当前位置:文档之家› 有限元例题

有限元例题

有限元例题
有限元例题

【1】图示弹性力学平面问题,采用三角形常应变元,网格划分及单元、节点编号如图1所示。试求:

(1) 计算系统刚度矩阵的最大带宽;

(2) 根据图中结构的边界约束状态,给出约束节点位移值。

【解】

(1) 相邻节点号的最大差为d = 4;

所以,半带宽为B = 2 ? (4 + 1) = 10。

(2) u1 = 0,v1 = 0,u4 = 0,v4 = 0。

【2】弹性力学平面问题4节点等参元,其单元自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素?

【解】平面问题4节点等参元,其单元自由度是4 ?2 = 8个;单元刚度矩阵是8 ? 8 阶的,单元刚度矩阵有64个元素。

【3】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素?

【解】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是2 ? 3 = 6个;单元刚度矩阵是6 ? 6阶的;单元刚度矩阵有36个元素。

【4】已知一等截面直杆中某一微段的起始点坐标为0.5m,终点坐标为0.6m,起始点的位移为0.2mm,终点的位移为0.3mm。假定直杆内的位移是线性分布的。求该微段等截面直杆的位移表达式f(x)。

【解】已知:x i = 0.5m, x j= 0.6m, u i = 0.2mm = 0.2?10-3m, u j= 0.3mm = 0.3?10-3m。

【5】已知4节点一维问题中单元①(1, 2)的应力矩阵为

结构总体位移列阵为

求单元①的应力(用矩阵计算)。

【解】由总体结构位移列阵知,单元①的位移列阵为

由{σ} = [C] {?}e可求得单元①的应力

【6】某结构中单元③的单元应力矩阵

,节点位移列阵为

求单元3的应力{σ }。

【解】由{σ} = [C] {?}e可求得单元③的应力

【7】已知某结构中三角形常应变单元的单元③的应力矩阵与应变矩阵分别为

单元厚度t = 1,单元面积A = 0.5,求单元③的刚度矩阵[K]3。

【解】三角形常应变单元的单元刚度矩阵为[K]e = [B]T[C]tA,则

【8】

【9】用矩阵或数组写出下列总体刚度矩阵的带宽存贮元素、变带宽一维存贮元素及辅助数组:

【解】

带宽存贮元素:

变带宽一维存贮元素:

{AK} = {25, 12, -8, 15, 0, 9, 22, 18, -6, 8, 24}

变带宽一维存贮辅助矩阵:

{LA} = {1, 4, 7, 8, 10, 11}

【10】已知某一维问题4个单元的单元定义(2个节点)分别为①:(1,2)、②:(2,3)、③:(3,4)、④:(4,5),这4个单元的单元刚度矩阵分别为

请写出总体刚度矩阵。

【解】

[K] =

【11】已知图4中刚架结构所有杆件的截面相同,且q = 10kN/m,F = 60kN。试给此刚架结构划分单元(画图表示),说明单元总数,节点总数,自由度数,约束总数,单元荷载数,给出各节点坐标,各单元的单元定义(节点号),单元荷载的数值和分布类型(均布、线性分布)及分布长度,节点荷载数,节点荷载的作用位移序号和节点荷载大小。

图4 题11 图

【解】单元、节点划分及自由度序号、节点坐标如图5所示。

图5 题11 单元划分图

单元总数:3;节点总数:4 ;自由度数:3;约束总数:9;单元荷载数:2;

节点坐标:1(0,0),2(4,0),3(8,0),4(-4,-4);

单元定义:①(1,2),②(2,3),③(2,4);

单元荷载:单元1,分布荷载,类型为1(线性,分布长度为单元全长),两端数值均为10kN/m;单元2,集中荷载,类型为3(距左端距离为单元半长),数值为60kN。

节点荷载数为1;节点荷载作用位移序号为3;节点荷载大小为20kN m。

有限元分析与应用详细例题

《有限元分析与应用》详细例题 试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比 较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 一.问题描述及数学建模 无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。 二.建模及计算过程 1. 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算 下面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似): 1.1进入ANSYS 【开始】→【程序】→ANSYS 10.0→ANSYS Product Launcher →change the working directory →Job Name: shiti1→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 单元是三节点常应变单元,可以用4节点退化表示。 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain→OK→Close (the Element Type window) 1.4定义材料参数

有限元法

【第1章思考题】 1、何为有限元法?其基本思想是什么? 1)“有限单元法”简称“有限元法”,是借助于电子计算机解决工程问题的近似方法。 2)“化整为零,集零为整”。也就是将一个原来连续的物体假想地分割成由有限个单元所组成的集合体,简称“离散化”。然后对每个单元进行力学特征分析,即建立单元节点力和节点位移之间的关系。最后,把所有单元的这种关系式集合起来,形成整个结构的力学特性关系,即得到一组以节点位移为未知量的代数方程组。处理后即可求解,求得结点的位移,进一步求出应变和应力 2、为什么说有限元法是近似的方法,体现在哪里?p3 用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 网格划分中的每一个小部分称为单元。网格间相互联结点称为节点。 4、有限元法分析过程可归纳为几个步骤?p4 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 从选择基本未知量的角度来看,可分为3类: 1、位移法:以节点位移为基本未知量的求解方法称为位移法。本课程讲授的内容 2、力法:以节点力为基本未知量的求解方法称为力法; 3、混合法:一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。位移法 6、弹性力学的基本变量是什么?p8何为几何方程p11、物理方程p12及虚功方程?p14弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题p17 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题 【第2章思考题】 1、何为结构的离散化?离散化的目的?何为有限元模型? 结构的离散化:把连续的结构看成由有限个单元组成的集合体②目的:建立有限元计算模型 ③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型 2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点? ①单元的数量要根据计算精度的要求和计算机的容量来确定,因此在保证精度的前提,力求采用较少的单元。②节点的布置:a集中载荷的作用点b分布载荷强度的突变点 c分布载荷与自由边界的分界点d支承点e厚度不同或材料不同的区域等都应取为节点。 3、节点总码的编号原则?何为半带宽?半带宽与节点总码的编号有何关系?p21 ①节点编号时,应注意尽量使同一单元的相邻节点的号码差值尽可能地小些,以便缩小刚度矩阵的带宽,节约计算机存储。节点应顺短边编号为好②包括对角线在内的半个带状区域中每行具有的元素的个数,③半带宽B=(相关节点编号最大差值+1)*2

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

Ansys有限元分析实例[教学]

Ansys有限元分析实例[教学] 有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸,0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图:

2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建:

3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强: 3Mpa 密度:Ton/M。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5; 泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果: 5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷:

说明: 约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时: 当压缩空气压力是5Bar时:

当压缩空气压力是4Bar时: 结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

有限元复习重点

●有限元起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。 ●有限元基本思想:在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。最后,把所有单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。 “一分一合”,化整为零,集零为整,把复杂的结构看成由有限个单元组成的整体。 ●单元、节点、边界:采用8节点四边形等参数单元把受力体划分成网格,这些网格称为单元;网格间互相连接的点称为节点;网格与网格的交界线称为边界。节点数和单元数目是有限的。 ●有限元法的优点:(1)理论基础简明,物理概念清晰,且可在不同的水平上建立起对该法的理解。(2) 具有灵活性和适用性,应用范围极为广泛。(3) 该法在具体推导运算中,广泛采用了矩阵方法,便于实现程序设计的自动化。 ●有限单元法分为三类:位移法(以节点位移为基本未知量)、力法(以节点力为基本未知量)和混合法(一部分以节点位移,另一部分以节点力作为基本未知量)。 ●有限元法分析计算的基本步骤可归纳如以下五点。1.结构的离散化(将某个机械结构划分为由各种单元组成的计算模型)在平面问题用三角形、矩形或任意四边形单元。在空间问题用四面体、长方体或任意六面体单元2.单元分析①选择位移模式(位移模式是表示单元内任意点的位移随位置变化的函数式,由于所采用的函数是一种近似的试函数,一般不能精确地反映单元中真实的位移分布)位移模式或位移函数:i n i i a y φ∑=②建立单元刚度方程e e e F k =δ,e 为单元编号;e δ为单元的节点位移向量;e F 为单元的节 点力向量 ;e k 为单元刚度矩阵.③计算等效节点力:用等效的节点力来代替所有作用在单元上的力。3.整体分析:整体的有限元方程F K =δ。K 为整体结构的刚度矩阵;δ为整体节点位移向量;F 为整体载荷向量。4.求解方程,得出节点位移5.由节点位移计算单元的应变与应力 ●有限元中得一个基本近似性是几何近似性 ●有限元中的变量:应力、应变、变形。基本方程有:平衡方程、物理方程、几何方程。边界条件:力边界、位移边界。 ●弹性力学的任务是分析弹性体在受外力作用并处于平衡状态下产生的应 力、应变和位移状态及其相互关系等。 ●外力:体力(分布在物体体积内的力---重力、惯性力、电磁力)、面力(分布在物体表面上的力---流体压力、接触力、风力) ●应力:物体受外力的作用,或由于温度有所改变,其内部将发生内力。

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

传统木结构的整体有限元分析

传统木结构的整体有限元分析 1.引言 中国古建筑是中华文明的重要组成部分,是中华民族乃至世界建筑艺术的瑰宝,具有极高的文物、历史和艺术价值。而其中的木结构古建筑,不仅蕴含了丰富的历史文化信息,由于其建筑材料和建筑方式的独特性,更有其独特而优良的力学性质。 对这些古建筑的动力特性的研究,从七十年代就已经开始了,但是由于技术的限制,这些研究还远远不够。随着社会的进步,人们也开始对古建筑的维护投入了更多的关注。因此对古建筑的研究也要求进一步的深入。 本文根据2007年1月18日木结构足尺模型振动台实验结果,采用有限元计算软件对木结构动力特性进行计算模拟,并将实验数据与计算值进行对比,希望更深刻地了解木结构建筑的抗震性能和结构耗能减震的基本原理,这对木结构建筑遗产的保护修缮具有重要的意义。 2.木结构整体有限元分析方法 早在1994年Kasal[1]等就利用大型商业有限元软件ANSYS对一层木框架房屋进线性的静力分析。在此模型中,剪力墙被简华成由刚性杆和斜向弹簧组成的桁架模型线性由斜向弹簧的单元特性来实现,而屋面和楼板被简化为超级单元。 2001年,由Slovenia的研究小组提出的Slovenia模型[2][3]将木结构房屋的整体分三个阶段:钉连接模型一墙体模型一木结构房屋整体模型。其研究思路为:先根据D分析剪力墙所得的滞回曲线,将每片墙简化成一个等效支撑框架。定义斜撑单元的参模型的滞回曲线拟合而得到,并采用CANNY-E(采用Newmark 算法)程序对整体行非线性动力时程分析。 3.木结构的整体有限元分析 3.1 足尺寸实验模型概况 本文以日本防灾科学技术研究所兵库抗震工程研究中心进行的足尺寸木结构的振动台实验为原型进行有限元分析。该振动台实验主要研究带墙体覆面板结构自振以及在不同地震波程度下的动力特性。模型标准层结构平面布置层高为2.93m,柱横向间距和纵向间距均为1.92m,采用以杉木为原材料的木框架结构。柱截面和基础梁截面均为120mm×120mm,屋面外框梁截面120mm×270mm,次梁截面为120mm×210mm,其梁和柱均为榫卯连接,墙面板为干式土壁覆面板。 3.2 有限元计算模型 本工作希望从数值方法出发,用简单有效的方法,建立木结构的有限元计算模型,对其动力特性进行计算模拟,并结合实验数据评判模型。 建立的有限元计算模型主要包括以下几个方面: (1)基础模拟。地震波在地表传播时,地基是一个变形体,地震发生时结构基础处各点的运动是不同的。但是,对于一般建筑物,其长度远小于地震波的波长(它和场地介质的情况有关),因此通常情况下将建筑物的地基近似看作刚性盘体是合理的[8]。因此在本次实验中,基础梁是固定在振动台上,计算模型中假定基础为刚性连接。 (2)木框架模拟。实验中的木结构框架可视为一种梁柱结构体系。梁柱之间上下叉接,左右卡连,如图3所示是实验中梁柱榫卯连接。榫卯连接是介于刚接与铰接之间的半刚性连接,在进行有限元分析时,通常的方法是用空间二节点虚拟弹簧单元来模拟这种半刚性连接性质。在同一空间位置的梁柱各端部节点与相应梁柱构件各自对应,并选择合适的自由度赋予弹簧刚度参数,形成半刚性连接[5]。因此,在计算模型中,柱一柱、梁一梁和梁一柱之间用弹簧单元来实现它们之间半刚性的连接。 考虑到木构架材质主要发挥其顺纹力学性质,可以将材料近似看作各向同性。参考文献[4]本文采用的木构架材料弹性模量15.5×109Pa,密度为3766kg/m3,泊松比0.25。 (3)屋面板单元。实验模型中屋面刚度很大,可以认为是刚性的,因此用Shell63单元固接在屋面梁上模拟。屋面上的配重在剪力有限元模拟过程中,利用质量单元Mass21模拟,将屋盖配重按面积等效原则

有限元分析案例

有限元分析案例 图1 钢铸件及其砂模的横截面尺寸 砂模的热物理性能如下表所示: 铸钢的热物理性能如下表所示: 一、初始条件:铸钢的温度为2875o F,砂模的温度为80o F;砂模外边界的对流边界条件:对流系数0.014Btu/hr.in2.o F,空气温度80o F;求3个小时后铸钢及砂模的温度分布。 二、菜单操作: 1.Utility Menu>File>Change Title, 输入Casting Solidification; 2.定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55; 3.定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic,默认材料编号1, 在Density(DENS)框中输入0.054,在Thermal conductivity (KXX)框中输入0.025,在S pecific heat(C)框中输入0.28; 4.定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table,输入T1=0,T2=2643, T3=2750, T4=2875; 5.定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1.44, C2=1.54, C3=1.22, C4=1.22,选择Apply,选择Enthalpy,输入C1=0, C2=128.1, C3=163.8, C4=174.2; 6.创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

ANSYS有限元分析实例

有限元分析 一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。左边固定,右边受载荷p=20N/mm作用,求其变形情况 P 一个典型的ANSYS分析过程可分为以下6个步骤: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析 1定义参数 1.1指定工程名和分析标题 (1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。 (2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定 (3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。 (4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。 1.2定义单位

在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI” 1.3定义单元类型 (1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。 (2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。 (3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。 (4)返回[Element Types]对话框,如下所示 (5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。

有限元分析课后习题

3.1“强”形式相关的场变量要求强的连续性。定义这些场变量的所有函数必须可微,而可微的次数必须等于存在于强形式的系统方程中的偏微分方程的次数。“弱”形式通常是积分形式,且对场变量要求较弱的连续性,弱形式通常能得到更精确的解。 3.2 (a) 协调性方程 (b )本质边界条件或运动边界条件 (c )在初始刻和末时刻的条件 3.3 (a )域的离散 (b )位移插值 (c )构造形函数 (d )坐标变换 (e )整体有限元方程的组装 (f )位移约束的施加 (g )求解整体有限元方程 3.4 理论上不用必须离散所求解问题的区域。把问题划分成单元的目的是更容易地假设位移场的模式。 3.5证明: (1)方程的左边为 []2 0120020120 23 012()d ()d [()()()]d 11 ()()()23l l l f x x a a x a x x a a x a x x a l a l a l δδδδδδδδ=++=++=++??? 方程的右边为 2012002301223012()d ()d 11 [] 23 11 [()()()] 23l l f x x a a x a x x a l a l a l a l a l a l δδδδδδ??=++???? =++=++?? 很显然方程的左右两边相等。 (2)方程的左边为 1212d () (2)d ()()2f x a a x x a a x δ δδδ=+=+ 方程的右边为 []201212d d ()()d d ()()2f x a a x a x x x a a x δδδδδδ=++=+ 很显然方程的左右两边相等。 3.6再生性和连续性

ansys有限元分析作业经典案例

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

有限元计算原理与方法..

1.有限元计算原理与方法 有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 1.1. 有限元分析的基本理论 有限元单元法的基本过程如下: 1.1.1.连续体的离散化 首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接 而成为一个整体。单元可采用各种类 型,对于三维有限元分析,可采用四 面 体单元、五西体单元和六面体 单元等。在Plaxis 3D Foundation 程序中,土体和桩体主要采用包 含6个高斯点的15节点二次楔 形体单元,该单元由水平面为6 节点的三角形单元和竖直面为四 边形8节点组成的,其局部坐标 下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的 8个成对节点四边形单元。 在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应 把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理; 若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布 荷载等效地移置到有关节点上去。 最后,还应建立一个适合所有单元的总体坐标系。 由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料 的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果 只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力 和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通 过对桩截面进行积分褥到。 1.1. 2. 单元位移插值函数的选取 在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移 作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。 引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用 场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模 式为: {}[]{}e f N δ= (3-1) 其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。 按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用 与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则 单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的 位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔 形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

matlab有限元分析实例

1.物理现象:这个对工程师来说是直观的物理现象和物理量,温 度多少度,载荷是多大等等。通常来说,用户界面中呈现的、用户对工程问题进行设置时输入的都是此类信息。 2.数学方程:将物理现象翻译成相应的数学方程,例如流体对应 的是NS方程,传热对应的是传热方程等等;大部分描述这些现象的方程在空间上都是偏微分方程,偶尔也有ODE(如粒子轨迹、化学反应等)。在这个层面,软件把物理现象“翻译” 为以解析式表示的数学模型。 3.数值模型:在定义了数学模型,并执行了网格剖分后,商业软 件会将数学模型离散化,利用有限元方法、边界元法、有限差分法、不连续伽辽金法等方法生成数值模型。软件会组装并计算方程组雅可比矩阵,并利用求解器求解方程组。这个层面的计算通常是隐藏在后台的,用户只能通过一些求解器的参数来干预求解。 有限元是一种数值求解偏微分方程的方法。 基本过程大致是设置形函数,离散,形成求解矩阵,数值解矩阵,后处理之类的。 MATLAB要把这些过程均自己实现,不过在数值求解矩阵时可以调用已有函数。可以理解为MATLAB是一个通用的计算器,当然它的功能远不止如此。

而ANSYS之类的叫做通用有限元软件,针对不同行业已经将上述过程封装,前后处理也比较漂亮,甚至不太了解有限元理论的人也能算些简单的东西,当然结果可靠性又另说了。 比较两者,ANSYS之类的用起来容易得多,但灵活性不如MATLAB。MATLAB用起来很困难,也有人做了一些模块,但大多数只能解决一些相对简单的问题。 对于大多数工程问题,以及某些领域的物理问题,一般都用通用有限元软件,这些软件还能添加一些函数块,用以解决一些需要额外设置的东西。但是对于非常特殊的问题,以及一般性方程的有限元解,那只能用MATLAB或C,Fortran之类的了。

Ansys有限元分析实例

课程论文 (2015-2016学年第一学期) 有限元理论在软件中的应用与刚度矩阵的求解 学生:张贺

有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸¢0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图: 2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建: 3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强:Mpa 密度:Ton/M3。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5;泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果:

5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷: 说明:约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时:

当压缩空气压力是5Bar时: 当压缩空气压力是4Bar时:

结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

相关主题
文本预览
相关文档 最新文档