当前位置:文档之家› 波分复用系统WDM结构原理和分类

波分复用系统WDM结构原理和分类

波分复用系统WDM结构原理和分类
波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类

波分复用系统简要介绍

光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。

如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。

光波分复用的关键器件

(1)分布反馈多量子阱激光器(DFB MQW—LD)

(2)光滤波器

(3)光放大器

图1 波分复用系统原理

波分复用系统的发展与现状

WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。

WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。

在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。

通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

电信在多条省际光缆干线上引入了WDM技术。波分复用系统存在的问题

(1)光放大器的增益平坦问题

(2)四波混频FWM问题

(3)光纤的色散补偿问题

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

微型计算机原理及应用试题库答案

微型计算机原理及应用试题库及答案 一、填空 1.数制转换 A)125D=( 11111101 )B =( 375 )O=( 0FD )H=(0001 0010 0101 )BCD B)10110110B=( 182 )D =( 266 )O=( 0B6 )H=(0001 1000 0010 )BCD 2.下述机器数形式可表示的数值范围是(请用十进制形式写出):单字节无符号整数0~255;单字节有符号整数-128~+127。 注:微型计算机的有符号整数机器码采用补码表示,单字节有符号整数的范围为-128~+127。 3.完成下列各式补码式的运算,并根据计算结果设置标志位SF、ZF、CF、OF。指出运算结果有 效否。 A)00101101+10011100= B)11011101+10110011= 4.十六进制数2B.4H转换为二进制数是__00101011.0100,转换为十进制数是__43.25____。 5.在浮点加法运算中,在尾数求和之前,一般需要(对阶)操作,求和之后还需要进行(规格化) 和舍入等步骤。 6.三态门有三种输出状态:高电平、低电平、(高阻)状态。 7.字符“A”的ASCII码为41H,因而字符“E”的ASCII码为(45H),前面加上偶校验位后代 码为(C5)H。 8.数在计算机中的二进制表示形式称为(机器数)。 9.在计算机中,无符号书最常用于表示(地址)。 10.正数的反码与原码(相等)。 11.在计算机中浮点数的表示形式有(阶码)和(尾码)两部分组成。 12.微处理器中对每个字所包含的二进制位数叫(字长)。 13.MISP是微处理的主要指标之一,它表示微处理器在1秒钟内可执行多少(百万条指令) 14.PC机主存储器状基本存储单元的长度是(字节). 15.一台计算机所用的二进制代码的位数称为___字长_________,8位二进制数称为__ 字节____。 16.微型计算机由(微处理器)、(存储器)和(I/O接口电路)组成。 17.8086CPU寄存器中负责与I/O端口交换数据的寄存器为(AX,AL) 18.总线有数据总线、地址总线、控制总线组成,数据总线是从微处理器向内存储器、I/O接口 传送数据的通路;反之,它也是从内存储器、I/O接口向微处理器传送数据的通路,因而它可以在两个方向上往返传送数据,称为(双向总线)。 19.一个微机系统所具有的物理地址空间是由(地址线的条数)决定的,8086系统的物理地址空间 为(1M)字节。 20.运算器包括算术逻辑部件(ALU),用来对数据进行算术、逻辑运算,运算结果的一些特征由 (标志寄存器)存储。 21.控制寄存器包括指令寄存器、指令译码器以及定时与控制电路。根据(指令译码)的结果, 以一定的时序发出相应的控制信号,用来控制指令的执行。 22.根据功能不同,8086的标志为可分为(控制)标志和(状态)标志位。 23.8086/8088CPU内部有(14)个(16位)的寄存器。 24.在8086/8088的16位寄存器中,有(4)各寄存器可拆分为8位寄存器使用。他们是 (AX,BX,CX,DX),他们又被称为(通用寄存器)。 25.8086/8088构成的微机中,每个主存单元对应两种地址(物理地址)和(逻辑地址)。 26.物理地址是指实际的(20)为主存储单元地址,每个存储单元对应唯一的物理地址,其范围 是(00000H-FFFFFH)。

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

最新微型计算机原理及应用知识点总结

微型计算机原理及应用知识点总结

第一章计算机系统 一、微机系统的基本组成 1.微型计算机系统由硬件和软件两个部分组成。 (1)硬件: ①冯●诺依曼计算机体系结构的五个组成部分:运算器,控制器,存储器,输入设备,输入设备。其特点是以运算器为中心。 ②现代主流的微机是由冯●诺依曼型改进的,以存储器为中心。 ③冯●诺依曼计算机基本特点: 核心思想:存储程序; 基本部件:五大部件; 信息存储方式:二进制; 命令方式:操作码(功能)+地址码(地址),统称机器指令; 工作方式:按地址顺序自动执行指令。 (2)软件: 系统软件:操作系统、数据库、编译软件 应用软件:文字处理、信息管理(MIS)、控制软件 二、系统结构 系统总线可分为3类:数据总线 DB(Data Bus),地址总线 AB(Address Bus),控制总线 CB(Control Bus)。 根据总线结构组织方式不同,可分为单总线、双总线和双重总线3类。

总线特点:连接或扩展非常灵活, 有更大的灵活性和更好的可扩展 性。 三、工作过程 微机的工作过程就是程序的执行过 程,即不断地从存储器中取出指令,然后执行指令的过程。 ★例:让计算机实现以下任务:计算100+100H=?并将结果保存在16920H的字单元内。 编程运行条件: CS=1000H,IP=100H,DS=1492H 将机器指令装入计算机的存储器 计算机自动地进行计算(执行) 计算机工作过程大致描述: (1)分别从CS和IP寄存器中取出1000和100经地址加法器运算后,通过总线控制,找到对应地址的机器指令,第一条汇编指令的第一个机器指令为B8,对应的地址为10100H;将B8取出,通过总线和指令队列到达执行部分电路控制,给CPU发出信号。

微型计算机原理与应用知识点总结

第一章计算机基础知识 一、微机系统的基本组成 1. 微型计算机系统由硬件和软件两个部分组成。 (1) 硬件: ①冯●诺依曼计算机体系结构的五个组成部分:运算器,控制器,存储器,输入设备,输入 设备。其特点是以运算器为中心。 ②现代主流的微机是由冯●诺依曼型改进的,以存储器为中心。 ③冯●诺依曼计算机基本特点: 核心思想:存储程序; 基本部件:五大部件; 信息存储方式:二进制; 命令方式:操作码(功能)+地址码(地址),统称机器指令; 工作方式:按地址顺序自动执行指令。 (2) 软件: 系统软件:操作系统、数据库、编译软件 应用软件:文字处理、信息管理(MIS)、控制软件 二、微型计算机的系统结构 大部分微机系统总线可分为 3 类:数据总线DB(Data Bus) ,地址总线AB(Address Bus),控制总线CB(Control Bus) 。 总线特点:连接或扩展非常灵活,有更大的灵活性和更好的可扩展性。 三、工作过程 微机的工作过程就是程序的执行过程, 即不断地从存储器中取出指令, 然后执行指令的过程。★例:让计算机实现以下任务:计算计算7+10=? 程序:mov al,7 Add al,10 hlt

指令的机器码: 10110000 (OP ) 00000111 00000100 (OP) 00001010 11110100 (OP ) 基本概念: 2. 微处理器、微型计算机、微型计算机系统 3. 常用的名词术语和二进制编码 (1)位、字节、字及字长

(2)数字编码 (3)字符编码 (4)汉字编码 4. 指令、程序和指令系统 习题: 1.1 ,1.2 ,1.3 ,1.4 ,1.5 第二章8086/8088 微处理器 一、8086/8088 微处理器 8086 微处理器的内部结构:从功能上讲,由两个独立逻辑单元组成,即执行单元EU和总线 接口单元BIU。 执行单元EU包括:4 个通用寄存器(AX,BX,CX,DX,每个都是16 位,又可拆位,拆成 2 个8 位)、4 个16 位指针与变址寄存器(BP,SP,SI ,DI)、16 位标志寄存器FLAG(6 个状 态标志和 3 个控制标志)、16 位算术逻辑单元(ALU) 、数据暂存寄存器; EU功能:从BIU 取指令并执行指令;计算偏移量。 总线接口单元BIU 包括:4 个16 位段寄存器(CS(代码段寄存器) 、DS(数据段寄存器) 、SS(堆 栈段寄存器) 和ES(附加段寄存器) )、16 位指令指针寄存器IP (程序计数器)、20 位地址加 法器和总线控制电路、 6 字节(8088 位4 字节)的指令缓冲队列; BIU 功能:形成20 位物理地址;从存储器中取指令和数据并暂存到指令队列寄存器中。 3、执行部件EU和总线接口部件BIU 的总体功能:提高了CPU的执行速度;降低对存储器的 存取速度的要求。 4、地址加法器和段寄存器 由IP 提供或由EU按寻址方式计算出寻址单元的16 位偏移地址( 又称为逻辑地址或简称为偏 移量) ,将它与左移 4 位后的段寄存器的内容同时送到地址加法器进行相加,最后形成一个 20 位的实际地址( 又称为物理地址) ,以对应存储单元寻址。 要形成某指令码的物理地址(即实际地址),就将IP 的值与代码段寄存器CS(Code Segment)左移 4 位后的内容相加。 【例假设CS=4000H,IP =0300H,则指令的物理地址PA=4000H× 1 0H+0300H=40300H。

微型计算机原理及应用(答案)

微型计算机原理及应用(第3版)(修订本)答案 习题 1 一、选择题 1.A 2.C 3.B 4.B 5.A 6.A 7.B 8.C 9.C 10.C 11.C 12.A 13.D 14.A 15.D 16.C 在GB2312-80国家标准中,16~55区为一级汉字、56~87区为二级汉字。 DBB5H-A0A0H = 3B15H 3BH = 59 DBB5H属于二级汉字。 二、完成下列不同进制数的转换 1.⑴270 = 100001110B ⑵455 =1 11000111B ⑶0.8125 = 0.1101B ⑷720.3125 = 1011010000.0101B 2.⑴1001001B = 73 ⑵11001100B = 204 ⑶0.0101B = 0.3125 ⑷11011.1011B = 27.6875 3.⑴11100011B = E3H ⑵10001111B = 8FH ⑶0.0011101B = 0.3AH ⑷110011011.01011B = 19B.58H 4.⑴A21H = 101000100001H ⑵4B7H = 10010110111B ⑶0.00A3H = 0.0000000010100011B ⑷2E8.0D5H = 1011101000.000011010101B 三、完成下列机器数和真值的转换 1.⑴[11001B]补= 00011001B ⑵[-11001B]补= 11100111B ⑶[100000B]补= 00100000B ⑷[-100000B]补= 11100000B 2.⑴[65]补= 01000001B ⑵[-75]补= 10110101B ⑶[120]补= 01111000B ⑷[-100]补= 10011100B 3.⑴[1000]补= 0000001111101000B ⑵[-12]补= 1111111111110100B ⑶[800]补= 0000001100100000B ⑷[-3212]补=1 111001*********B 4.⑴[10000001B]补= -127 ⑵[01100110B]补= +102 ⑶[0111011101110111B]补= 30583 ⑷[1000000000000001B]补= -32767 四、完成下列各数值和机器编码的转换 1.⑴01100011B=99 压缩的BCD码= 10011001 非压缩的BCD码= 0000100100001001 ⑵01010000B=80 压缩的BCD码= 10000000 非压缩的BCD码= 0000100000000000 ⑶0000001100001111B=783 压缩的BCD码= 0000011110000011 非压缩的BCD码= 000001110000100000000011 ⑷0001111111111111B=8191 压缩的BCD码= 1000000110010001 非压缩的BCD码= 00001000000000010000100100000001 2.⑴换行0AH ⑵字母“Q”51H ⑶ASCII码“7”37H ⑷空格20H ⑸汉字“隘”(国标码) 30H、2FH ⑹汉字“保”(内码) B1H、A3H 3.⑴[15]补= 00001111 ⑵15的压缩BCD数= 00010101B

密集波分复用(DWDM)传输原理考试题

密集波分复用(DWDM)传输原理考试题 一、填空题 1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。 2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。 3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。 4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。 6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。 7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。 8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。 9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。 10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。 11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。 12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。 13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。 14.DWDM系统中λ1中心波长是(1548.51nm)。

(完整版)微型计算机原理应用第四版答案

第1章习题 1.1 将下列二进制数转换为十进制数和十六进制。 (1)1101(2)=13=D(H) (2)11010(2)=26=1A(H) (3)110100(2)=52=34(H) (4)10101001(2)=169=A9(H) 要点:从低位起,按每4位将对应二进制转换成十六进制。而不是通过十进制转换。 1.2 见上。 1.3简述3个门电路的基本元素在电路中对电平高低的作用。 答:与、或、非。 1.4 布尔代数有哪两个特点? 答:(1)值只有两个; (2)只有与、或、反3种运算。 1.5 布尔代数的“或运算”结果可用哪两句话来归纳?其“与运算”又可归纳成哪两句话“答:(1)“或运算”运算结果为有一真必为真,两者皆假才为假。 (2)“与运算”有一假即为假,两者皆真才为真。 1.6 什么叫原码、反码及补码? 答:原码就是一个数的机器数。 反码:将原码每位取反,即为反码。 更准确的是:正数的反码就等于它的原码; 负数的反码就是它的原码除符号位外,各位取反。 补码:反码加1就是补码。 更准确的是:正数的补码就等于它的原码; 负数的补码就是它的反码加1。 例:X1=+100 1001 X2=-100 1001 则: [X1]原 = 0100 1001 [X1]反 = 0100 1001 [X1]补= 0100 1001 [X2]原 = 1100 1001 [X2]反 = 1011 0110

[X2]补 = [X2]反+1= 1011 0111 1.7 为什么需要半加器和全加器,它们之间的主要区别是什么? 答:(1)因为加法的第一位没有进位,所以用半加器即可;而第二位起可能有进位,故需要考虑全加器; (2)两者的区别是半加器为双入双出,全加器为三入双出。 1.8 用补码法写出下列减法的步骤: (1)1111(2)-1010(2)=?(2)=?(10) 答: (2)1100(2)-0011(2)=?(2)=?(2) 答:按上述所讲的正规方法做。 第一个数的补码=原码=01100;第二个数的原码(即机器码)为10011,其反码为11100,其补码为11101; 两个数的补码相加,即为: 01100 + 11101 = 101001 将最高位的进位1删去,得结果为01001,即为9(10)

密集波分复用(DWDM)传输原理试题

第二章密集波分复用(DWDM)传输原理 一、填空题 1. DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个低损耗窗口, 在传输过程中共享光纤放大器的高容量WDM系统。 2. DWDM系统的工作方式主要有双纤单向传输和单纤双向传输。 3. G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB, 后者为0.2dB 。 4. G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位 移到1550 nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5. G.655在1530~1565nm之间光纤的典型参数为:衰减< 0.25 dB/km;色散系数在1~ 6ps/nm·km之间。 6. 克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的非线性现象。 7. 在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的调制,这种现象 称交叉相位调制。 8. 当多个具有一定强度的光波在光纤中混合时,光纤的非线性会导致产生其它新的波长,就 是四波混频效应。 9. 光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器 实际起到一个开关的作用。 ⒑恒定光源是一个连续发送固定波长和功率的高稳定光源。 ⒒电光效应是指电场引起晶体折射率变化的现象,能够产生电光效应的晶体称为电光晶体。 ⒓光耦合器的作用是将信号光和泵浦光合在一起,一般采用波分复用器来实现。 ⒔光栅型波分复用器属于角色散型器件,是利用角色散元件来分离和合并不同波长的光信号。 ⒕DWDM系统中λ1中心波长是1548.51nm 。 ⒖DWDM系统中λ2中心频率是193.5THz 。 二、单项选择题 ⒈光纤WDM明线技术中的FDM模拟技术,每路电话( B)。 A、2kHz B、4kHz C、6kHz D、8kHz ⒉光纤WDM中的小同轴电缆60路FDM模拟技术,每路电话( B )。 A、2kHz B、4kHz C、6kHz D、8kHz ⒊光纤WDM中的中同轴电缆1800路FDM模拟技术,每路电话( B )。

微型计算机原理及应用-第四版-课后答案-(郑学坚-朱定华)

微机原理第七章答案 7.3 设AX=1122,BX=3344H,CX=5566H,SS=095BH,SP=0040H,下述程序执行后AX , BX ,CX ,DX 4个通用寄存器内容是多少?画出堆栈存储器的物理地址及存储内容和SP 指向的示意图。 PUSH AX PUSH BX PUSH CX POP BX POP AX POP DX 参考答案:(BX)=5566H, (AX)=3344H, (DX)=1122H ,(CX)=5566H 堆栈段物理地址=SS*16(左移4位)+SP 7.4 设 SP=0040H,如果用进栈指令存入5个数据,则 ,若用出栈指令取出两个数据,则SP=003AH 。 7.5将表中程序段各指令执行后 AX 的值用十六进制数填入表中 7.6 用十六进制数填下表,已知DS=1000H,ES=2000H,SS=0FC0H,通用寄存器的值 为0。 参考答案:逻辑地址=段基址:段内偏移地址 BP 以SS 为默认段基址,其余寄存器以DS 为默认段基址

7.7 试给出执行完下列指令后OF、SF、ZF、CF4个可测试标志位的状态(用十 六进制给出FLAG的值,其余各位为0) (1)MOV AX,2345H (2) MOV BX,5439H ADD AX,3219H ADD BX,456AH (3)MOV CX,3579H (4) MOV DX,9D82H 7.8AX 中有一负数,欲求其绝对值,若该数为补码,则使用指令NEG AX; 若为原码则用指令AND AX,7FFFH。。 7.9 分别写出实现如下功能的程序段: (1)将AX中间8位(做高8位),BX低4位和DX高4位(做低4位)拼成一个新字。(注意:左移右移操作) AND AX,0FF0H MOV CL,04H SHL AX,CL AND BL,0FH AND DH,0F0H SHR DH,CL SHL BL,CL OR AL,DH OR AL,BL

通信双频波分复用原理

实验一通信双频波分复用原理 一、实验目的 1、熟悉WDM器件的使用。 2、掌握WDM器件的插入损耗及串扰的测试。 3、掌握经过同一光纤信道的多机通信。 二、实验原理 波分复用(WDM)通信的基本原理 波分复用是指一条光纤中同时传输具有不同波长的几个载波,而每个载波又各自载荷一群数字信号,因此波分复用又称为多群复用。如图1所示。具有不同波长、各自载有信息信号的若干个载波经由CH1、CH2、…….CHn等进入合波器,被耦合到同一条光纤中去,再经此光纤长距离传输,到终端进入合波器,由其按波长将各载波分离,分别进入各自通道CH1’、CH2’、…….CHn’,分别解调,从而使各自载荷信息重现。同样过程可沿与上述相反的方向进行,如图1中的虚线所示,这样的复用称为双向复用,显然,双向复用的复用量将增大一倍,如一个通道传输的信息为B,单向复用传输的则为NB,双向复用传输的则为2NB。 波分复用器 波分复用器的工作原理来源于物理光学,如利用介质薄膜的干涉滤光作用、利用棱镜和光栅的色散分光作用等。 图1 波分复用原理图 (1)干涉滤光片型波分复用器由薄膜光学原理得知,具有高折射率nH、低折射率nL的两种材料交替组成的膜系呈现出滤光效应,如图2所示。在λ0处吸收最小,即透过率最大,因此起到了滤光作用。不过,比较来说,由于Δλ难以作到很窄,故复用的路数是有限的,而且要求被分割的两路波长之间不能靠的太近,以防止串扰。这些都属于干涉滤光片型波分复用器的缺点。

图2 干涉滤波WDM原理 (2)光栅型波分复用器光栅是一种等间隔分割光波波面的光学装置,它具有明显的角色散作用,因此可以用来做分光和合光器件,如下图所示,光源S发出的光通过光栅G,在其后焦面的P点上得到光强可以写成如下形式: 其中u,v是与光栅常数(a,b)有关的系数,显然,当V=kл时可获得最大光强,或者说,在满足下列方程(即光栅方程)的方向(θ角)上,会出现亮线: 这样,当入射光为多种波长组成的复合光时,则由上两式确定出,不同的波长将沿不同的方向出射,从而达到分光的目的;如沿反方向传播,则作用相反,即起到合光作用,光栅靠的是角色散作用分光合光的,角色散的大小可由下式求出,即 由此可以得出:为获得较大的角色散,应取较高的级次(k),如果再考虑高级次有足够的能量,因此使用闪烁型光栅最为适宜,如图3所示,目前使用或研制的光栅型复用器几乎均采用此类型光栅。与滤光片型比较,光栅型复用器的最大优点是:分路(合路)的路数多;缺点是:插入损耗大,制作工艺相对复杂些。 图3 光栅型波分复用器 (3)棱镜型波分复用器和光栅一样,棱镜也是一种熟知的角色散器件,因此也具有显著的分光作用,棱镜的角色散为 其中n是折射率,a是棱镜的折射角,(dn/dλ)是色散率,由此可见,为了实现较多路数的分波和合波,即要求较大的角色散,则应选择大的折射角和高色散率的棱镜。 由于棱镜型复用器件的工艺复杂,制作较难,因此单独使用的较少,一般多将它与其它类型的复用器件结合使用,构成复合型的复用器件。 (4)光纤耦合型波分复用器上述几种复用器件虽各有优点,但他们有一个共同的缺点,即

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

WDM波分复用技术

WDM波分复用技术 1 绪论 本论文主要研究的是WDM波分复用技术,其中包括WDM技术的产生背景,WDM 的基本概念和特点,WDM的关键技术,WDM的网络生存性,WDM技术发展现状及发展趋势等,下面将分别从以上几个方面讨论。 2 WDM技术产生背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM 技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 1. 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 2. 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH 的一次群至四次群的复用,到如今SDH 的STM-1、STM-4、STM-16 乃至STM-64 的复用。通过时分复用技术可以成倍地提高光传输信息的容量,极大地降低了每条电路在设备和线路方面投入的成本,并且采用这种复用方式可以很容易在数据流中抽取某些特定的数字信号,尤其适合在需要采取自愈环保护策略的网络中使用。 时分复用的扩容方式有两个缺陷:第一是影响业务,即在“全盘”升级至更高的速率等级时,网络接口及其设备需要完全更换,所以在升级的过程中,不得不中断正在运行的设备;第二是速率的升级缺乏灵活性,以SDH 设备为例,当一个线路速率为155Mbit/s 的

微型计算机原理及应用试题库答案

微型计算机原理及应用试题库答案

《微型计算机原理及应用》试题库及答案 一、填空 1.数制转换 A)125D=(0111 1101 )B =(175 )O=( 7D )H=(0001 0010 0101 )BCD B)10110110B=( 182 )D =(266)O=( B6 )H=(0001 1000 0010)BCD 2.下述机器数形式可表示的数值范围是(请用十进制形式写出):单字节无符号整数0~ 255 ;单字节有符号整数 -127 ~ 127 。 (注:微型计算机的有符号整数机器码采用补码表示,单字节有符号整数的范围为-128~+127。) 3.完成下列各式补码式的运算,并根据计算结果设置标志位SF、ZF、CF、OF。指出运算结果有 效否。 A)00101101+10011100=11001001B SF=1 ZF=0 CF=0 OF=0 B)11011101+10110011=10010000B SF=1 ZF=0 CF=1 OF=0 4.十六进制数2B.4H转换为二进制数是_0010 1011.0100B ,转换为十进制数是_43.25。 5.在浮点加法运算中,在尾数求和之前,一般需要操作,求和之后还需要进行和 舍入等步骤。 6.三态门有三种输出状态:低电平、高电平、高阻态状态。 7.字符“A”的ASCII码为41H,因而字符“E”的ASCII码为 45H ,前面加上偶校验 位后代码为。 8.数在计算机中的二进制表示形式称为机器数。 9.在计算机中,无符号书最常用于表示。 10.正数的反码与原码相等。 11.在计算机中浮点数的表示形式有整数和小数两部分组成。 12.微处理器中对每个字所包含的二进制位数叫字节。 13.MISP是微处理的主要指标之一,它表示微处理器在1秒钟内可执行多少 14.PC机主存储器状基本存储单元的长度是 . 15.一台计算机所用的二进制代码的位数称为__字长_______,8位二进制数称为_8位机 ___。 16.微型计算机由微处理器、存储器和总线组成。

微型计算机原理及应用

简答题:《一》计算机的发展历史为四代,是以什么划分的? 答:1电子管计算机2晶体管计算机3集成电路计算机4大规模、超大规模 集成电路计算机5新一代计算机。 《二》微机发展经历了几个阶段? 答:1第一代,4位或抵挡8位微处理器和微型机2.第二代,中档的8位微 处理器和微型机。3.第三代,16位微处理器和微型机第四代,32位高档 微型机第五代32/64位高档微型机。 《三》微机系统由哪几个部分组成? 答:硬件系统和软件系统组成。 《四》微型计算机的硬件组成 答:1.中央处理器2.主板3.存储器4.输入输出设备。 《五》中央处理器(CPU)必须具备的主要功能有哪些? 答:进行算术运算、逻辑运算、逻辑判断、处理信息等。 《六》8086由哪两部分组成?简述他们的主要功能? 答:①总线接口部件BIU,负责控制存储器读写 ②执行部件EU,EU从指令 队列中取出指令并执行。8086是16位微处理器,有16根数据线、20根地 址线,内部寄存器、运算部件以及内部操作都是按16位设计的。 《七》8086/8088微处理器有哪些寄存器? 答:8086有①代码段寄存器 ②数据段寄存器③堆栈段寄存器④附加段 寄存器。 《八》8086/8088CPU的20位物理地址是怎样形成的?当 CS=2300H、IP=0110H时,求它的物理地址。 答: 《九》什么是总线?系统总线接口有哪几项基本功能? 答:一般指通过分时复用的方式,将信息以一个或多个源部件传送到一 个或多个目的部件的一组传输线。是电脑中传输数据的公共通道。2. 《十》试说明选择存储器时应考虑哪几个方面问题? 答:应该从存储器的大容量,高速度,性能/价格比,易坏性,功耗, 存取速度,可靠性,集成度。几个方面考虑。 《十一》存储器中用来存储固定不变数据的存储器是什么存储 器?用来存储数据经常变化的存储器又是什么存储器? 答:只读存储器ROM。2.答随机读写存储器。 《十二》微型计算机中常用的存储器有哪些类型?它们各有何特 点?分别适用于哪些场合?

微型计算机原理及应用课后答案侯晓霞

微型计算机原理及应用课后答案侯晓霞 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

CH01微型计算机概述 习题与思考题 1.微型计算机由哪些部件组成各部件的主要功能是什么 解答: 2.8086/8088 CPU由哪两部分组成它们的主要功能各是什么是如何协调工作的解答: 协调工作过程: 总线接口部件和执行部件并不是同步工作的,它们按以下流水线技术原则来协调管理: ①每当8086的指令队列中有两个空字节,或者8088的指令队列中有一个空字节时,总线接口部件就会自动把指令取到指令队列中。 ②每当执行部件准备执行一条指令时,它会从总线接口部件的指令队列前部取出指令的代码,然后用几个时钟周期去执行指令。在执行指令的过程中,如果必须访问存储器或者输入/输出设备,那么,执行部件就会请求总线接口部件进入总线周期,完成访问内存或者输入/输出端口的操作;如果此时总线接口部件正好处于空闲状态,那么,会立即响应执行部件的总线请求。但有时会遇到这样的情况,

执行部件请求总线接口部件访问总线时,总线接口部件正在将某个指令字节取到指令队列中,此时总线接口部件将首先完成这个取指令的操作,然后再去响应执行部件发出的访问总线的请求。 ③当指令队列已满,而且执行部件又没有总线访问请求时,总线接口部件便进入空闲状态。 ④在执行转移指令、调用指令和返回指令时,由于程序执行的顺序发生了改变,不再是顺序执行下面一条指令,这时,指令队列中已经按顺序装入的字节就没用了。遇到这种情况,指令队列中的原有内容将被自动消除,总线接口部件会按转移位置往指令队列装入另一个程序段中的指令。 3.8086/8088 CPU中有哪些寄存器各有什么用途标志寄存器F有哪些标志位各在什么情况下置位 解答:

实验1.9WDM光波分复用器

1.9 WDM光波分复用器 实验者:钦(12342080) 合作者:王唯一(12342057) (大学物理科学与工程技术学院,光信息科学与技术12级2班 B13) 2015年3月26日,19,70% c 一、实验目的和容 1、了解WDM光波分复用器的工作原理和制作工艺,即熔融拉锥技术。 2、认识WDM光波分复用器的基本技术参量的实际意义,学会测量插入损耗、附加损耗、隔离度、偏振相关损耗等。 3、分析测量误差的来源。 二、实验基本原理 在熔融拉锥技术中,具体制作方法一般是将两根(或者两根以上)除去涂覆层的裸光纤以一定方式靠近,在高温加热下熔融,同时向两侧拉伸,利用计算机监控其光功率耦合曲线,并根据耦合比与拉伸长度控制停火时间,最后形成双锥结构。采用熔融拉锥法实现光纤间传输光功率耦合的耦合系数与波长有关,光传输波长发生变化时,耦合系数也会变化,即耦合器的分光比发生变化。考虑到熔融拉锥的耦合是周期性的,耦合周期愈多,耦合系数与传输波长的关系越大,所以尽量减少熔融拉锥中耦合的次数,最好在一个周期完成耦合。合理改变熔融拉锥条件,能够获得不同功能的全光纤耦合器件。熔融拉锥机的控制原理模块图如图1所示。熔融拉锥型光纤耦合器工作原理示意图如图2所示。 图1 熔融拉锥机系统控制示意图 图2 熔融拉锥型光纤耦合器工作原理示意图 1、单模耦合器 HE信号。图3是单模光纤耦合器的迅衰场耦合示意图。但在单模光纤中传导模是两个正交的基模 11 传导模进入熔锥区时,随着纤芯的不断变细,归一化频率V逐渐减小,有越来越多的光功率掺入光纤包层中。实际上光功率是在由包层作为芯,纤外介质(一般是空气)作为包层的复合波导中传播的;在输出端,随着纤芯的逐渐变粗,V值重新增大,光功率被两根纤芯以特定比例“捕获”。在熔锥区,两光纤包层合并在一起,纤芯足够逼近,形成弱耦合。将一根光纤看做是另一光纤的扰动,在弱导近似下,并假设光纤是无吸收的,则有

波分复用系统的基本原理

一、波分复用系统的基本原理 所谓波分复用(WDM),就是采用波分复用器(合波器)在发送端将规定波长的信号光载波合并起来,并送入一根光纤中传输;在接收侧,在由另一个波分复用器(分波器)将这些不同信号的光载波分开。由于不同波长的光载波信号可以看作相互独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。不同类型的光波分复用器,可以复用的波长数也不同,目前商用化的一般是8个波长、16个波长和32个波长的系统。波分复用系统的原理如图1-1所示。 图1-1 波分复用系统原理 在80年代初光纤通信兴起时,首先被采用的是1310nm/1550nm的两个波长复用系统(即在光纤的两个低损耗窗口1310nm和1550nm各传送一路光波长信号),也叫粗波分复用系统。这种系统比较简单,一般采用熔融的波分复用器,插入损耗小,在每个中继站,两个波长都进行解复用和光/电/光再生中继。随着1550nm窗口EDFA的商用化,光传输工程可以利用EDFA对传送的光信号进行放大,实现超长距离无电再生中继传输,在1550nm窗口传送多个波长信号,这些信号相邻波长间隔较窄,且工作在一个共享的EDFA工作带宽内,这种波长间隔紧密的WDM系统称为密集型波分复用系统(DWDM)。其频谱分布如图1-2所示。ITU-T G.692建议,DWDM系统的绝对参考频率为193.1THz(对应波长1552.52nm),不同波长的频率间隔为100GHz的整数倍(对应波长间隔约为0.8.nm的整数倍)。由于密集波分复用系统的波长间隔较小,必须采用高分辨率的波分复用器件,熔融的波分复用器一达不到要求。不加特别说明,波分复用系统通常指DWDM系统。 λ1λ2λ3λ 4 λ5λ6λ7λ8 波长 图1-2 DWDM系统的频谱分布 (一)DWDM的工作方式 双纤单向传输:一根光纤只完成一个方向信号的传输,反向光信号的传输由另一根光纤来完成,统一波长在两个方向上可以重复利用(如图1-3所示)。这种DWDM系统可以

相关主题
文本预览
相关文档 最新文档