当前位置:文档之家› 认识同轴电缆与同轴视频传输技术

认识同轴电缆与同轴视频传输技术

认识同轴电缆与同轴视频传输技术
认识同轴电缆与同轴视频传输技术

认识同轴电缆与同轴视频传输技术

本文以科学实验研究为依据,给出了监控工程常用同轴电缆的视频传输特性,指出了应用中的一些误解和误区.对干扰产生原理提出了更加切合实际的解释.归纳分析了实用的抗干扰措施,介绍了同轴抗干扰技术新进展——抗干扰同轴电缆原理和应用前景。

同轴电缆仍然是目前监控系统中应用最广泛的视频传输线。同轴视频传输技术,也是监控系统中的一种最基本传输方式。“同轴电缆到底能传多远”?同轴视频传输技术、抗干扰技术到底现在发展到了什么水平?深入了解同轴电缆的传输特性,掌握同轴视频传输技术的现状与发展,对提高监控系统图像质量,改进系统设计,有效降低系统造价,仍然是有现实意义和积极意义的。

一、工程常用同轴电缆类型及性能:

1) SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”;

2) SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”;

3)基本性能:

l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占

70-80%的物理发泡聚乙烯绝缘电缆;

l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV 物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。

厂家给出的测试数据也说明了这一点;

l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些;

l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。

二、了解同轴电缆的视频传输特性——“衰减频率特性”

同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一:

同轴传输特性基本特点:

1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传

输效果与75-5电缆600多米电缆传输效果大致相当;

2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比

关系计算”,就可以灵活运用了;

3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题;

三、工程应用设计要点

网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。

1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低

频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能是100%,而是允许有一个“失真度”范围要求的标准。这个“标准”的“失真度范围”,在图像上用肉眼应该是分辨不出来的。反过来说,如果在图像上已经能够观察出一点“失真”了,那不管你主观认为图像“还行,可以,不错”甚至“双方认可验收”等等,这时的视频传输质量,都是“不合格的”。要把工程图像做好,首先就应该选择合格的传输设备,追求视频传输质量符合标准。这一点,从网站技术论坛讨论的情况看,还远没引起足够认识。宏观来看,我国监控行业发展了20多年,工程图像质量不仅没有提高反而有些下降,这不能不引起我们的关注和思考。

2. “视频传输”标准:

由图二可见,对于视频传输,我国广播级视频失真度标准要求如图a):5M以下幅频特性误差范围为±0.75db, 即91.7—109%;6M频点为70.7—109%;监控行业的要求略低一些,如图b),0—6M全范围为±1.5db,即84—118.8%;这个传输频率特性要求,与一般“3db通频带”的概念一样;这里须强调:要保证图像质量,视频传输系统(产品)的频率失真范围应小于3db;“3db带宽”这个标准,适用于光缆、射频、微波、同轴和双绞线等各种视频传输系统产品;这是为了保证图像质量,对视频传输系统的要求。但还有一个误区:在工程中还是有不少人用主观评价“工程图像质量好坏”,甚至于用双方是否认可验

收来说明“传输系统(设备)”是否合格,这就有些本末倒置了。工程商这么做可能是“糊涂”;传输设备厂家如果这么做,那可就是“蒙人”了,如果再利用媒体这么宣传,那就是诚心“误导”了。

3..摄像机信号不加放大补偿,只用同轴电缆传输时,按照“3db 带宽”这个标准要求,并结合上面的电缆衰减特性,75-5电缆,不超过3db失真度的电缆长度计算方法是:1000米20db,20/3=6.67,1000/6.67=150米,75-7电缆为236米。不同厂家不同批次的电缆特性有一定差别,实际工程设计中,参照这个数据设计和施工,图像质量一般会有保证的。(准确计算应按照“边频差值”计算,上面计算忽略了低频衰减——原作注)

4.实心聚乙烯绝缘电缆,衰减量大于物理发泡电缆。所以3db带宽有效传输距离少于上面计算值,工程上大致可按90%左右估算。如实芯75-5电缆“3db带宽”传输距离大约为150*0.9=135米;

5.高编电缆:尽管200k以下的衰减小于低编电缆,但200-300k以上的传输衰减与低编电缆一样,所以3db带宽传输距离,反

而低于上述计算值,这是由于高编电缆的“边频差值”更大的因素造成的,“边频差值”越大,放大补偿的难度越大;

6.同轴电缆加放大补偿的视频传输方式:这时系统传输特性是同轴电缆的衰减频率特性和放大补偿的“增益频率特性”之和,放大补偿的“增益频率特性”,应该能有效补偿电缆的频率衰减特性,且二者应该始终保持相反、互补关系,这才可以有效扩展同轴电缆的传输距离。目前这项同轴视频传输技术,产品已经达到的技术水平是:只用一级

末端补偿(无前端无中继),75-5电缆在2km,75-7电缆在3km范围以内的任意距离上,都可以实现上述传输标准;传输距离和传输质量已经和多模光端机相当,而在传输成本、施工维护和图像质量可控恢复功能方面,都具有独特的实用优势和竞争优势;这就是说,同轴视频传输技术,以将有效监控范围扩展到了2-3公里,且是我国自有知识产权技术。

7.工程中确有不少工程是按照“只要图像质量双方认可验收”就是“硬道理”的做法,这实际是无标准可言,不属本文讨论范围。不过这里可以进一言:还是多做些有影响的样板工程才是长远之计;

四、同轴电缆的抗干扰性能

[工程经验]:一路本来没有干扰的图像,运行中偶然出现了干扰,经检查是BNC电缆头接地不良引起的。重新焊好后,干扰消失了,图像恢复正常。

这说明什么问题呢?一是说明周围环境确有外界电磁干扰存在,二是说明在正常情况下,同轴电缆可以把这类干扰屏蔽掉,三是说明BNC 电缆头接地不良,破坏了电缆的屏蔽性能,使原来已经被屏蔽掉的干扰,在新的条件下又显现出来了。这就是我们探讨干扰产生原理的启发点。对于干扰的探讨,eie实验室的研究成果表明:

1. 同轴干扰形成原理:就像天线接收电磁波原理一样,电缆外部客观存在的交变电磁场,可以在电缆外导体上产生干扰感应电流——干扰感应电流在电缆“纵向电阻(阻抗)”Rd上,会形成干扰感应

电动势(电压)Vi——干扰感应电动势刚好串联在视频信号传输回路里,与视频信号一起加到末端负载Rh上,形成了干扰。这就是同轴干扰形成原理,见图三。

2. 显然:当电缆外导体电阻很小,或当外界电磁干扰不是很强,感应电流很小,感应电动势也就很小,而且远远小于视频信号,这时就可以认为“没有干扰”。这就是同轴电缆屏蔽干扰的作用;

3. 在上面工程经验中,当Q9头没有焊接好、接触不良、编织层在穿管时被拉断、或在电梯随行电缆中,长时间反复弯曲加上垂直重力作用编织层被逐步拉断时,都会造成外导体电阻增加,导致“干扰感应电压”升高,视频信号传输效率(分压比例)降低,使原来没有显现出来的“干扰”也出现了;

4. 工程中的“地电位”干扰也是通过同轴电缆外导体电阻才起作用的,所以单端接地可有效排除;

5. 四屏蔽高编(128)电缆外导体电阻比低编电缆小,所以形成的干扰感应电动势也要低一些,这种“低一些”的效果,只是对低频干扰而言的(欧姆电阻为主)。对于高频干扰,由于趋肤效应,高、低编电缆的表面阻抗基本一样,所以对高频的抗干扰效果区别不大;需要明确的是:与低编电缆比较,四屏蔽高编(128)电缆这种能够“适当减弱”低频干扰的效果,其减弱程度是与两种电缆外导体电阻成反比关系;工程上值得认真考虑的是这点减弱干扰的效果,与高编电缆的高投入成本是否值得?

五、视频传输中的抗干扰措施

工程中产生干扰的情况很多很复杂,但可以大致分为两大类:一类是电缆传输线路“外部电磁干扰”的入侵,如地电位干扰、电台干扰、电火花干扰、并行电缆耦合干扰等。这是影响最大、设计和施工中又很难预测的干扰。第二类是两端设备问题和故障引入的干扰,如设备电源故障引来的50/100周电源干扰,或开关电源的高频电源干扰等,不妨把这一类叫着“内部干扰”,这部分比较好解决。我们主要谈第一类的外部干扰。工程中比较成熟的经验有:

1. 防止“地电位”的单端接地或不接大地;

2. 电缆穿金属管,或走金属线槽;此法十分有效,但成本较高,施工有一定复杂度;

3. 埋地;

4. “远离”其他动力电缆或信号控制电缆,并尽量避免或减少并行;

5. 集中供电和控制信号传输采用屏蔽电缆,但屏蔽层不能两端都接视频地;

6. 施工穿管时,把“布线这种粗活”在当地雇临时工来做,结果多处拉断同轴电缆编织网,使外导体电阻增大,产生干扰,这种情况十分多。但这属于可以避免,发生概率又最高的“人为因素”。

7. 电缆中间接头连接方法,不是采用F型接头和双通连接,而是采用“焊接”或“扭接”的方法,这就破坏了电缆的同轴性和特性阻

抗的连续性,容易引起反射和干扰。这属于经验不足的人为因素;

8. 采用抗干扰器,用平衡抵销原理抗干扰。但局限性较大,现场调试交麻烦;

六、同轴抗干扰技术新进展——抗干扰同轴电缆

在外部强干扰源仍然存在的情况下,为什么电缆穿金属管,或走金属线槽后,就可以有效抗干扰呢?正确的回答也应该是“屏蔽的效果”。那么这种屏蔽和四屏蔽电缆的屏蔽又有什么不同呢?

eie实验室研究结果表明,两种屏蔽情况的根本区别在于“感应电动势是否串联在视频信号的传输回路中”?从上面“同轴电缆的抗干扰性能”一节分析已经知道,干扰在四屏蔽(铝箔+64编网+铝箔+64编网)电缆上形成的干扰感应电动势,仍然是串联在视频信号的传输回路中,所以它的效果只能是“减弱”干扰,而不是真正意义上的抗干扰;“穿管”的情况就不同了,尽管:外界电磁干扰也会在“金属管”上产生感应电动势,但这个感应电动势与视频信号的传输回路是绝缘隔离的,所以才不会对视频信号形成干扰。这也是彻底解决同轴电缆抗干扰性能的出路所在。

拥有我国自有知识产权的“e电缆”,实际是一种“双绝缘双屏蔽同轴电缆”(详见https://www.doczj.com/doc/3c2319356.html,网站的技术交流,挑战同轴视频干扰一文),其“芯线——第一绝缘层——第一屏蔽层”仍然组成标准的SYWV75-5电缆,视频信号传输回路的“地”,仍然是第一屏蔽层;外面的第二屏蔽层才是真正的干扰屏蔽层,由于在一、二屏蔽层之间有一个第二绝

缘层,这就把第二屏蔽层上的干扰感应电动势,有效排除在视频信号的传输回路之外了。这就是“e电缆”的结构特点和抗干扰原理。

工程应用和实验测试表明,在视频波段,“e电缆”抗交流电源、交流电机、变频电机和电火花等低频强电磁干扰能力,十分强大,是高编电缆无法比拟的。“e电缆”实际是给同轴电缆设计了一个“随行柔性的屏蔽室”。因此,工程中大都可以免去穿金属管、走金属线槽的麻烦。在普通监控工程中,也可以放宽动力电缆、控制电缆与视频电缆不能近距离并行的要求;对建筑物中超强动力电缆,适当拉开一定距离也可以达到抗干扰目的。

“e电缆”的开发和成功应用,是同轴抗干扰技术发展的一次技术进步和技术升级,其应用前景是:

1. 有效提高了同轴电缆的视频传输质量,实现远距离、无干扰视频传输;

2. 有效扩大了同轴电缆的视频传输范围,配合加权视频放大,传输距离2、3km以上,恢复原图像;

3. 化简了监控工程的设计和施工难度,降低了抗干扰工程成本。也给无法采用金属管或金属线槽抗干扰措施的电梯监控工程提供了有效的抗干扰技术保障——电梯专用抗干扰同轴电缆。

音频线视频线屏蔽线和同轴电缆的关系

音频线、视频线、屏蔽线与同轴电缆的关系 我们经常接触到的信号按频率分为音频(几十K以下)、视频(百兆以下)、和射频(就是无线电发射频率的简称),严格地讲,中波广播用的540K及以上频率都可称为射频,电视发射用的射频频率为50M以上。视频在生活中应用最多,影碟、电视、电脑显示器这些都要用,视频频率是从0到某一个值的范围,我们把它换为“带宽”,带宽与“分辨率”和“清晰度”相关,例如VCD机清晰度低,它的视频带宽只有5M;CRT显示器可以支持1280x1024的高清晰度(注意该清晰度与LCD显示器相比还差得远!),它的带宽可以达到上百兆。 音响设备之间连接的信号线,一般要求是:不能受噪音信号干扰,传输尽量无衰减,传输过程对信号不能产生大的频率失真和相位失真(也就是尽量保持信号不变形,这一点对彩色电视信号影响非常大,尤其是NTSC格式的彩色视频信号,少量的相位失真就会导致颜色异常!)。为此,传输不同的信号就要用到不同的信号线,下面分别从屏蔽线与同轴线说起。 对音频信号而言,频率只有几十KHz,那么几米长的传输线都可以等效为长度为“零”,导线的分布参数、特征阻抗都可以忽略,最主要的性能要求是屏蔽电磁干扰,防止在线路上感应到电磁噪声。在一条芯线的外围,连续用细铜线缠绕或套上金属编织网作为屏蔽层(屏蔽层与信号设备的地线相连),这种信号线就是“屏蔽线”,如下图所示: 屏蔽线并不要求芯线与屏蔽层是同轴关系,甚至圆的扁的都没关系,核心要点是芯线被屏蔽层完全“封闭”。市面上有些伪劣音频线并没有使用“屏蔽线”,其实就是两根线封装在一起,这种线对电磁干扰完全没有屏蔽作用,试验方法是:将信号输出设备(例如CD机)连接音频左或音频右的那一端悬空,接收信号的一端如功放机保持连接,这时音响功放机或电视机的AV输入口(注:AV输入口通常是一组三根线,一个视频和两个音频)的音频口由于插上这样一条悬空状态的线,就可能从该线引入了噪音,噪音明显的话,这条线就是伪劣产品。如果插上的是一条正规的信号线,并不会引入明显的噪音,就像没插时几乎无变化。 上述试验强调要把CD机那一端音频输出口悬空,只保留电视机这一端然后听噪音,还要注意电视机AV接口上的视频线不要拔,虽然我们只用听噪音的办法来试验,但是如果视频信号没了大多电视会自动静音,什么都听不到了! 上述试验中,为什么CD机上音频口插上后,不论是否播放影碟,电视里听到的噪音都很小(与CD端悬空状态对比)?这是因为CD机输出口的“内阻”也能抑制信号线上感应的噪音,如果CD机够好的话,音频线的真假,影响反而并不大! 上面讲过,视频信号比音频信号的频率范围(即带宽)要大很多,传输用的信号线长度在半米以上就可能对信号质量产生明显的影响。症状一般是三种:图像清晰度下降变模糊(高频衰减引起);颜色异常(相位失真引起),噪点(干扰噪声引起),电磁干扰可以用屏蔽线的办法解决,但频率和相位失真就只能靠同轴电缆了。

漏泄同轴电缆的敷设施工工艺标准

漏泄同轴电缆的敷设施工工艺标准 1.施工准备 1.1 劳动组织 1.2 工机具

1.3 材料

2.操作程序 2.1 工艺流程 2.2 操作要点 2.2.1 施工准备 在施工准备阶段,详细调查隧道内漏缆挂设位置及电力线、回流

线的高度、侧别及安全距离是否能够满足布缆的设计要求,隧道外架挂区段地形情况,核实中继器、天线杆塔、接头的位置及中继段的长度。 2.2.2 单盘测试 包括编写盘号、核对规格型号及数量,外观检查及验气工作,环阻、绝缘电阻和电气绝缘强度的测试,稳气。 (1)电桥测量漏缆环阻 把漏缆一侧的外导体和内导体短接,另一侧用直流电桥测量其环阻,测试连接见下图。 其测试标准:应小于4Ω/Km。 (2)利用500V兆欧表对漏缆内外导体间的绝缘电阻进行测量,测试连接见下图。 其测试标准:应不低于1000MΩ·KM, (3)绝缘耐压 漏缆内外导体间的高压耐压标准是:工频3KV电压2分钟不击穿。

(4)单盘稳气 漏缆充气压不得大于100±10kpa;稳气气压为90—100kpa(24小时),利用热可缩帽进行封堵充气。 2.2.3 配盘 (1)根据设计文件及现场调查的实际情况,采用分级补偿的办法进行配盘。 (2)通过几种不同耦合损耗规格的漏缆(90dB,80dB,70dB,65dB)依次串联,用逐渐减小耦合损耗的办法来补偿由于漏缆传输损耗引起的电平下降,从而使列车在全线运行中能收到较平稳的信号电平。 (3)按照每种耦合损耗规格漏缆的长度,进行合理配置,最大限度的利用出厂单盘漏缆,尽量减少剩余短段漏缆和接头数目。 2.2.4 隧道内漏泄电缆的架挂 (1)隧道内电缆支架的安装 ①电缆支架孔的位置,距离钢轨面高度一般为4.8—4.9m. ②用冲击钻在洞壁预定位置钻一个Ф19mm的孔,孔深为70±3mm。孔应平直不可成喇叭状。 ③将胀管及螺杆装在一起放入Ф19mm孔内,用木锤打入洞内,要注意保护螺杆螺纹。 ④支架安装时,将垫圈螺母拧好固定,夹板固定要统一,以使电缆与洞壁之间的距离保持一致。 ⑤洞内吊夹每隔2.5—5m安装一个,如环境条件的影响,可做适当的调整。

国产同轴电缆的型号和含义

国产同轴电缆的型号和含义 视频信号传输一般采用直接调制技术、以基带频率(约8MHz 带宽)的形式,最常用的传输介质是同轴电缆。同轴电缆是专门设计用来传输视频信号的,其频率损失、图像失真、图像衰减的幅度都比较小,能很好的完成传送视频信号的任务。 视频信号传输线有同轴电缆(不平衡电缆)、平衡对称电缆(电话电缆)、光缆。平衡对称电缆和光缆一般用于长距离传输,对于宾馆酒店等建筑一般采用同轴电缆传输视频基带信号的传输方式。当采用75-5同轴电缆时,一般传输距离在300m 时,应考虑使用电缆补偿器。如采用75-9同轴电缆时,摄像机和监视器间的距离在500m 以内可不加电缆补偿器。 国产通信电缆的型号采用拼音字母和阿拉伯数字组成,他的排列次序和含义如下: 选用同轴电缆时,要选用频率特性好、电缆衰减小、传输稳定、防水性能好的电缆。 国内生产的同轴电缆可分为实芯和藕芯两种。芯线一般用铜线,外导体有铝管和铜网加铝箔。绝缘外套分为单护套和双护套两种。国产同轴电缆型号统一标准的格式如下: 特性阻抗 例如:SYV-75-3-1型电缆表示同轴射频电缆,用聚乙烯绝缘,用聚氯乙烯做护套,特性阻抗为75Ω,芯线绝缘外经为3mm ,结构序号为1。

常用同轴电缆型号的规格和主要参数 电缆型号绝缘形式芯线外经 mm 绝缘外经 mm 电缆外经 mm 特性阻抗 Ω 衰减常数(dB/100m) 30(MHz) 200(MHz) 800(MHz) SYKV-75-5 藕芯式 1.10 4.7 7.3 75±3 4.1 11 22 SYKV-75-12 藕芯式 2.60 11.5 15.0 75±2.5 1.6 4.5 10 SSYKV-75-9 藕芯式 1.90 9.0 13.0 75±3 2.1 5.1 11 SIOV-75-5 藕芯式 1.13 5.0 7.4 75±3 3.5 8.5 17 SIZV-75-5 竹节式 1.20 5.0 7.3 75±3 4.5 11 22 SYDV-75-9 竹节式 2.20 9.0 11.4 75±3 1.7 4.5 9.2 SYDV-75-12 竹节式 3.00 11.5 14.4 75±2 1.2 3.4 7.1 SDVC-75-7 藕芯式 1.60 7.3 10.0 75±2.5 2.6 7.1 15.2 SDVC-75-12 藕芯式 2.60 11.5 14.4 75±2.5 1.7 4.5 10

同轴电缆SPD的阻抗匹配

同轴电缆SPD的阻抗匹配 摘要:同轴电缆SPD的选型,需要考虑的参数有很多,例如接口、工作电压、插入损耗等,但阻抗匹配这一重要参数很容易被忽视,该参数恰恰也决定着SPD安装后对原线路的影响。本文主要就同轴电缆SPD(避雷器)阻抗匹配问题进行讨论。 关键词:同轴电缆;阻抗匹配;SPD 0引言 同轴电缆通常也被称做细缆,在10Base2网络中是主要的信号传输介质,但随着10/100BaseT网络的普及,双绞线已逐渐取代了细缆的位置,成为了现在局域网络的主要传输介质。 在网络中,同轴电缆虽被双绞线取代,但它并没有退出通信系统的舞台。在现代网络中同轴电缆主要作为E1线路(广域网常用专线)的接入介质,因此在视频传输中得到广泛的应用。同轴电缆抗干扰能力很弱,尤其是雷电磁脉冲对其影响很大,很容易产生雷电过电压而损坏连接的设备,但可以通过安装BNC接口的SPD来防止雷电过电压损坏相连的设备。 由于同轴电缆的应用于不同的系统,其外型一样但阻抗分50Ω或75Ω等。其SPD选择时如果阻抗不匹配,虽接口、电压等满足要求,但长时间工作会使线路的带宽下降并产生损耗。 1 同轴电缆简介 同轴电缆(Coaxial)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。 目前,常用的同轴电缆有两类:50Ω和75Ω的同轴电缆。75Ω同轴电缆常用于CATV网,故称为CATV电缆,传输带宽可达1GHz,目前常用CATV电缆的传输带宽为750MHz。50Ω同轴电缆主要用于基带信号传输,传输带宽为1MHz~20MHz,总线型以太网就是使用50Ω同轴电缆,在以太网中,50Ω细同轴电缆的最大传输距离为185m,粗同轴电缆可达1 000m。 1.1宽带电缆 是CATV系统中使用的标准,它既可使用频分多路复用的模拟信号发送,也可传输数字信号。同轴电缆的价格比双绞线贵一些,但其抗干扰性能比双绞线强。当需要连接较多设备而且通信容量相当大时可以选择同轴电缆。

射频同轴电缆的技术参数

射频同轴电缆的技术参数 一、工程常用同轴电缆类型及性能: 1)SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2)SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传输效果与75-5电缆600多米电缆传输效果大致相当; 2. 电缆越长,衰减越大:如75-5电缆750米,6M频率衰减的“分贝数”,为1000米衰减“分贝数”的75%,即15db;2000米(1000+1000)衰减为20+20=40db,其他各频率点的计算方法一样。依照上面1000米电缆测试数据,计算不同长度电缆衰减时,请记住“分贝数是加碱关系”或“衰减分贝数可以按照长度变化的百分比关系计算”,就可以灵活运用了; 3. 频率失真特性:低频衰减少,高频衰减大。高/低边频衰减量之差,可叫做“边频差值”,这是一个十分重要参数。电缆越长,“边频差值”越大;充分认识和掌握同轴电缆的这种“频率失真特性”,这在工程上具有十分重要的意义;这是影响图像质量最关键的特性,也是工程中最容易被忽视的问题; 三、工程应用设计要点 网上技术论坛里经常有人问:75-5电缆能传多远?回答有300米,500米,600米,还有说1000多米也可以的。为什么会有这么多答案呢?原因是没有一个统一的标准。既然工程中同轴电缆是用来传输视频信号的,而视频传输最后又体现为图像,所以谈同轴电缆和同轴视频传输技术应用,就离不开图像质量,离不开决定图像质量的“视频传输质量”和标准。 1. 视频传输标准的参数很多,这里仅举一个十分重要的“频率特性”例子来理解。视频图像信号是由0-6M不同频率分量组成的。低频成分主要影响亮度和对比度,高频分量主要影响色度、清晰度和分辨率。显然,对视频传输的基本要求,不是只恢复摄像机原信号亮度、对比度就行了,而且还必须恢复摄像机原信号中各种频率份量的相对比例关系。“恢复”不可能

同轴电缆的电气参数计算

同轴电缆的一个回路是同轴对,它是对地不对称的.在金属圆管(称为外导体)配置另一圆形导体(称为导体),用绝缘介质使两者相互绝缘并保持轴心重合,这样所构成的线对称同轴对。同轴电缆可用于开通多路栽波通信或传输电视节目,也可用同轴电缆传输高数码的数据信息(如UL2919屏幕线) 1.一次传输参数: 同轴电缆的一次传输参数主要随电流的频率及电缆结构尺寸D/d变化而变化. (1).有效电阻,随频率的增大而增大.而与外导体直径比没直接的关系. (2).电感随频率的增大而减小,随外导体直径比增大而增大. (3).电容与频率无关,随直径比的增大而减小. (4).电导与频率基本上成正比,随直径的增大而减小. 具体计算公式如下: 1.1.有效电阻: 同轴电缆的有效电阻包括导体的有效电阻及外导体的有效电阻,当外导体都是铜导体时,总的有效电阻为: 1.2有效电感: 同轴回路的电感由.外导体的电感和外导体之间的外电感组成,当外导体都是铜时,回路的电感为: 1.3同轴电缆电容﹕ 同于同轴电缆无外部电场,所以同轴对的工作电容就等于同轴对外导体间的部分电容,电容计算可按圆柱形电容器的电容公式来计算:

Dw-外导体结构的修正系数(理想外导体Dw=0,非理想外导体Dw=编织外导体中的单线直径) K1-导体结构的修正系数, D1-同轴线外导体径(mm) 1.4绝缘电导: 同轴对的绝缘导体G由两部分组成: 一是由绝缘介质极化作用引起的交流电导G~,另一个部分是由于绝缘不完善而引起的直流电导G0: G=G0+G~ 2.二次传输参数: 二次传输参数是用以表征传输线的特性参数,它包括特性阻抗ZC,衰减常数α,及相移常数. 2.1.同轴电缆特性阻抗﹕ 2.1.1.对于斜包,铝箔纵包可近似看作是理想外导体,计算如下:

认识同轴电缆与同轴视频传输技术

认识同轴电缆与同轴视频传输技术 本文以科学实验研究为依据,给出了监控工程常用同轴电缆的视频传输特性,指出了应用中的一些误解和误区.对干扰产生原理提出了更加切合实际的解释.归纳分析了实用的抗干扰措施,介绍了同轴抗干扰技术新进展——抗干扰同轴电缆原理和应用前景。 同轴电缆仍然是目前监控系统中应用最广泛的视频传输线。同轴视频传输技术,也是监控系统中的一种最基本传输方式。“同轴电缆到底能传多远”?同轴视频传输技术、抗干扰技术到底现在发展到了什么水平?深入了解同轴电缆的传输特性,掌握同轴视频传输技术的现状与发展,对提高监控系统图像质量,改进系统设计,有效降低系统造价,仍然是有现实意义和积极意义的。 一、工程常用同轴电缆类型及性能: 1) SYV75-3、5、7、9…,75欧姆,聚乙烯绝缘实心同轴电缆。近些年有人把它称为“视频电缆”; 2) SYWV75-3、5、7、9…75欧姆,物理发泡聚乙烯绝缘同轴电缆。有人把它称为“射频电缆”; 3)基本性能: l SYV物理结构是100%聚乙烯绝缘;SYWV 是发泡率占 70-80%的物理发泡聚乙烯绝缘电缆; l 由于介电损耗原因,SYV实心电缆衰减明显要大于SYWV 物理发泡电缆;在常用工程电缆中,目前物理发泡电缆仍然是传输性能最好价格最低的电缆,在视频、射频、微波各个波段都是这样的。

厂家给出的测试数据也说明了这一点; l 同轴电缆都可以在直流、射频、微波波段应用。按照“射频”/“视频”来区分电缆,不仅依据不足,还容易产生误导:似乎视频传输必须或只能选择实心电缆(选择衰减大的,价格高的?);从工程应用角度看,还是按“实芯”和“发泡”电缆来区分类型更实用一些; l 高编(128)与低编(64)电缆特性的区别:eie实验室实验研究表明,在200KHz以下频段,高编电缆屏蔽层的“低电阻”起主要作用,所以低频传输衰减小于低编电缆。但在200-300KHz以上的视频、射频、微波波段,由于“高频趋肤效应”起主要作用,高编电缆已失去“低电阻”优势,所以高频衰减两种电缆基本是相同的。 二、了解同轴电缆的视频传输特性——“衰减频率特性” 同轴电缆厂家,一般只给出几十到几百兆赫的几个射频点的衰减数据,都还没有提供视频频段的详细数据和特性;eie实验室对典型的SYWV75-5、7/64编电缆进行了研究测试,结果如下图一: 同轴传输特性基本特点: 1. 电缆越细,衰减越大:如75-7电缆1000米的衰减,与75-5电缆600多米衰减大致相当,或者说1000米的75-7电缆传

漏泄同轴电缆选用探讨

漏泄同轴电缆选用探讨 1.引言 漏泄同轴电缆可以实现任何地方的无线通信,甚至在有电磁波干扰或没有电磁波的地方都可以,例如:隧道、矿山、地铁、建筑大楼和大型、复杂的象展览馆或机场那样的场所。因为漏泄同轴电缆能保证信号覆盖的不间断性。 2.选用漏泄同轴电缆的依据 选择适当的漏泄同轴电缆要看其应用的需要,选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。 选择漏泄同轴电缆有两个重要指标:传输衰减和耦合损耗。漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和。传输衰减,也叫介入损耗,主要指传输线路的线性损耗,随频率而变化,以分贝/100米表示。耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。因此在实际应用中,只要传输衰减能满足操作容限或链路容量的要求,就没必要选择那些传输衰减最低的漏泄同轴电缆,但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起,它还必须包括任何其他因素引起的损耗。如果计算结果为正值,那就表示有足够的容限允许环境发生变化,而系统仍可正常运行。 对漏泄同轴电缆而言,耦合损耗设计一般在55~85分贝之间。在狭长系统如隧道或地铁内,因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能,因此耦合损耗设计一般为75~85分贝,在这种条件下,把传输衰减减到最小非常重要。在建筑楼宇内,漏泄同轴电缆耦合损耗设计一般在55~65分贝之间,因为楼内漏泄同轴电缆单向长度在50~100米之间,因此传输衰减就不那么重要了,更重要的指标是漏泄同轴电缆能尽量多地发射信号,并穿透周围地区。 一个准备扩展的系统,可以选择传输衰减较小的漏泄同轴电缆。比如在办公楼内有一根顺电梯上行的漏泄同轴电缆,几个楼面共用一个接头,在这种情况下,若选择传输衰减低的漏泄同轴电缆,今后就可以提供更高频率上的服务或扩大服务覆盖区。

同轴电缆技术规范书

同轴电缆技术规范书 中国电信集团公司内蒙古网络资产分公司 二OO九年三月

同轴电缆技术规范书一、概述 同轴电缆分为细缆RG-58 和粗缆RG-11两种。本次招标主要应用于机房2M线。 粗缆(RG-11)的直径为1.27厘米,最大传输距离达到500米。由于直径相当粗,因此它的弹性较差,而且RG-11连接头的制作方式也相对要复杂许多。由于粗缆的强度较强,最大传输距离也比细缆长。粗缆的阻抗是75Ω。视频同轴电缆英文简称SYV,常有的有75-7,75-5,75-3,75-1等型号,特性阻抗都是75欧姆,以适应不同的传输距离。 二、参数指标 1、主要电气参数 (1)同轴电缆的特性阻抗同轴电缆的平均特性阻抗为50±2Ω,沿单根同轴电缆的阻抗的周期性变化为正弦波,中心平均值±3Ω,其长度小于2米。 (2)同轴电缆的衰减指500米长的电缆段的衰减值。当用10MHz的正弦波进行测量时,它的值不超过8.5db(17db/公里);而用5MHz的正弦波进行测量时,它的值不超过6.0db(12db/公里)。 (3)同轴电缆的传播速度需要的最低传播速度为0.77C(C为光速)。 (4)同轴电缆直流回路电阻电缆的中心导体的电阻与屏蔽层的电阻之和不超过10毫欧/米(在20℃下测量)。 2、同轴电缆的物理参数同轴电缆是由中心导体、绝缘材料层、网状织物构成的屏蔽层以及外部隔离材料层组成.同轴电缆具有足够的可柔性,能支持254mm(10英寸)的弯曲半径。中心导体是直径为 2.17mm±0.013mm的实芯铜线。绝缘材料必须满足同轴电缆电气参数。屏蔽层是由满足传输阻抗和ECM规范说明的金属带或薄片组成,屏蔽层的内径为 6.15mm,外径为8.28mm。外部隔离材料一般选用聚氯乙烯(如PVC)或类似材料。 3、对同轴电缆进行测试的主要参数 (1)导体或屏蔽层的开路情况。(2)导体和屏蔽层之间的短路情况。(3)导体接地情况。(4)在各屏蔽接头之间的短路情况。 三、规格型号 本次招标主要针对SYV-75-2类型,必须包含但不仅限于以下几种: SYV-75-2-1 SYV-75-2-1*2 SYV-75-2-2 SYV-75-2-2*8 1

浅析视频同轴电缆

浅析视频同轴电缆 视频同轴电缆也称视频线或视频监控线,因为其主要是用来传输影像信号的一种电缆,多用于连接安防监控摄视频同轴电缆 像头和现实终端(电脑或显示器等)的电线电缆。 视频同轴电缆标准及结构 视频同轴电缆采用GB/T14864-1993国家标准。视频同轴电缆先由两根同轴心、相互绝缘的圆柱形金属导体构成基本单元(同轴对),再由单个或多个同轴对组成的电缆。同轴电缆由里到外分为四层:中心铜线,塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名。 视频同轴电缆产品特性: 视频同轴电缆传输性能及机械性能的稳定;阻抗均匀;抗干扰能力强。视频同轴电缆部分产品结构一览表:SYWV(物理发泡)SYV(聚乙烯绝缘)SYF SYFF(氟塑料绝缘及护套) 视频同轴电缆的主要规格型号 视频同轴电缆规格型号内导体mm 绝缘外径mm 成品外径mm 视频同轴电缆 SYwV50-21x0.68 2.2 4 SYwV50-31x0.9 2.95 5.8 SYwV50-51x1.4 4.8 7.9 SYwV50-77x0.75 7.25 11 SYwV50-97x0.95 9 12.2 SYV50-127x1.15 11.5 15 SYV50-157X1.54 15 19 SYV50-1719X1.04 17.3 22 SYV75-37X0.17 3 5 SYV75-41X0.59 4.8 6 SYV75-51X0.75 5.7 7.9 SYV75-71X1.15 7.25 10.3 SYV75-91X1.37 9 12.2 SYV75-12 7X0.6311.5 15

漏泄同轴电缆施工工法-secret要点演示教学

漏泄同轴电缆施工工法 一前言 为了解决铁路在山区、弯道、隧道内等弱场强或无场强区段的无线列调通信工程问题,目前采用在这些区段沿铁路线一定距离架设漏缆,安装隧道中继器和中继器天线的方式使无线电信号电波沿漏缆传输并均匀向外漏泄,使这些区段内场强达到一定要求而保证无线列调通信畅通、可靠。我们公司于1993年承担了某无线列调通信工程连江口至广州段的施工,在无施工规范和技术标准的情况下,我们在施工过程中边学习,边实践,边总结,用较短的时间,质量良好地完成了该段的施工任务。在完成任务的同时,锻炼了一支技术熟练、工艺精良的施工队伍。为了更好地指导今后同类工程的施工,我们在总结实践的基础上,编写了400MHz漏泄电缆的施工工法。期望本工法在今后指导同类工程施工实践的同时,不断地进行补充和完善,以取得更大的经济和社会效益。 二工法特点及适用范围 2.1本工法有如下特点: 2.1.1漏缆架设前要进行严格的单盘测试及合理的配盘。 2.1.2漏缆须架设在铁路旁距轨道线路中心3~15米范围内,其高度须距轨面4.5~4.8米。 2.1.3漏缆的漏泄槽应朝铁路一侧。 2.1.4漏缆接续按漏缆的型号不同须配用不同的连接器件,为控制电缆的耦合损耗,还须根据不同类型的电缆,确定其连接器的安装位置。 2.2本工法适用于山区、隧道传输信号,整个铁路系统及地下铁路,厂矿等漏泄电缆组成的无线通信系统工程的施工,同时也适用于从事漏缆维修人员进行维修工作。 三工艺原理

本工法是无线列调通信系统中的部分设备——漏泄电缆的施工工艺,其原理可从以下三个方面来说明: 3.1漏缆既是无线信号电波的传输线,又可视为无线信号的天线。 调度、车站值班员、机车司机互相通话,一般情况下,是靠车站电台通过天线向空间发射信号电波,在铁路沿线的空间产生一定的场强,并通过机车电台的天线耦合接收来实现的。而在弯道、山区、隧道内无线电波被阻挡、反射、吸收,使得该区段通信困难或无法通信。漏缆沿铁路架设,通过中继器和中继器天线,将车站电台发射的信号电波接收,经中继器放大加强,沿漏缆传输并均匀向外漏泄信号电波,使这些弱场强和无场强区段的铁路沿线具有一定大小的场强分布,以便在这些区段运行的机车电台能正常接收信号。同样,机车电台发射的信号电波也通过漏缆耦合,传输到中继器放大加强后送到中继器天线发射,被车站电台接收,从而实现调度、车站、机车的通信。因此,漏缆起到了传输、漏泄(天线)两方面的作用,成为山区、弯道、隧道内等弱场强或无场强区实现无线通信的关键设备之一。 3.2采用分级补偿的原则,从而使列车收到平稳的电平信号,同时与采用单一的漏缆相比,能延长通信距离。下面举一例说明: 3.2.1漏缆特性 型号 耦合损耗 传输损耗 149 80 dB/Km 25 dB/Km 148 70 dB/Km 27 dB/Km 147 65 dB/Km 36 dB/Km 3.2.2中继段的漏缆配置方法:在电波信号正向传输方向上,漏缆的配置顺序原则是 中继段漏缆配置图1 耦合损耗由大到小,传输损耗由小到大,以确保机车接收电平的曲线斜率最大限度最小,呈 Ⅰ 型 中继器 Ⅱ 型 中继器 DCX LCX 400m 400m 400m 147型 148型 149型 正向传播方向 A B C D

同轴线的阻抗为什么一般为50或75欧

什么是典型的电缆阻抗? 同轴电缆使用的最典型阻抗值为50欧姆和75欧姆。50欧姆同轴电缆大概是使用中最常见的,一般使用在无线电发射接收器,实验室设备,以太等环境下。另一种常用的电缆类型是75欧姆的同轴电缆,一般用在视频传输,有限电视网络,天线馈线,长途电讯应用等场合。 电报和电话使用的裸露平行导线也是典型的阻抗为600欧姆。一对线径标准22的双绞线,使用合适的绝缘体,因为机械加工的限制,平均阻抗大约在120欧姆左右,这是另一种具有自己特有特性阻抗的传输线。 某些天线系统中使用300欧姆的双引线,以匹配折合半波阵子在自由空间阻抗。(但当折合阵子处于八木天线中的时候,阻抗通常会下降很多,一般在100-200欧姆左右) (注:加反射板也会改变阵子的阻抗值,一般会降低,而且反射板越近则阻抗降低越多。) 为什么是50欧姆的同轴电缆? 在美国,用作射频功率传输的标准同轴电缆的阻抗几乎无一例外地都是50欧姆。为什么选用这个数值,在伯德电子公司出示的一篇论文中有解释。 不的的参数都对应一个最佳的阻抗值。内外导体直径比为1.65时导线有最大功率传输能力,对应阻抗为30欧姆(注:lg1.65*138=30欧姆,要使用空气为绝缘介质,因为这个时候介电常数最小,如果使用介电常数为2.3的固体聚乙烯,则阻抗只有不到20欧姆)。最合适电压渗透的直径比为2.7,对应阻抗大约是6 0欧姆。(顺带一提,这个是很多欧洲国家使用的标准阻抗) 当发生击穿时,对功率传输能力的考量是忽略了渗透电流的,而在阻抗很低,3 0欧姆时,渗透电流会很高。衰减只源自导体的损失,此时的衰减大约比最小衰减阻抗(直径比3.5911)77欧姆的时候上升了50%,而在这个比率下(D/d=3. 5911),最大功率的上限为30欧姆电缆最大功率的一半。 以前,很少使用微波功率,电缆也无法应付大容量传输。因此减少衰减是最重要的因素,导致了选择77(75欧姆)为标准。同时也确立了硬件的规格。当低耗的绝缘材料在实际中应用到柔性电缆上,电缆的尺寸规格必须保持不变,才能和现存的设备接口吻合。 聚乙烯的介电常数为2.3,以空气(介电常数为1)为绝缘层的导线的阻抗为77欧姆,如果以聚乙烯来填充绝缘空间的话,阻抗将减少为51欧姆。虽然精确的标准是50欧姆,51欧姆的电缆在今天仍然在使用。 在77欧姆点的衰减最小,60欧姆点的击穿电压为最大,而30欧姆点的功率输送量是最大的。(注:洋人的思维也如此混乱,这些性能指标明明不是由阻抗决定的。前面说过,这些由D/d比决定的。闲扯这些只让人产生误解) 另外一个可以导致50欧姆同轴电缆的事情,如果您使用一个合适直径的中心导体,并将绝缘体注入中心倒替周围,再在外围装上屏蔽层,选好所有的尺寸以便别人使用并顾及到外观的美观,结果其阻抗都落在50欧姆左右。如果想提高阻抗,中心导体的直径和导线的总径相比的话太细了;如果想降低阻抗,则内外导体之间的绝缘体厚度要做的很薄。几乎任何同轴电缆由于机械美观度的原因,都会接近50欧姆,这使50欧姆成为标准化的一种自然趋向。

漏泄同轴电缆的介绍

漏泄同轴电缆简介 漏泄同轴电缆是具有信号传输作用又具有天线功能通过对处导体开口的控制可将受控的电磁波能量沿线路均匀的辐射出去及接收进来实现对电磁场盲区的覆盖已达到移动通信畅通的目的。 绝缘采用高物理发泡的均匀细密封闭的微泡结构不仅较之传统的空气绝缘结构在特性阻抗、驻波系数、衰减等传输参数更加均匀稳定而且可抵御在潮湿环境中潮气对电缆的侵入可能传输性能的下降或丧失免除了充气维护的烦恼大大提高了产品的使用寿命和稳定可靠性是当今世界上最先进的射频和漏泄同轴电缆结构。 选用漏泄同轴电缆的依据选择适当的漏泄同轴电缆要看其应用的需要选择最合适的漏泄同轴电缆类型和规格由系统的设计和所有相关参数如使用频率、传输距离等决定。选择漏泄同轴电缆有两个重要指标传输衰减和耦合损耗,漏泄同轴电缆的系统损耗就是指传输衰减和耦合损耗的总和,传输衰减也叫介入损耗主要指传输线路的线性损耗随频率而变化以分贝/100米表示。 耦合损耗是指通过开槽外导体从电缆散发出的电磁波在漏泄同轴电缆和移动接收机之间的路径损耗或信号衰减。因此系统损耗可以说是整个漏泄同轴电缆的损耗。 因此在实际应用中只要传输衰减能满足操作容限或链路容量的要求就没必要选择那些传输衰减最低的漏泄同轴电缆但对耦合损耗的要求会更严格一点。 在设计时要计算链路容量就得把所有发射器和接收机之间的增益和损耗加在一起它还必须包括任何其他因素引起的损耗。如果计算结果为正值那就表示有足够的容限允许环境发生变化而系统仍可正常运行。 对漏泄同轴电缆而言耦合损耗设计一般在5585分贝之间。 在狭长系统如隧道或地铁内因为隧道或地铁本身能帮助提高漏泄同轴电缆的耦合性能因此耦合损耗设计一般为7585分贝在这种条件下把传输衰减减到最小非常重要。 在建筑楼宇内漏泄同轴电缆耦合损耗设计一般在5565分贝之间因为楼内漏泄同轴电缆单向长度在50100米之间因此传输衰减就不那么重要了更重要的指

同轴线传输网络信号的方法

以太网以太网信号的转换延长信号的转换延长信号的转换延长 1.1.概述概述概述 局域网的网络信号的局域网的网络信号的传输一直是受网线的100米距离限制,光纤传输又超过这种距离,目前一种利用EOC 传输技术的转换器可很好的解决这种问题。该设备可通过单根同轴电缆传输实时数字高清IP 视频和低压电源,最远距离可达250米(RG11),支持全双工100Mbps。一台作为发送端(从主机-摄像机远端),一台作为接收端(主机-NVR 本地端)。产品产品产品可以广泛应用在铁路可以广泛应用在铁路可以广泛应用在铁路、、城市交通等安防监控众多领域城市交通等安防监控众多领域和系统升级改造的项目中和系统升级改造的项目中和系统升级改造的项目中。。有助于实现视频监控系统从模拟CCTV 到网络IP 监控的无缝过渡监控的无缝过渡。。该产品该产品支持支持P o E 和P o C 技术,前端的IP 摄像机和设备也无需单独布电源电缆。 2.2.特性特性特性 利用一根同轴线传输及延长网络数字信号。支持网络高清摄像机的信号延长。 支持PoE 供电的设备使用。如PoE 摄像机。 一对一配合使用,最大信号传输距离250米(RG11线缆) 支持完全透明的100BaseT 全双工网络速率,设备自适应; 产品各端口内置静电保护,过电压保护功能。 电源从末端往前端输送,只需在末端加装外置电源变压器或PoE 供电设备即可实现发射器和PoE 设备的同时取电。 内置ESD 保护电路,能有效防止静电损坏; CE 及FCC 认证产品。 独有特性独有特性 电源是从接收接收接收主机端主机端 主机端输入,通过同轴电缆使用PoC(power on cable)技术对发送端从机及摄像机进行供电;电源输入和输出支持PoE 供电。 3.3.使用环境使用环境使用环境 接收端(主机-NVR 端) 通过PoE 交换机提供电源,发送端(从机-摄像机远端)不需额外的电源;前端摄像机可选择转换器的PoE 端口供电,无PoE 功能的摄像机必须使用单独的电源。 接收端(主机-NVR 端) 通过PoE 供电模块提供电源,发送端(从机-摄像机远端)不需额外的电源;前端摄像机

视频线(视频同轴电缆)

视频同轴电缆 江苏鑫联光电有限公司将在这里为您解惑。 什么是视频同轴电缆? 视频同轴电缆也称视频线或视频监控线,因为其主要是用来传输影像信号的一种电缆,多用于连接安防监控摄像头和现实终端(电脑或显示器等)的电线电缆。 视频同轴电缆标准及结构 视频同轴电缆采用GB/T14864-1993国家标准。视频同轴电缆先由两根同轴心、相互绝缘的圆柱形金属导体构成基本单元(同轴对),再由单个或多个同轴对组成的电缆。同轴电缆由里到外分为四层:中心铜线,塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名。 视频同轴电缆产品特性: 视频同轴电缆传输性能及机械性能的稳定;阻抗均匀;抗干扰能力强。视频同轴电缆部分产品结构一览表:SYWV(物理发泡)SYV(聚乙烯绝缘)SYF SYFF(氟塑料绝缘及护套) 视频同轴电缆的主要规格型号 视频同轴电缆规格型号内导体mm 绝缘外径mm 成品外径mm 视频同轴电缆 SYwV50-21x0.68 2.2 4 SYwV50-31x0.9 2.95 5.8 SYwV50-51x1.4 4.8 7.9 SYwV50-77x0.75 7.25 11 SYwV50-97x0.95 9 12.2 SYV50-127x1.15 11.5 15 SYV50-157X1.54 15 19 SYV50-1719X1.04 17.3 22 SYV75-37X0.17 3 5 SYV75-41X0.59 4.8 6 SYV75-51X0.75 5.7 7.9

SYV75-71X1.15 7.25 10.3 SYV75-91X1.37 9 12.2 SYV75-12 7X0.6311.5 15

同轴电缆的特点_同轴电缆原理

同轴电缆的特点_同轴电缆原理 同轴电缆结构特点同轴电缆由内部导体环绕绝缘层以及绝缘层外的金属屏蔽网和最外层的护套组成。这种结构的金属屏蔽网可防止中心导体向外辐射电磁场,也可用来防止外界电磁场干扰中心导体的信号。 结构示意图: 第一代同轴电缆:实芯聚乙烯材料作绝缘介质的同轴电缆 特点:工艺简单、衰减大。 第二代同轴电缆:化学发泡聚乙烯材料作绝缘介质的同轴电缆 特点:发泡度50%以下,而且有化学发泡剂残留物,影响介电性能。 第三代同轴电缆:藕芯纵孔聚乙烯材料作绝缘介质的同轴电缆 特点:衰减较前二代都低,但藕状体易渗水,国外规定其使用寿命为五年。 第四代同轴线缆:物理发泡聚乙烯材料作绝缘介质的同轴电缆 特点:发泡度高达80%,衰减特小,微孔密闭,性能稳定,使用寿命长。 同轴电缆优缺点同轴电缆的优点是可以在相对长的无中继器的线路上支持高带宽通信,而其缺点也是显而易见的:一是体积大,细缆的直径就有3/8英寸粗,要占用电缆管道的大量空间;二是不能承受缠结、压力和严重的弯曲,这些都会损坏电缆结构,阻止信号的传输;最后就是成本高,而所有这些缺点正是双绞线能克服的,因此在现在的局域网环境中,基本已被基于双绞线的以太网物理层规范所取代。 同轴电缆原理同轴电缆从用途上分可分为50Ω基带同轴电缆和75Ω宽带同轴电缆两类(即网络同轴电缆和视频同轴电缆)。基带电缆又分细同轴电缆和粗同轴电缆。基带电缆仅仅用于数字传输,数据率可达10Mbps。同轴电缆(Coaxial Cable)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。最常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由聚氯乙烯或特氟纶材料的护套包住。

同轴电缆的信号传输特性分析(精)

同轴电缆的信号传输特性分析关键词:同轴电缆传输损耗屏蔽衰减 深圳市西艾特电子技术有限公司总工程师 heml 一、概述 在当今的信息社会,通过同轴电缆传输信号得到了广泛的应用。因此,它有待于人们对它进行更加深入和全面的了解。 自从美国贝尔实验室 1929年发明同轴电缆以来,已经过了数十年历史。在这期间, 同轴电缆通过了多次改进。第一代电缆采用实芯材料作为填充介质, 由于它对高频衰减大, 现在通常主要把它用于传输视频信号。后来人们把聚乙烯采用化学方法发泡作为填充介质。其发泡度可达 30%, 高频传输特性有所提高。我们把这称为第二代电缆。 80年代,第三代纵孔藕芯电缆出现,它的高频衰减达到目前新型电缆的水平。但化学发泡电缆和纵孔藕芯电缆的防潮特性都不好。 90年代初, 市场推出了物理发泡电缆和竹节电缆。我们称为第四代电缆。竹节电缆虽然能防潮和高频损耗低, 但介质具有不均匀性, 在高频有反射点。后来无人使用。物理发泡电缆的发泡度可达 80%。介质主要成分是氮气, 气泡之间是相互隔离的。因此,它具有防潮和低损耗的特点,是目前综合特性最好的同轴电缆。

图一 二、电缆结构与信号传输特性 同轴电缆的结构如上图,在中心内导体外包围一定厚度的绝缘介质,在介质外是管状外导体, 外导体表面再用绝缘塑料保护。它是一种非对称传输线, 电流的去向和回向导体轴是相互重合的。 在信号通过电缆时,所建立的电磁场是封闭的,在导体的横切面周围没有电磁场。因此, 内部信号对外界基本没有影响。电缆内部电场建立在中心导体和外导体之间,方向呈放射状。而磁场则是以中心导体为圆心,呈多个同心圆。这些场的方向和强弱随信号的方向和大小变化。 1、同轴电缆对传输信号的损耗

同轴电缆复合视频传输解决方案

同轴电缆复合视频传输解决方案(SLOC) --网络高清时代的催化剂 作者:昆山网电科技有限公司 关键字:同轴线电缆网桥,同轴线视频传输,视频监控,昆山网电 百万高清的发展趋势得到绝大多数安防企业的认同,尤其是最近一两年,百万高清产品逐渐被越来越多的用户接受,并且出现了不少成功应用的案例,随着技术的不断成熟,相信高清监控将凭借其强大的优势全面进入应用。 近几年数字技术的发展,百万高清监控系统已日臻成熟,许多厂家已可以提供完整的前端、后端以及相关平台的解决方案,可满足大部分项目的需求。高清是安防监控行业发展的一个必然趋势,也是行业发展的必然规律。但是,我们可以看到,网络高清时代的发展,仍然面临几大问题: https://www.doczj.com/doc/3c2319356.html,TV时代,现有工程商已经习惯了同轴电缆施工,大规模网络工程的施工仍然面临不少困难。 2.IP摄像机受到150米传输距离的限制,更远的传输距离则需要引进光纤 3.监控项目对实施预览的要求非常高,而普通的广域网IP摄像机预览视频延时一般在1-4秒之间(主要由视频编码缓存、视频解码缓存和网络传输延时导致)。 同时全球有数以百万的同轴电缆安全项目,投资巨大,对于模拟转数字的监控系统而言,原有的管线已布置完毕,二次布线组建网络十分困难,且这些线缆还远未到使用寿命。如何能将这些大量的同轴线二次使用,缩短项目的建设周期、减少建设成本以及人员成本?基于模拟设备的监控系统,如何在不重新布线的情况下,快速改造升级到高清监控系统?似乎改造的难度远远大于设备的硬件条件。那么,有没有可以融合模拟同轴优势和IP技术,能够延伸传输距离,并且解决网络延时的全新解决方案呢? 正是为了解决这些问题,昆山网电科技2011年推出SLOC(Security link over coax)同轴电缆复合视频传输解决方案,便成为业界关注的焦点。SLOC是采用最新OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术的传输解决方案,可以基于同轴电缆同时传输高清IP码流和标清模拟实时视频,SLOC传输解决方案可以解决IP监控系统面临的三大问题: 1.支持基于现有的同轴电缆传输1080P高清的IP码流。 2.支持IP码流本地传输距离延伸至800米。 3.同时传输实时模拟视频,用于实时预览或高速球云台控制,彻底解决IP传输延时问题。

漏泄同轴电缆技术规范

1漏泄同轴电缆技术规 1.1.适用围 本技术规书适用于客运专线GSM-R系统漏泄同轴电缆的购置、安装、调试、开通、质量保证期及质量保证期满后的相关技术服务。 1.2.总体要求 ★及安装附件的设计、制造及安装应符合下列中华人民国相关现行标准:★铁路通信漏泄同轴电缆(TB/T 3201-2008)标准。 铁路通信工程质量评定验收标准(TB10418-2000)。 国际电联ITU-T及ITU-R的相关建议。 IEC相关标准。 其他未详尽部分均按中华人民国相关现行标准执行。 以上标准如有更新,按最新标准执行。 ★制造厂生产的Ⅲ型漏缆应具有在客运专线铁路GSM-R系统良好的运行业绩,能提供铁路局或铁路(集团)公司电务处的GSM-R漏缆用户报告。 1.3.漏泄同轴电缆主要技术要求 1.3.1.电气性能 采用《铁路通信漏泄同轴电缆》(TB/T 3201-2008)规定的Ⅲ型漏缆。 导体的连续性:电缆的导体、外导体应分别沿电缆长度连续。 频率围:900MHz; ★漏泄同轴电缆电气性能指标

(2)机械性能 漏泄同轴电缆机械性能指标

注:表中温湿度围可根据现场情况适当调整。 (3)结构要求 满足《通信电缆-物理发泡聚乙烯绝缘漏泄同轴电缆》(YD/T1120-2001)的要求。 应有隧道外设置的防火措施。 导体直径:15-20mm 外导体直径:45-50mm 最小弯曲半径:700mm 重量:≤1200kg/km 电缆护套采用低烟、无卤、阻燃、防日晒、老化材料 电缆的使用寿命在30年以上 发泡绝缘结构 (4)环境要求 温度:-40--+650C

相对湿度:95%(在35o C时)能可靠工作 敷设最低温度:-1O o C 1.3. 2.漏缆配件 投标人应提供与LCX相配套的接头、终端负载、直流隔断器、固定接头以及必要的避雷器、隧道外安装的漏泄电缆固定系统卡具(普通卡具和防火卡具)、接地套件、防雷套件、防水套件等配套设备,配套设备均应包含在总价中。所有配件均应能满足列车时速350km/h以上时的运营环境需求,并应有相关部门的检测报告。 1.3. 2.1.漏缆固定系统卡具主要技术要求: 为保证350Km/h高速铁路的行车安全,供应商提供的漏泄电缆固定系统卡具必须拥有350km/h高速铁路300公里的使用业绩,并对隧道漏泄电缆固定系统卡具做如下技术要求: (1)隧道漏缆固定系统应采用金属锚栓,相关固定配件符合隧道固定漏缆要求。 (2)金属锚栓应采用螺杆式自紧锚栓。锚栓表面热浸镀锌,镀锌层厚度应不小于45微米。为保证锚栓受力可靠,应提供锚栓的抗拉抗剪测试报告,锚栓的抗拉与抗剪同时满足隧道安全使用要求。锚栓系统必须具有耐火承载力,应提供依据DIN4102-2进行的耐火承载力测试报告。 (3)锚栓与卡具之间应采用金属连接件进行连接。 (4)为保证漏缆的紧固安装,尼龙卡座应具有双卡座双盖板结构。尼龙卡座要求提供抗拔出力测试报告,并应满足不小于150N的抗拔出力要求,以保证在振动条件下漏缆不发生轴向滑移。

相关主题
文本预览
相关文档 最新文档