式棘轮机构作为 传动中的超越离合器,实现自动进给和快速进给功能)等 场合。 图2 摩擦式棘轮 二、槽轮机构槽轮机构又称马尔他机构或日内瓦机构,也是常用的间歇运动机构之一。普通平面槽轮机构有外接式槽轮机构(图3)和内接式槽轮机构(图4)两种类型。它主要是由带有均布的径向开口槽的槽轮2、带有圆柱销A的拔盘1以及机架组成。 图3 外接式槽轮机构图4 内接式槽轮机构 槽轮机构的工作过程是:主动拨盘1上的圆柱销A进入槽轮2上的径向槽以前,拔盘上的凸锁止弧α将槽轮上的凹锁止弧β锁住,则槽轮静止不动。当拔盘圆柱销A进入槽轮径向

第五章间歇机构

教学目地:1了解刺轮机构的工作原理和应用场合 2了解槽轮机构的工作原理和应用场合 3了解不完全齿轮机构和凸轮间歇运动机构的工作原理 教学重点:1刺轮机构的工作原理、运动特点 2槽轮机构的工作原理、运动特点 教学难点:槽轮机构的运动性能 第五章间歇运动机械 5.1 棘轮机构 5.1.1 棘轮机构的工作原理和类型 如图5-1a 所示,棘轮机构是由棘轮、棘爪及机架所组成。主动杆1空套在与棘轮3固连的从动轴上。驱动棘爪4与主动杆1用转动副A相联。当主动杆1逆时针方向转动时,驱动棘爪4便插入棘轮3的齿槽,使棘轮跟着转过某一角度。这时止回棘爪5在棘轮的齿背上滑过。当杆1顺时针方向转动时,止回棘爪5阻止棘轮发生顺时针方向转动,同时棘爪4在棘轮的齿背上滑过,所以此时棘轮静止不动。这样,当杆1作连续的往复摆动时,棘轮3和从动轴便作单向的间歇转动。杆1的摆动可由凸轮机构、连杆机构或电磁装置等得到。 按照结构特点,常用的棘轮机构有 下列两大类: 1.轮齿式棘轮机构 轮齿式棘轮机构有外啮合(图 5-1a)、内啮合(图5-1b)两种型式。 当棘轮的直径为无穷大时,变为棘条 (图5-1c),此时棘轮的单向转动变为 棘条的单向移动。 根据棘轮的运动又可分为: 图5-3 (1)单向式棘轮机构可分为单动 式和双动式两种,(图5-1)所示为单 动式棘轮机构,它的特点是摇杆向一个 方向摆动时,棘轮沿同方向转过某一角 度;而摇杆反向摆动时,棘轮静止不动。 图5-2所示为双动式棘轮机构,当摇杆 往复摆动时,都能使棘轮沿单一方向转 动。单向式棘轮采用的是不对称齿形, 常用的有锯齿形齿(图5-3a)、直线形 三角齿(图5-3b)及圆弧形三角齿(图 5-3c)。 图5-1

间歇运动机构在工业中的应用

机电系统设计与分析课程 作业 间歇运动机构在工业中的应用 学院: 专业: 学号: 姓名:

间歇运动机构在工业中的应用摘要:在自动化设备和半自动化设备中,往往需要某些机构来实现周期性的转位、间歇动作以及带有分度的动作,实现这种运动的机构称为间歇机构。它可以将连续运动转化为间歇移动或转动,从而使系统能在停歇段完成预定的工艺动作。自动机械向高速化、精密化、轻量化的方向发展,对间歇机构运动学与动力学性能的要求越来越高。凸轮间歇机构、棘轮机构、槽轮机构和不完全齿轮都是间歇运动机构,本文将从它们的结构特点、工作原理与应用场合做以分析。 关键词:间歇运动机构,工业应用 引言 随着当前机械产品向自动化方向的发展,各种各样的自动机械在机械产品中的地位日益显著。由于生产工艺的要求,有些机械需要其构件周期地运动和停歇。能够将原动件的连续转动转变为从动件周期性运动和停歇的机构,称为间歇运动机构。例如牛头刨床工作台的横向进给运动,电影放映机的送片运动等都用有间歇运动机构。 按照这些要求,该执行机构应具有以下两个基本功能: (1)运动(位移或速度)缩小 (2)运动停歇 常见的间歇运动机构有:凸轮机构、棘轮机构、槽轮机构和不完全齿轮机构。 1.凸轮机构 凸轮型间歇机构具有结构简单,能自动定位,动静比可任意选择的特点,更适用于要求高速、高分度精度的场合,因而成为现代间歇机构发展的主要方向。滚子齿形凸轮式间歇运动机构,工程上又称为凸轮分度机构,常见有圆柱分度凸轮机构和弧面分度凸轮机构等。1.1圆柱分度凸轮机构 圆柱分度凸轮机构,如图1.1所示。该机构由圆柱凸轮1、转盘2及机架组成。转盘上均匀分布着若干个滚子3,滚子轴线与转盘轴线相平行,凸轮轴线与转盘轴线垂直交错。当凸轮匀速转动时,转盘作单向间歇运动,转盘的运动完全取决于凸轮轮廓曲线的形状,凸轮轮廓线由分度段和停歇段组成。当凸轮回转时,其分度段轮廓推动滚子使转盘分度转位;当凸轮转到停歇段轮廓时,转盘上两相邻滚子跨夹在凸轮的圆环面突脊上使转盘停歇。设计时通常取凸轮槽数为1,转盘滚子数为6~12,滚子做成上大下小圆锥体,以改善磨损情况。 该机构分度盘上布置的滚子数较多,适用于要求分度数较多的场合(6~60分度)滚子表面一般为圆柱形,为了使滚子的接触表面磨损均匀,并且便于调整滚子与凸轮槽两侧面的间隙,也可采用圆锥形滚子。但当分度数增大时,分度盘转动惯量较大,机构中滚子与凸轮轮廓间的间隙较难补偿,容易产生横越冲击,刚度和啮合性能均不及弧面分度凸轮机构。圆柱分度凸轮机构能够实现大分度输出,特别适合于中、低速情况下要求在一个周期内停歇次数较多的场合,如灯泡机械、烟草机械和大输液罐装机械。

平面共轭分度凸轮机构设计计算和运动分析

% 共轭分度凸轮机构设计与分析 % 相关的函数文件: % 计算凸轮机构运动参数(zhbx_cs.m) % 绘制凸轮机构运动曲线(zhbx_tx.m) % 计算凸轮廓线坐标(zhbx_xyRP.m) % 将凸轮廓线辅坐标转化为动坐标(zhbx_xyRPd.m) disp ' 用键盘输入已知条件:' n=input('凸轮转速(r/min) n = '); C=input('机构中心距(mm) C = '); disp '选择凸轮头数H、转盘分度数I与凸轮分度期转角theta_f的对应关系:' disp ' H=1时,I=6、8、10、12、16,theta_f=60、75、90、120、150度' disp ' H=2时,I=3、4、5、6、8,theta_f=90、120、150、180、210、240、270度' disp ' H=3时,I=2、4,theta_f=150、180、210、240、270度' disp ' H=4时,I=1、2、3,theta_f=180、210、240、270度' H=input('凸轮头数H = '); I=input('转盘分度数I = '); theta_f=input('凸轮分度期转角(度) theta_f = '); % 1-共轭分度凸轮机构运动分析 % 凸轮角速度 omega_1=pi*n/30; % 转盘滚子数 z=H*I; % 凸轮停歇期转角 if H<2 theta_d=180-theta_f; else theta_d=360-theta_f; end % 转盘分度期转位角 phi_f=360/I; % 机构分度期时间t_f和停歇期时间t_d hd=pi/180.0; % 角度转换为弧度的系数 t_f=theta_f*hd/omega_1; t_d=theta_d*hd/omega_1; % 机构动停比k和运动系数tau k=t_f/t_d; tau=t_f/(t_f+t_d); disp '======== 共轭分度凸轮机构基本数据========' fprintf(' 凸轮转速n = %3.4f r/min \n',n) fprintf(' 机构中心距 C = %3.4f mm \n',C) fprintf(' 凸轮头数H = %3.0f \n',H) fprintf(' 转盘分度数I = %3.0f \n',I)

圆柱分度凸轮的精确建模与数控编程

文章编号:1001-2265(2010)10-0091-03 收稿日期:2010-04-16 作者简介:王卫兵(1974 ),男,江西南昌人,江西赣江职业技术学院副教授,硕士,主要从事机械设计与制造相关技术的研究,(E -m ail) w _oli ve @si na .co m 。 圆柱分度凸轮的精确建模与数控编程 王卫兵,董燕,胡志新 (江西赣江职业技术学院,南昌 330108) 摘要:应用UG 的二次开发工具UG /Gr i p 开发了圆柱分度凸轮的建模系统,实现了圆柱分度凸轮的三维数字化精确建模,再利用UG CAM 模块的可变轴曲面轮廓铣对凸轮沟槽进行数控编程与加工,提高了圆柱分度凸轮数控加工的质量和效率。 关键词:圆柱分度凸轮;二次开发;多轴编程;UG /Grip 中图分类号:TH 16;TG65 文献标识码:A Prec iseM ode ling and NC Programm ing of C ylindrical Indexing Ca m Based on A pplication D evelop m ent of U nigraphics WANG W ei b i n g ,DONG Yan,HU Zh i x i n g (Jiangx i Ganjiang V ocational Co llege ,Nanchang 330108,Ch i n a) Abst ract :On t he basis of t he analysis of surf ace c har acteristics f o r cylindrical indexing ca m ,has estab lished modeling syste m of t hree di m ensional dig itization model f o r cylindrical indexing ca m by UG /Grip ofUG re development tool .On t he basis of discussing f our axis machining appr oach of cy lindrical indexing ca m gr oove ,t he f our axis tool pat h of t he cy lindrical indexing ca m is gener ated by variable cont ourmac hining sche ma in U nigr aphics . K ey w ords :cy lindrical indexing ca m ;UG /G rip ;NC pr ogr a m ming ;r e develop ment of unigr aphics 0 引言 圆柱分度凸轮机构用于两垂直交错轴间的间隙分度步进运动,具有定位精度高、承载能力大、运动平稳等特点。广泛应用于各种机床与机械设备的间 隙步进机构与步进供料装置等[1] 。圆柱分度凸轮是机构中的关键部件,决定了整个机构的运动学和动力学性能。因此,对凸轮廓面的精确设计与数控加工精度保证的研究至关重要。 使用常规的C AD 建模工具进行圆柱分度凸轮的三维造型比较困难,采用传统的加工方法也难以保证凸轮槽的加工精度。龙村等[2] 、李俊源[3] 分别在AutoCAD 与So lid W orks 环境下,利用VB A 开发了圆柱凸轮的三维CAD 系统,未能实现造型与编程的集成。为了达到较高的凸轮廓面精度,必须对圆柱分度凸轮进行数控加工。圆柱凸轮沟槽的数控加工传统上采用三轴联动的范成等径加工或非等径加工,通过工件的旋转,铣刀作XY 联动,切割加工出凸轮的沟槽 [4 5] 。等径加工的刀具直径必须与滚子相等, 由于不可避免的刀具磨损,因此很难保证加工精度。非等径加工存在的问题有:一是不能按照零件的精确形状进行走刀;二是由于零件的旋转与主轴的移动不能完全同步产生较大误差;三是切削过程中不同的切削位置其实际的切削进给并不相等。因而这种加工方法的精度受到限制。 UG NX 是广泛应用于机械工程领域的集成化C AD /CAM /C AE 软件,其提供UG /Grip 可以对软件功能进行二次开发,以增强UG 的功能,并实现用户 化的定制[6] 。本文利用UG /Grip 编程工具开发了圆柱分度凸轮辅助建模系统,可方便地实现不同结构参数的圆柱分度凸轮精确建模,再利用UG NX 加工模块的可变轴曲面轮廓铣编制凸轮沟槽的多轴加工程序。 1 圆柱分度凸轮精确建模 1 1 圆柱分度凸轮的方程 [1 2] 圆柱分度凸轮机构的坐标系包括有:与机架相连的定坐标系X 0Y 0Z 0,与凸轮相连的动坐标系 91 2010年第10期 工艺与装备

凸轮分割器原理

凸轮分割器原理 2010-7-23 14:30:00 凸轮分割器的工作原理是,通过输入轴上的共轭凸轮与输出轴上带有均匀分布滚针轴承的分度盘无间隙垂直啮合,凸轮轮廓面的曲线段驱使分度盘上的滚针轴承带动分度盘转位,直线段使分度盘静止,并定位自锁。通常情况下,输入轴旋转一圈(360°),输出轴便完成一动一停的一个分度过程,在一个分度过程中,输出轴有一个转位时间和停止时间之比叫动静比,动静比的大小与凸轮曲线段在整个凸轮圆周上所占的角度大小有关系(通常把这段曲线所占的角度叫动程角),动程角越大,比值越大,分割器运转越平稳;凸轮圆周上直线段所占的角度叫静止角,动程角与静止角之和为360°。 分割器的工位数(即输出轴每次转运的角度⊙除以360°所得的数工位数N,360°÷⊙=N)。工位数N与输出轴分度盘上装载的滚针轴承的数量有关系,通常情况下,分度盘上的滚针轴承数量与工位数相同,当工位N≤4时出现如下情况:N =4时,分度盘上的滚针轴承的数量是2N(每次动程角拨动2个滚针轴承);工位数N=2时,分度盘上的滚针轴承是3N,凸轮曲线每次拨动3个滚针轴承;当分度数N太大时,由于受分度盘直径的大小影响无法安装太多的滚针轴承,一般采用将凸轮曲线进行分段,同样直线也是分段(但曲线形式也随之可能会改变),这样不会因为滚针轴承数量太多,分布开来其直径太小影响分割器的载荷量。凸轮曲线常用的是:MS(变正弦曲线),MT(变梯形曲线),MCV50(变等速曲线), 一般优先MS(变正弦曲线)。 分割器输出轴的分度精度(重复定位精度,即:由一个工位转换到下一个工位所转过的角度误差)由分度盘上均匀分布的滚针轴承之间的位置度误差决定,分度盘上滚针轴承之间的位置误差越小,分割器的分度精度越高,反之就低,一般分度精度分为三级,普通级≤±50″ 精密级≤±30″ 高精级≤±15″。 分割器的转动过程(即工位转换过程及停止状态时)是否平稳,与分度盘的分度精度及凸轮曲线的加工精度及凸轮曲线表面粗糙度有关系,由于凸轮与分度盘之间的啮合是无间隙啮合,所以分度盘上的滚针轴承分度不均匀就会产生滚针轴承与凸轮曲线面之间有些可能产生间隙,有些可能产生压力过紧。在分割器工作过程中在惯性矩的作用下就会产生晃动。当凸轮曲线表面粗糙度太大时,滚针轴承在凸轮曲线表面上滚动时就会产生振动,同样转导到输出轴上及与之相配的工位盘上,会影响设备在生产过程中工件的成品率。 凸轮材料有:38CrMoAl氮化;20CrMnTi渗碳淬火;42CrMo淬火。凸轮淬火后需经过 研磨内孔后再研磨曲线。

凸轮机构(分度盘)选型范例介绍

凸轮机构(分度盘)选型范例介绍 本站搜索更多关于“分度机构论坛”的内容 典型范例: 以下内容更改机构选型: 已知条件,设计资料 (1)回转台工位数(分度数)S: S=8 (2)每工位驱动时间:1/3秒 ;定位时间:2/3秒 (3)输入轴凸轮轴转速:N=60转/分钟 (4)凸轮曲线:变形正弦曲线 (5)回转盘的尺寸:φ600mm×16mm (6)夹具的重量:2.5kg/组 (7)工件的重量:0.3kg/组 (8)转盘依靠其底部的滑动面支持本身重量负荷,有效半径:R1= 250mm (9)驱动角:θ=360×(驱动时间)/(驱动时间+定位时间)=120deg 解答: 回转台工位数:s=8输入轴凸轮轴转速:N=60rpm 凸轮曲线是变形正弦曲线,因此Vm=1.76 Am=5.53 Qm=0.991 1、负载扭矩:Tt (1)惯性扭矩:Ti (a)转盘重量:w3 w1=π×R×R×t×7.8×1/1000=π×300×300×16×7.8×1/(1000×1000) =35.29(kg) w2=2.5×8=20(kg) w3=0.3×8=2.4(kg)

(b)回转盘惯性矩:I1; 夹具惯性矩:I2; 工件惯性矩:I3为 I1=(w1×R×R)/2G=(35.29×300×300)/(2×9.8×1000×1000)=0.16(kg.m.s2) I2=(w2×R1×R1)/G=(20×250×250)/(9.8×1000×1000)=0.13(kg.m.s2) I3=(w3×R1×R1)/G=(2.4×250×250)/(9.8×1000×1000)=0.015(kg.m.s2) (c)总惯性矩:I=I1+I2+I3 =0.16+0.13+0.015=0.305(kg.m.s2) (d)输出轴最大角加速度: α=Am×2π/S×(360/θ×N/60) α=5.53×2π/8×(360/120×60/60)2=39.09(rad/s2) (1)惯性扭矩:Ti Ti=I×α=0.305×39、09=11.92(kg.m) (2)磨擦扭矩:Tf Tf=μ×w×R1=0.15×(35.29+20+2.4)×250/1000=2.16(Kg.m) (3)作功扭矩:Tw在间歇分度时没有作功,因此Tw=0 (4)以上总负载扭矩:Tt=Ti+Tf+Tw=11.92+2.16+0=14.08(kg.m) 2、实际负载扭矩:Te 安全负载的因数fe=1.8 Te=Tt×fe=14.08×1.8=25.34(kg.m) 输入轴扭矩:Tca(注:输入轴起动负载扭矩视为0 ,因此Tca=0 Tc=360/(θ×s)×Qm×(Te+Tca)=360/(120×8)×0.99×(25.34+0)=9.41(kg.m) 计算所需的马力:p=Tc×N/(716×f )(HP)或P=Tc×N/(975×f)(kw) 假设效率f=60% 那么P=9.41×60/(716×0.6)=1.31(HP)P=9.41×60/(975×0.6)=0.965(Kw) 事实上,以上所计算的值为起动时最大马力,而连续传动所需的马力为1/2选择 适用的间歇分度器根据以上所计算的资料以及输入轴的转数60rpm来选择,请参考说明书上所记载,凡是输出轴扭矩高于以上所计算的Te值者均可选用。因为 Te=25.34(kg.m),所以应采用GHH100型。 注:(1)Vm:最大非向性速度 (2)Am:最大非向性之加速度 (3)Qm:凸轮轴最大扭力系数

凸轮分度箱惯量过大问题如何解决

凸轮分度箱是实现铣槽机间歇分度运转的新型机构,与众多具有该种运动特性的传统机构相比,具有结构紧凑、噪音低、分度精度高、高速性能好、定位时自锁、传递扭矩大等显著优点。凸轮分度箱惯量过大问题也是存在的一个影响其使用的主要问题之一,下面请诸城金王精密机械给大家介绍一下如何避免凸轮分度箱惯量过大问题。 (凸轮分度箱-图片) 【凸轮分度箱惯量过大怎么办】 凸轮分度箱在工作中会带动转盘转动,凸轮分度箱是铣槽机的主要部件,它是保证铣槽精度,提高产量与质量,实现自动分度的关键。有时候可以发现在转动中颤动较为明显,让人不免担心会因惯量太大而影响到间歇分割器的寿命,那么针对惯量过大问题应如何处理呢? 1、把回转盘的质量减小,对结构进行优化; 2、选择使用更大型号分割器; 3、在不对节拍造成影响的前提下,选择使用静止角更小的分割器;

4、把凸轮分度箱输入轴减速比增大,将输入转速降低,增大节拍; 5、选择使用比现在工位数小的分割器,对输出轴增加传动;在进行凸轮分度箱选型的时候也需要对转动惯量进行校核,若是超出了极限,且这个时候已经购买了凸轮分度箱,就只能考虑牺牲节拍,把转盘的转速降低,这是有效的方法。也就是上面提到3、4两项;若是不能牺牲节拍,又强用的话,应做好整改的准备,再重新购买一个更优的分割器等待整改,可采用上述2、5两项的方法,不过这时把以后整改的方案考虑清楚,确保有预留的空间以及安装位置,照一般情况来看下一个机座号的会大不少;优化转盘还有一定的可能性,具体要根据设计的情况而定。 (凸轮分度箱-图片) 【凸轮分度箱工作原理】 蜗杆凸轮的旋转带动分度盘,使蜗杆每旋转一圈,转盘转过一格,铣刀移过一段固定的距离。形成了等距离的针床槽距。设计时,蜗杆凸轮采用一段斜螺纹+一段直螺纹+一段斜螺纹绘制方法。铣刀停止或者铣槽时,转盘始终位于直螺纹范围内。转盘每移动一格都是从直螺纹旋转一圈再次停止在直螺纹处的。这一设计可以避免转盘的碰撞、冲击,形成一个缓冲地区,不至使零件受到损坏。同时,又

凸轮分度器的设计参数

凸轮分度器的设计参数 8工位的全自动纸杯成型机其核心运动部件是由凸轮分度器直接驱动,其工作原理见图1;凸轮分度器的设计参数如下: (1)工位数量:S=8; (2)转位时间:0.4s,停顿时间:0.8s; (3)凸轮曲线类型:变形正弦曲线; (4)转盘尺寸:直径D=800mm,厚度t=5mm,材料:钢,密度p=7.8X103㎏/组; (5)夹具质量:0.5㎏/组; (6)工件由于是纸杯,且数量不多,所以其质量可以忽略,不参与计算; (7)转盘依靠凸轮分度器支撑其本身重量负荷,其摩擦转矩忽略; (8)工件(夹具)所在位置直径:De=600mm。 2 凸轮分度器的选型计算 2.1 计算凸轮分度器分度角θh Θh= Th Th+T0 X360°(1) 式中,Θh—凸轮分度器分度角,(°); T h—凸轮分度器转为时间,s; T0—凸轮分度器停顿时间,s; Θh= Th Th+T0X360°=0.4 0.4+0.8 X360°=120° 2.2 计算凸轮分度器输入轴转速n T C=T h+T0 (2)60 1.2 式中,T C为节拍时间,s/件; 根据停顿时间、转位时间及式(2),可知机器的节拍时间为

T C =T h +T 0 =0.4+0.8=1.2s 由于机器的节拍时间等于输入轴转速n 为 n =60TC =601.2=50r/min (30) 2.3查阅凸轮曲线参数 应为凸轮曲线为变形正弦曲线,查阅制造商样本资料,得出该凸轮曲线相关参数分别为Vm =1.76,Am =5.53,Qm =0.99。 Vm —凸轮曲线最大无量纲速度; Am —凸轮曲线最大无量纲加速度; Qm —凸轮轴最大转矩系数。 2.4 计算加速转矩Ta (1)计算负载质量。 转盘质量 m 1=πD 2t 4p =π4×0.82 ×0.005×7.8×103=19.6㎏ (4) 夹具总重量 m 2=0.5×8=4㎏ 负载总重量 m= m 1+m 2=19.6+4=23.6㎏ (2) 计算负载总传动惯量JL J L =J 1+J 2=1.568+0.36=1.928㎏·m 2 (3) 计算输出轴最大角加速ε ε=Am 2πS (360θ? n 60)2=5.53×2π8 (360120° 5060)2=27.15 rac /s 2 (4)计算负载加速转矩T ɑ。 T ɑ=JL ε=1.928×27.15=52.34 N ·m (8)

凸轮机构各种类型

第二十七讲下一讲 学时:2学时 课题:第十章凸轮机构 10.1 概述 10.2 常用的从动件运动规律 目的任务:熟悉凸轮机构的应用和特点及类型,理解常用的从动件运动规律,能够绘制位移线图 重点:凸轮机构的应用和特点及类型 难点:立体凸轮机构运动的实现 教学方法:利用动画演示机构运动,工程应用案例展示其应用场合。 第十章凸轮机构 10.1概述 凸轮机构由凸轮、从动件和机架三部分组成,结构简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。 10.1.1 凸轮机构的应用(工程应用案例) 内燃机配气机构凸轮机构

自动车床上的走刀机构分度转位机构 靠模车削机构 10.1.2 凸轮机构的分类 凸轮机构的类型很多,常就凸轮和从动杆的端部形状及其运动形式的不同来分类。 (1) 按凸轮的形状分 1)盘形凸轮(盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转) 尖顶移动从动杆盘形凸轮机构尖顶摆动从动杆盘形凸轮机构 滚子移动从动杆盘形凸轮机构 滚子摆动从动杆盘形凸轮机构 平底移动从动杆盘形凸轮机构平底摆动从动杆盘形凸轮机构2)移动凸轮(移动凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。) 移动从动杆移动凸轮机构 摆动从动杆移动凸轮机构 3)圆柱凸轮(圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。)

圆柱凸轮自动送料机构 4)曲面凸轮 按锁合方式的不同凸轮可分为:力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;形锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。 沟槽凸轮槽凸轮机构 等宽凸轮等径凸轮 (2) 按从动杆的端部形状分 1) 尖顶 这种从动杆的构造最简单,但易磨损,只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2) 滚子 滚子从动杆由于滚子与凸轮轮廓之间为滚动摩擦,磨损较小,故可用来传递较大的动力,因而应用较广。 3) 平底 平底从动杆的优点是凸轮与平底的接触面间易形成油膜,润滑较好,所以常用于高速传动中。 (3)按推杆的运动形式分 1)移动 往复直线运动。在移动从动杆中,若其轴线通过凸轮的回转中心,则称其为对心移动从动杆,否则称为偏置移动从动杆。 2)摆动 作往复摆动。 凸轮产品实物 https://www.doczj.com/doc/3514696785.html,/ 凸轮轴盘形凸轮 各式凸轮 总结: 凸轮机构的组成 凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆

两种常用的凸轮分割器类型介绍

凸轮分割器的分类有很多种,比较常见的有DT、DS、DF以及P系列等类型的凸轮分割器,DA系列机种广泛应用于重负载,直接自动化设备之各类机构及产业机械等,作同步自动化间歇驱动。虽然目前的行业中,对于超薄型的应用还有一些偏见,但随着人们对小巧精机械的认可,未来必定有其一席之地。(P)系列分割器凸轮廓面曲线段驱使分度轮转位,直线段使分度轮静止并自锁。通过该机构将连续的输入回转运动转化为间歇的步进输出运动。 【超薄型凸轮分割器介绍】 DA系列机种之尺寸设计特 性与平台桌面型功能相似, 与驱动运转上可承受超大轴 负载及垂直径向压力,在输 出端有一凸起固定盘面及大 孔径空心轴,可搭配设置动 态,静态自动化周边设备, 可将动力源之电,油,气管 路设置于空心孔内,此系列 机种广泛应用于重负载,直接自动化设备之各类机构及产业机械等,作同步自动化间歇驱动。 出力轴容许径向负荷是500(kgf),出力轴容许轴向负荷是215(kgf),出力轴容许力矩是参考力矩表(kgf-m),入力轴容许径向负荷是260(kgf),入力轴大弯曲力矩是260(kgf),入力轴大扭矩是25(kgf-m),入力轴的gd2是2.5*10ˉ5(kgf-m2),标准定位精度是±30(sec)。 虽然目前的行业中,对于超薄型的应用还有一些偏见,但随着人们对小巧精机械的认可,未来必定有其一席之地。 【平行凸轮分割器介绍】 平行凸轮分割器随着科技进步与发展,机械自动化已经成为了一种趋势,在人工紧缺和工价成本不断

提高的21世纪,用机械自动生产作业代替人工作业成为了的出路,这是一个工业的变革时代!下面跟随小编走金王来了解下平行凸轮分割器吧~ 平行凸轮分割器(P) 系列:平行凸轮分 割器机种内含二片 固定在输入轴上的 分度盘以完成分度, 平行凸轮分割器有 平行共轭凸轮机构 设计,适合供给节 距较大的输送带传 动带货用于停留时间较长的间歇分度,另有三片式重负荷型式,更适合一些快速且长节距的输送,并且停留时间亦比二片式长。平行凸轮分割器”是输入轴上的平面凸轮与输出轴分度轮上的从动滚子无间隙啮合形成的机构。 平行凸轮分割器其特点是:凸轮为平板型,从动滚子轴线与输出轴平行。平面凸轮廓面曲线段驱使分度轮转位,直线段使分度轮静止并自锁。通过该机构将连续的输入回转运动转化为间歇的步进输出运动。 一、机体的安装: 1、分割器是经加工和正确装配调整而有了的高精度分割机构。用户使用前,不得擅自调整、拆卸、组装。 2、确认该分割器安装面有无损伤,如有损伤,用油石修整。 3、找正输入、输出轴的位置,加注定位销,均匀地拧紧螺钉。 4、该分割器承受脉动负荷力矩作用,安装十分牢固。

凸轮分度箱生产厂家_凸轮分度箱工作原理

凸轮分度箱生产厂家_凸轮分度箱工作原理 随着中国各项经济的稳步发展,各行各业也都慢慢出现并不断的发展壮大。很多人在说起凸轮分度箱的选型时,都会绞尽脑汁,因为有名气的机械厂家很多,但是凸轮分度箱生产厂家哪家好呢,各位还在网上搜寻相关信息吗?别麻烦了,小编我班门弄斧一下,为大家推荐金王机械。下文是为各位读者整理的有关凸轮分度箱工作原理方面的一些介绍,不懂的可以看过来了。 【凸轮分度箱工作原理】 凸轮分度箱是铣槽机的主要部件,它是保证铣槽精度,提高产量与质量,实现自动分度的关键。凸轮分度箱基本工作原理为:蜗杆凸轮的旋转带动分度盘,使蜗杆每旋转一圈,转盘转过一格,铣刀移过一段固定的距离。形成了等距离的针床槽距。 设计时,蜗杆凸轮采用一段斜螺纹+一段直螺纹+一段斜螺纹绘制方法。铣刀停止或者铣槽时,转盘始终位于直螺纹范围内。转盘每移动一格都是从直螺纹旋转一圈再次停止在直螺纹处的。这一设计可

以避免转盘的碰撞、冲击,形成一个缓冲地区,不至使零件受到损坏。同时,又保证了定位的精度,针床可以始终保持槽距。心轴型分割器系列输出轴为心轴型(DS型)件之加工安装配合齿轮、联轴器或联轴盘,需特别注重孔径公差(±0.015-0)、以及键槽公差((±0.015-0,心轴型分割器,)其产品使用在传送输送带、齿轮驱动、无间隙联轴器等机构居多。 1、机体的安装: (1)、该分度器是经加工和正确装配调整而实现的高精度分度机构。用户使 用前,不得擅自调整、拆卸、组装。 (2)、确认该分度器安装面有无损伤,如有损伤,用油石修整。 (3)、找正输入、输出轴的位置,加注定位销,均匀地拧紧螺钉。 (4)、该分度器承受脉动负荷矩作用,安装十分牢固。 由于本分度器安装面相对于输入、输出轴的垂直或平行度较高,设备的安装基面一定要保证使本分度器的输入、输出轴方向与设备所需的输入、输出方面同轴。不能偏斜或偏心。否则,不但影响到输出

相关主题
文本预览
相关文档 最新文档