当前位置:文档之家› 007空气中菌落总数测定方法

007空气中菌落总数测定方法

007空气中菌落总数测定方法

菌落总数测定注意点

菌落总数检测中的注意要点 菌落总数测定 一、茵落总数的概念和测定意义 菌落(colony)是指细菌在固体培养基上发育而形成的能被肉眼所识别的生长物,它是由数以万计的相同细菌聚集而成的,故又有细菌集落之称。 菌落总数是指在被检样品的单位重量(g)、容积(m1)或表面积(clni)内,、所含能于某种周体培养基上,在一定条件下培养后所生成的细菌集落的总数。 菌落总数主要是作为判定食品被细菌污染程度的标记,也可以应用这一方法观察食一中细菌的性质以及细菌在食品中繁殖的动态.以便对被检样品进行卫生学评价时提供科学依据. 二、茵落总数测定的几项说明 1.菌落总数的测定。是以检样中的细菌细胞和营养琼脂混合后,每个细菌细胞都能形成一个可见的单独菌落的假定为基础的。由于检验中采用37℃于有氧条件下培养(空气中含氧约20%),因而并不能测出每g或ml检样中实际的总活菌数,厌氧菌、微嗜氧菌和冷营菌在此条件下不生长,有特殊营养要求的一些细菌也受到了限制,因此所得结果,只包括一群能在普通营养琼脂中发育、嗜中温的、需氧和兼性厌氧的细菌菌落的总数。 2.鉴于食品检样中的细菌细胞是以单个,成双、链状、葡萄状或成堆的形式存在,因而在营养琼脂平板上出现的菌落可以来源于细胞块,也可以来源于单个细胞,因此平板上所得需氧和兼性厌氧菌菌落的数字不应报告活菌数,而应以单位重量、容量或表面积内的菌落数或菌落形成单位数(colony forming units,CFU)报告之。 3.每种细菌都有它一定的生理特性,培养时,应用不同的营养条件及其他生理条件(如温度、培养时间、PH、需氧性质等)去满足其要求,才能分别将各种细菌都培养出来。因此,要得到较全面的细菌菌落总数,应将检样接种到几种不同的非选择性培养基上,并培养在不同条件下,如温度,氧气供应等。但国家颁发的食品卫生标准对不同食品的菌落总数的规定,都是根据用普通营养琼脂进行需氧培养所得的结果确定的,因此在食品的一般卫生学评价中并不要用几种不同的非选择性培养基培养。 三、茵落总数的测定 测定食品中菌落总数时,是将食品检样做成几个不同的lO倍递增稀释液,然后从各个稀释液中分别取出一定量在平皿内与营养琼脂相混合,经培养后,按一定要求计算出皿内琼脂平板上所生成的细菌集落数,并再根据检样的稀释倍数,计算出每g或m1样品中所含细菌菌落的总数。 四、菌落总数测定中的一些要求和规定 为了正确地反映食品中各种需氧和兼性厌氧菌存在的情况,检验时必须遵循以下一些要求和规定。

环境空气 汞的测定 原子荧光法 《空气与废气监测分析方法》(第四

新项目试验报告 项目名称:环境空气汞的测定 原子荧光分光光度法《空气与废气监测分析方法》(第四版)项目负责人:杨刚 项目审批人: 审批日期:

一、新项目概述 原子吸收分光光法和氢化物发生-原子荧光分光光度法测定汞,灵敏度高、方法快速准确、干扰少;双硫腙分光光度法是经典方法,准确、测定范围等,但操作复杂,要求严格,适用于高浓度汞污染物的监测。 二、检测方法与原理 检测方法:原子荧光分光光度法《空气与废气监测分析方法》(第四版)(2003)5.3.7.2 原理:通过等速采样,将颗粒物从固定污染源中抽取到玻璃纤维滤筒中或将无组织排放颗粒物收集到氯乙烯滤膜上。所采集的样品用混合酸消解处理。 在酸性介质中,加热消解是样品溶液中的汞以二价汞的形式存在,再被硼氢化钾还原成单质汞,形成汞蒸气,被引入原子荧光分光光度计进行测定。 大气颗粒物中Sb、Se、Bi、Au等元素含量较低,一般含量的Sb、Se、Bi、Au不干扰Hg的测定,大量的Cu、Pb等均不干扰测定。 当将采集10m3气体的滤膜制备成50ml样品时,最低检出限为3×10-3μg/m3。 三、主要仪器和试剂 1.试剂和材料 测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水,所有试剂应不含铬。 1.1 硝酸:ρ=1.42g/ml,优级纯。 1.2 硝酸:1+1。 1.3 硝酸:1+19。 1.4 盐酸:ρ=1.19g/ml,优级纯。 1.5 5%盐酸。 1.6 重铬酸钾:优级纯。

1.7 氢氧化钾或氢氧化钠:优级纯。 1.8 盐酸溶液:1+1. 1.9 0.04%硼氢化钾溶液:称取0.4g硼氢化钾于已加入1gKOH的200ml去离子水中,溶解后,用脱脂棉过滤,稀释至1000ml。此溶液现用现配。 1.10 0.5g/L重铬酸钾溶液:称取0.5g重铬酸钾溶解于1000ml(1+19)HNO3中。 1.11 汞标准贮备液:准确称取1.080g氧化汞(优级纯,于105~110℃烘干2h), 用70ml(1+1)HCl溶液溶解,加入24ml(1+1)HNO3溶液、1.0gK 2Cr 2 O 7 ,溶解 后移入1000ml容量瓶中,用水稀释定容至标线。此溶液每毫升含1.0mg汞。1.12汞标准使用液(Hg),0.500μg/ml:临用时,用0.5g/L重铬酸钾溶液逐级稀释汞贮备液而成。 2. 仪器和设备 2.1原子荧光分光光度计及相应的辅助设备。 2.2中流量采样器。 2.3烟尘采样器。 2.4玻璃纤维滤筒。 2.5过氯乙烯滤膜。 四、采样要求或样品与处理技术 4.1采集 中流量采样器,玻璃纤维滤膜过滤直径8㎝时。以50~150L/min流量,采样30~60m3。采样应将滤膜毛面朝上,放入采样夹中拧紧。采样后小心取下滤膜尘面朝里对折两次叠成扇形,放回纸袋中,并详细记录采样条件。 4.2试料溶液 4.2.1硝酸-过氧化氢溶液浸出法 取试样滤膜,置于高兴烧杯中,加入10ml硝酸-过氧化氢混合溶液浸泡2h以上,微火加热至沸腾,保持微沸10min,冷却后加入过氧化氢10ml,沸腾至微干,冷却,加硝酸溶液20ml,再沸腾10min,热溶液通过多孔玻璃过滤器,收集于烧杯中,用少量热硝酸溶液冲洗过滤器数次。待滤液冷却后,转移到50ml容量瓶中,

汞测定

用原子荧光光度计测定食品中的汞,砷含量 天津现代职业技术学院云文琦 指导教师:许泓范延辉 摘要 试样经酸加热消解后,在酸性介质中,试样中汞被硼氢化钾(KBH4)或硼氢化钠(NaBH4)还原成原子态汞,由载气(氩气)带入原子化器中,在特制汞空心阴极灯照射下,基态汞原子被激发至高能态,在去活化回到基态时,发射出特征波长的荧光,其荧光强度与汞含量成正比,与标准系列比较定量。 试样经湿消解或干灰化后,加入硫脲使五价砷预还原为三价砷,再加入硼氢化钠或硼氢化钾使还原生成砷化氢,由氩气载入石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中砷浓度成正比,与标准系列比较定量。 关键词高压消化法(HPA)湿消解荧光光度计汞砷 化妆品中含有的金属和非金属有很多种。有些是为达到某些特定功效刻意添加的。例如,添加汞以起到美白的效果,因为汞化合物会破坏表皮层的酵素活动,使黑色素无法形成。铅的氧化物具有一定遮盖作用,也可用于美白。也有些金属是由于生产原料成分不纯,将不该有的金属成分残留在化妆品中。而如果化妆品中添加了砷、汞,长期使用对人体造成的损害最大。因此,化妆品中的砷、汞、铅等是必检物质,《化妆品卫生规范》中规定了这些物质在化妆品中的限量。如果化妆品中含有的汞、砷等含量超过一定标准将会对人体造成危害。汞是有害元素, FAO/WHO将汞定为优先研究的有害金属之一。汞及汞化合物都可以透过皮肤进入人体,因此,世界各国都对化妆品中汞的含量给予关注。我国化妆品卫生标准中规定,汞及汞化合物不可作为化妆品的原料成分。由化妆品原料杂质及其他原因引入的微量汞不得超过lppm;汞会对皮肤造成刺激,对中枢神经系统的影响很大,使人出现记忆力衰退、失眠等症状。砷及其化合物被认为是致癌物质。长期使用含砷高的化妆品,可能造成皮肤色素异常。如出现斑点,头发变脆、断裂和脱落,严重者患皮肤癌。因此我国化妆品卫生标准规定砷及其化合物为限用物质。砷及其化合物广泛存在于自然界中,化妆品原料和化妆品生产过程中,也容易被砷污染。因此化妆品中砷的测定是必要的。砷能引起皮肤色素沉着,也会引

食品中菌落总数的测定

食品中菌落总数的测定 一、实验目的 (1)学习和掌握测定食品中菌落总数的基本方法 (2)学会菌落总数的报告方式 二、实验材料 1、仪器与设备:恒温培养箱、托盘天平、电炉、吸管、三角瓶、平皿、试管、试管架、酒精灯、灭菌刀或剪刀、75%酒精棉球、玻璃蜡笔。 2、培养基和试剂:75%乙醇、0.85%生理盐水、琼脂培养基:胰蛋白胨5.0g、酵母浸膏2.5g、葡萄糖1.0g、 琼脂15.0g、蒸馏水1000mL、pH 7.0±0.2 3、检样:利乐包装鲜牛奶250ml 三、实验方法与步骤 1、检验程序 菌落总数检验程序: 检样→做成几个适当倍数的稀释液→选择2-3个适宜稀释度各以1ml之量分别入灭菌平皿内→每皿内加入46℃15-20ml营养琼脂→置36±1℃恒温箱内培养(48±2)h取出→菌落数→报告 2、检样稀释及培养 (1)以无菌操作,将检样包装打开,用吸管取25ml鲜牛奶,放于含有225ml灭菌生理盐水的500ml灭菌玻璃三角瓶内(瓶内预先置适当数量的玻璃珠),经充分振摇做成1:10的均匀稀释液。 (2)用1ml灭菌吸管吸取1:10稀释液1ml,沿管壁徐徐注入含有9ml灭菌生理盐水的试管内(注意吸管尖端不要触及管内稀释液,下同),振摇试管混合均匀,做成1:100的稀释液。 (3)另取1ml的灭菌吸管,按上项操作顺序作10倍递增稀释液,如此每递增稀释一次,即换用1支1ml灭菌吸管。 (4)根据食品卫生检验标准要求和检样的菌落数量,选择3个连续适宜稀释度即10、10-1、10-2,分别在作10倍递增稀释的同时,即以吸取该稀释度的吸管移1ml稀释液于灭菌平皿内,每个稀释度作两个平皿。(5)稀释液移入平皿后,应及时将凉至46℃营养琼脂培养基注入平皿15ml~20mL,并转动平皿使与稀释检样混合均匀,同时将营养琼脂培养基倾入加有1ml稀释液(不含样品)的灭菌平皿内作空白对照。 (6)等琼脂凝固后,翻转平板,置36±1℃恒温箱内培养(48±2)h取出,计算平板内菌落数目乘以倍数,即得1mL样品所含菌落总数。 四、检样中细菌菌落总数的计算与报告 1、菌落计算方法 (1)菌落计数方法 做平板菌落计数时,可用肉眼观查,必要时用放大镜检查,以防遗漏。在记下各平板的菌落数后,求出同稀释度的各平板平均菌落总数。 (2)菌落计数的报告 ①平板菌落数的选择 选取菌落数在30~300 CFU之间的平板作为菌落总数测定标准。一个稀释度使用两个平板,应采用两个平板平均数, ②稀释度的选择 应选择平均菌落数在30~300 CFU之间的稀释度,乘以稀释倍数报告之。 若有两个稀释度,其生长的菌落数均在30~300之间,按以下公式计算:

海能仪器:食品中汞的测定方法(重金属)

食品中汞的测定方法 (冷原子吸收光谱法) 1.原理 样品经过硝酸-硫酸、硝酸-硫酸-五氧化二钒或硝酸-过氧化氢高压消解,使样品中的汞转为离子状态,在强酸性中以氯化亚锡为还原剂,将离子状态的汞定量的还原为汞原子。在常温下易蒸发为汞原子蒸气,以氮气或干燥清洁空气为载气,将汞吹出。而汞原子对波长253.7nm 的共振线具有强烈的吸收作用,在一定浓度范围其吸收大小与汞原子浓度的关系符合比尔定律,与标准系列比较定量。最低检出浓度为0.11-0.30ng/ml,最低检出量为0.002mg/kg。该方法适用于各类食品中总汞的测定。 2.试剂 除特别注明外,本标准所用试剂均为分析纯试剂,水均为去离子水。 玻璃对汞有吸附作用,因此测汞所用一切器皿需用硝酸溶液(1+3)浸泡,洗净后备用。(1)硝酸(优极纯) (2)硫酸(优极纯) (3)30%过氧化氢 (4)300g/L氯化亚锡溶液:称取30g氯化亚锡(SnCl2·2H2O),加少量水,再加2ml硫酸使溶解后,加水稀释至100ml,放置冰箱保存。 (5)变色硅胶:干燥用。 (6)硫酸+硝酸+水混合酸液(1+1+8):量取10ml硫酸,再加入10ml硝酸,慢慢倒入80ml 水中,混匀后冷却。 (7)五氧化二钒。 (8)50g/L高锰酸钾溶液:配好后煮沸10min,静置过夜,过滤,贮于棕色瓶中。 (9)200g/L盐酸羟胺溶液。 (10)汞标准储备溶液:精密称取0.1354g于干燥器干燥过的二氯化汞,加混合酸(1+1+8)溶解后移入100ml容量瓶中,并稀释至刻度,混匀,此溶液每毫升相当于1mg汞。 **为了避免在配制稀汞标准溶液时玻璃对汞的吸附,最好先在容量瓶内加进部分底液,再加入汞贮备液。 为保证汞贮备液稳定性,通常在溶液中加少量重铬酸钾。配制方法:取0.5g重铬酸钾,用水溶解,加50ml优极纯硝酸,加水至1L。用此保存液来配制汞标准贮备溶液(1ml含10μg汞)可保存2年不变,若配制汞标准应用液(1ml含0.1μg汞),置于冰箱中保存10天不变。(11)标准使用液:吸取1.0ml汞标准溶液,置于100ml容量瓶中,加混合酸(1+1+8)稀释至刻度,此溶液每毫升相当于10μg汞。再吸取此液1.0ml,置于100ml容量瓶中,加混合酸(1+1+8)稀释至刻度,此溶液每毫升相当于0.1μg汞,临用时现配。 3.仪器 (1)消化装置。 (2)压力消解器(或压力消解罐或压力溶弹)100ml容量。 (3)微波消解装置。

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物(精)

实验十四盐酸萘乙二胺比色法测定大气中氮氧化物 一﹑实验目的 1.学习气体样品的采集和吸收,吸收管及大气采样器的使用。 2.掌握大气中氮氧化物的比色测定方法。 二﹑实验原理 大气中氮氧化物包括一氧化氮和二氧化氮等,在测定氮氧化物浓度时,先用三氧化铬氧化管将一氧化氮氧化为二氧化氮。 二氧化氮被吸收在溶液中形成亚硝酸,与氨基苯磺酸起重氮反应,再与盐酸萘乙二胺偶合,生成玫瑰红色偶氮染料,根据颜色深浅,比色测定。 使用重量法校准的二氧化氮渗透管配置低浓度标准气体,测得NO 2--→NO 2 - 的转换系数为0.76,因此在计算结果中要除以换算系数0.76。 在大气中二氧化硫浓度为氮氧化物浓度的10倍时,对氮氧化物的测定无干扰;30倍时,使颜色有少许减退,但在城市环境大气中,较少遇到这种情况。臭氧浓度为氮氧化物的5倍时,对氮氧化物的测定略有干扰,在采样后3小时,使试液呈现微红色,影响较大。过氧乙酰硝酸酯(PAN)使试液显色而干扰,在一般环境大气中PAN浓度甚低,不会导致显著的误差。本法检出限为0.05微克 /5毫升(按吸光度0.01相应的NO 2-含量计),当采样体积为6升时,NO 2 最低检出 浓度为0.01毫克/立方米。 三﹑实验仪器 1.多孔玻板吸收管 2.大气采样器,流量范围0—1L/min。 3.双球玻璃管 4.分光光度计 四﹑试剂 所有试剂均用不含有亚硝酸盐的重蒸水配制。 检验方法:吸收液的吸光度不超过0.005。 1.吸收原液:称取5g对氨基苯磺酸于200mL烧杯中,将50mL冰醋酸与900mL 水的混合液分数次加入烧杯中,搅拌,溶解,并迅速移入1000mL容量瓶中,避光,待对氨基苯磺酸完全溶解后,加入0.050g盐酸萘乙二胺(又名N-甲奈基盐酸二氨基乙烯),溶解后,用水稀释至刻线。此为吸收原液,储于棕色瓶中,存于冰箱,可保存一个月。

菌落总数测定

菌落总数的测定 基础知识: 菌落是指细菌在固体培养基上生长繁殖而形成的能被肉眼识别的生长物,它是由数以万计相同的细菌集合而成。当样品被稀释到一定程度,与培养基混合,在一定培养条件下,每个能够生长繁殖的细菌细胞都可以在平板上形成一个可见的菌落。 菌落总数是指在一定条件下(如需氧情况、营养条件、pH、培养温度和时间等)每g(mL)检测样品所生长出来的细菌菌落总数。由于厌氧或微需氧菌、有特殊营养要求的以及非嗜中温的细菌,现有条件不能满足其生理需求,故难以繁殖生长。因此菌落总数并不表示实际其中的所有细菌总数,也不能区分其中细菌的种类,所以有时被称为杂菌数、需氧菌数等。 菌落总数测定是用来判定食品被细菌污染的程度及卫生质量,它反映食品在生长过程中是否符合卫生要求,以便对被检样品做出适当的卫生学评价,菌落总数的多少在一定程度上标志着食品卫生质量的优劣。中国国家标准是国内常用的检验方法。 菌落总数测定的卫生学意义: 食品本身的新鲜程度 加工、贮存运输过程中是否受到污染 卫生学指标:食品中菌落总数越多,则食品含有致病菌的可能性越大,食品质量越差;菌落总数越小,则食品含有致病菌的可能性越小。须配合大肠菌群和致病菌的检验,才能对食品做出较全 面的评价。 细菌在平板计数琼脂上的菌落特征蔓延菌在平板计数琼脂上的菌落特征方法来源:

GB 4789.2-2016 食品安全国家标准食品微生物学检验菌落总数测定 1、范围 本标准规定了食品中菌落总数(Aerobic plate count)的测定方法。 本标准适用于食品中菌落总数的测定。 2、术语和定义 菌落总数aerobic plate count 食品检样经过处理,在一定条件下(如培养基、培养温度和培养时间等)培养后,所得每g(mL)检样中形成的微生物菌落总数。 3、设备和材料 除微生物实验室常规灭菌及培养设备外,其他设备和材料如下: 3.1 恒温培养箱:36℃±1℃。 3.2 冰箱:2℃~5℃。 3.3 恒温水浴箱:46℃±1℃。 3.4 天平:感量为0.1g。 3.5 无菌袋。 3.6 无菌吸管:1mL(具0.01mL刻度)、10mL(具0.1mL刻度)。 3.7 无菌培养皿:直径90mm。 3.8 放大镜或/和菌落计数器。 4、培养基和试剂 4.1 平板计数琼脂培养基 按照称取23.5g培养基溶于1000mL蒸馏水的比例进行配置,分装到锥形瓶,121℃高压灭菌15min。 4.2 0.85%无菌生理盐水 称取8.5g氯化钠溶于1000mL蒸馏水。一般用1000mL锥形瓶配置,称取6.8g的氯化钠,加入800mL蒸馏水,121℃高压灭菌15min。

菌落总数、大肠菌群测定方法

菌落总数和大肠菌群测定(固体样品) 药品: 1、平板计数琼脂 2、月桂基硫酸盐胰蛋白胨肉汤(LST) 3、煌绿乳糖胆盐肉汤(BGLB) 4、氯化钠 设备材料: 烧杯、三角瓶、广口瓶、培养皿、刻度吸管、倒气管、玻璃 棒、试管、硅胶塞、洗耳球、棉花、布或报纸等。 一、准备工作 (指导书是按一个样品所需物品准备的,实验室可按样品量增加) 1、平板计数琼脂培养基准备----用于菌落总数测定 将三角瓶放在电子称上,去皮,按平板计数琼脂使用说明称量,加 200ml蒸馏水搅拌,放电炉上煮沸加热煮沸,充分溶解,盖上硅胶塞,用报纸或布包好,再用橡皮筋扎紧。 2、月桂基硫酸盐胰蛋白胨(LST)肉汤----用于大肠菌群测定 (a)将烧杯放在电子称上,去皮,按使用说明称量,加100ml蒸馏水搅拌,放电炉上煮沸,充分溶解。 (b)用10ml(毫升)的吸管分装到9支(18*180规格)试管中,每支试管加10ml的月桂基溶液LST (合计90毫升)。 (c)9支试管分别放入倒气管(开口向下),排气,盖上硅胶塞。

3、0.85%的生理盐水----用于样品稀释 将广口瓶去皮,称取氯化钠1.91g加225ml蒸馏水,摇匀,用报纸 或布包好,再用橡皮筋扎紧;同样配制第二瓶。 4、准备2个空试管,盖上硅胶塞----用于样品稀释。 5、准备8个培养皿,用布包扎好。 6、准备至少3支5ml和1支10ml带有刻度的吸管,用布包扎好(顶部可用棉球塞住,防止吸液时,液体不慎吸入洗耳球)。 7、准备操作的工具:剪刀1把、镊子1个、勺子等打开产品包装所需工具,用布包扎好。 二、使用灭菌锅灭菌 1、检查灭菌锅底部加热管水位是否正常,水位要高过加热丝。 2、将上面准备好的7步骤物品逐一放入锅内,注意:滴定管吸口向下,有棉球的向上。 3、盖上火菌锅盖子时,将排气管插到排气口内,注意从对角线开始拧紧螺丝,将排气阀打开(安全阀始终关闭),通电后,待排气阀放气3分钟后(锅内冷空气已经排完),关闭排气阀。 4、查看灭菌锅的压力表,当温度升到121°,压力升到0.1MP(兆帕)时,灭菌维持15分钟后(温度和压力不能过高或者过低),断电自然冷却到接近“ 0”度后,慢慢打开排气阀,再对角拧开灭菌锅。 三、无菌操作 进无菌室前的准备:放好工具(酒精灯,记号笔,消毒用75%酒精棉球,洗耳球,电子称),打开紫外线杀菌灯,杀菌30分钟后关闭,再等

煤中汞地测定方法

煤中汞的分析测定方法 汞是一种具有严重生理毒性的全球性污染物。汞一旦释放进入生态环境(尤其是水生与湿地生态环境),无机汞可以被转化为毒性更强的甲基汞,甲基汞的脂溶性和较长的半衰期使其在鱼和其它水生生物体内具有极高的生物富集系数(104以上),并通过食物链富集起来,进而置野生生物和人类于甲基汞暴露风险之中[1]。工业革命以来,由于人为释汞源使大气中汞是工业革命前的3倍,而最大的人为释汞源即为煤燃烧,每年向大气释放约810吨汞[2],超过所有人为释汞源排汞的三分之二[3]。准确分析测定煤中汞的含量是估算我国煤燃烧释汞量的基础。 我国目前分析测定煤中汞的方法是于2009年5月1日实施的GB/T 16659-2008。但笔者认为该方法由于在煤样消解过程中使用大量的V2O5为催化剂消解煤样[4],但国内生产的V2O5含汞空白一般较高(??),有的甚至是煤实际含汞量的30-50%(?),因此严重影响了煤样中汞的分析测定。因此有必要建立更为可靠的分析测定方法。 本文通过对比GB/T 16659-2008的V2O5催化消解煤样原子荧光分析法,王水常温消解煤样原子荧光分析法及煤样直接热解原子吸收分析法分析测定了煤标样及一些煤样,得出较好的结果。 1.材料及仪器 2.样品消解及分析方法 3.结果与讨论 4.结论 实验部分 1 冷原子荧光分光光度法 1.1分析仪器与试剂

1.1.1 分析仪器:金丝捕汞管,冷原子荧光分光光度计,分析天平:感量0.1mg,汞蒸气发生瓶(50ml),振荡器 1.1.2 试剂:优级纯浓硝酸;优级纯浓盐酸;12% 盐酸羟胺溶液; 10% SnCl2溶液 BrCl 溶液: 11. 0 g 分析纯KBrO3 和15.0 g 分析纯KBr 溶于200 mL 蒸馏去离子水中, 轻轻搅拌溶液, 同时缓慢加入700 mL 优级纯浓HCl。整个操作应在通风橱内进行。冷却后, 装入棕色瓶中, 放置阴凉处保存。 王水:按浓盐酸:浓硝酸=3:1,配制。加入硝酸时,缓慢搅拌溶液。整个操作应在通风橱内进行。静置1-2小时后,放置阴凉处保存。 1.2除汞方法 将新配好的氯化亚锡溶液置于还原瓶中, 以0. 5 L/ min 的速度通入不含汞的氮气12 h, 装瓶备用。 1.3化学试剂及器皿的汞空白 汞空白值0.05 0.04 1.4 煤样消解 称取粒度小于0.2mm的空气干燥煤样约1g,称准到0.0002g,于50ml离心管中。加入事先配制好的王水10ml,摇匀,静置24h。第二天将加有试剂的离心管放入振荡器内,拧紧离心管盖子,转速调到220-240转/分,两小时后关闭振荡器,取下离心管。加入1ml BrCl,摇匀,用去离子水定容到50ml。 1.5溶液过滤 在铁架台上用漏斗和中速滤纸,过滤离心管中溶液。滤过后溶液用新离心管盛放。 1.6样品测定 冷原子荧光光度计设备开机,运行20分钟,测噪声。低于40分贝时开始吹扫金管中富集

大气中硫化氢的测定方法

硫化氢(H2S)为无色气体,分子量;沸点-83℃。对空气相对密度,在标准状况下1L气体质量为,1体积水溶解体积硫化氢,其水溶液呈酸性。与重金属盐反应可以生成不溶于水的重金属硫化物沉淀。硫化氢能被氧化,根据氧化条件和氧化剂的不同,氧化的产物也不同,与碘溶液作用生成单体硫,在空气中燃烧生成SO2,和氯或溴水溶液作用生成硫酸。 在自然界动植物中氨基酸腐烂时产生硫化氢,某些热泉水及火山气体中含有低浓度的硫化氢,在很多天然气中含有较高浓度的硫化氢。在工业上,炼焦炉和合成纤维以及石油化工和煤气生产等常排出混有硫化氢的废气污染大气。硫化氢在大气中很不稳定,逐渐氧化成单体硫、硫的氧化物和硫酸盐。水蒸气和阳光会促使这种氧化作用。 硫化氢是有腐蛋的恶臭味,人对硫化氢的嗅觉阈为~m3。硫化氢是神经毒物,对呼吸道和眼粘膜也有刺激作用。硫化氢对农作物的毒害要比对人的毒害轻得多。硫化氢化学测定方法很多:有硫化银比色法,乙酸铅试纸法,检气管法和亚甲基蓝比色法等。其中以亚甲基蓝比色法应用最普遍,且方法灵敏,适用于大气测定。由于硫化氢极不稳定,在采样和放置过程中易被氧化和受日光照射而分解,所以吸收液成分选择应要考虑到硫化氢样品的稳定性问题。因此,在碱性氢氧化镉吸收液中加保护胶体,如阿拉伯半乳聚糖或聚乙烯醇磷酸铵,将所形成的硫化镉隔绝空气和阳光,减小氧化和光分解作用。用锌氨络盐溶液加甘油作吸收液是将 H2S形成络合物使其稳定。 硫化氢仪器测定有库仑滴定法和火焰光度法,其原理与本章第一节二氧化硫相似。所用选择性过滤器要让H2S定量通过,又能排除其他干扰气体。 一、聚乙烯醇磷酸铵吸收-亚甲基蓝比色法〔1〕 (一)原理 空气中硫化氢被碱性氢氧化镉悬浮液吸收,形成硫化镉沉淀。吸收液中加入聚乙烯醇磷酸铵可以减低硫化镉的光分解作用。然后,在硫酸溶液中,硫化氢与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝,比色定量。

化妆品汞检验测定方法

化妆品汞检验测定方法 汞含量的测定 在化妆品中汞的含量一般都很低,现在常用的测定方法有冷原子吸收分光光度法和汞斑法等,在此主要介绍冷原子吸收分光光度法。 1.测定原理 汞蒸气对波长253.7nm的紫外光具有特征吸收,在一定的浓度范围内,吸收值与汞蒸气浓度成正比。样品经消解、还原处理,将化合态的汞转化为元素汞,再以载气带入测汞仪,测定吸收值。与标准系列比较定量。 2.仪器 (1)比色管:50 mL;锥形瓶:100 mL;250 mL圆底烧瓶:250 mL;玻璃磨口球形冷凝管:40 cm长;水浴锅。 (2)冷原子吸收测汞仪。 3.试剂 (1)去离子水或同等纯度的水:将一次蒸馏水经离子交换净水器净化,贮存于全玻璃瓶或聚乙烯瓶中。 (2)硝酸、硫酸、盐酸:优级纯。 (3)过氧化氢:质量分数为30 %。 (4)五氧化二钒、氯化汞:分析纯。 (5)硫酸:质量分数为10 %。 (6)氯化亚锡溶液:质量分数为20 %。称取20 g氯化亚锡(分析纯)置于250 mL烧杯中,加20 mL浓盐酸,加水稀释至100 mL。 (7)重铬酸钾溶液:质量分数为10 %。称取10g重铬酸钾(分析纯)溶于100 mL水中。 (8)重铬酸钾硝酸溶液:取5 mL重铬酸钾溶液,加入硝酸50 mL,用水稀释至1000 mL。 (9)汞标准溶液: ①称取0.1354 g氯化汞置于100 mL烧杯中,加入重铬酸钾硝酸溶液溶解。移入1000 mL容量瓶中,再用重铬酸钾硝酸溶液稀释至刻度,此溶液每毫升含汞100 μg。 ②移取10.0 mL汞标准溶液①置于l00 mL容量瓶中。用重铬酸钾硝酸溶液稀释至刻度。此溶液每毫升含汞10.0 μg。此溶液临用前配制。 ③移取汞标准溶液②10.0 mL至100 mL容量瓶中,用重铬酸钾硝酸溶液稀释至刻度。此溶液每毫升含汞1.00 μg。

大气中汞的测定

环境空气汞的测定巯基棉富集-冷原子荧光分光光度法1.适用范围 本标准规定了测定环境空气中汞及其化合物的巯基棉富集-冷原子荧光分光光度法。 本标准适用于环境空气中汞及其化合物的测定。 本标准方法检出限为0.1ng/10ml试样溶液。当采样体积为15 L时,检出限为6.6×10-6mg/m3,测定下限为2.6×10-5mg/m3。 2规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 HJ/T 194 环境空气质量手工监测技术规范 GB/T 6682 分析实验室用水规格和试验方法 3方法原理 在微酸性介质中,用巯基棉富集环境空气中的汞及其化合物。无机汞反应式如下: 有机汞反应式如下: 元素汞通过巯基棉采样管时,主要为物理吸附及单分子层的化学吸附。 采样后,用4.0 mol/L盐酸-氯化钠饱和溶液解吸总汞,经氯化亚锡还原为金属汞,用冷原子荧光测汞仪测定总汞含量。 4试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。水,GB/T 6682,二级。4.1 高纯氮气:?=99.999%。 4.2 重铬酸钾(K2Cr2O7):优级纯。 4.3 硫酸:ρ (H2SO4)=1.84 g/ml,优级纯。 4.4 盐酸:ρ (HCl)=1.19 g/ml,优级纯。 4.5 硝酸:ρ (HNO3)=1.42 g/ml,优级纯。 4.6 重铬酸钾溶液:w(K2Cr2O7)=1.0%。 称取1.0 g的重铬酸钾(4.2),溶于水,稀释到100 ml。 4.7 硫酸溶液:(H2SO4)=10%。 量取10 ml的浓硫酸(4.3),缓慢加入90 ml水中。 4.8盐酸溶液:c(HCl)=4.0 mol/L。 量取123 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.9 盐酸溶液:c(HCl)=2.0 mol/L。 量取12 ml盐酸(4.4),用水稀释至1 000 ml,混匀。 4.10 盐酸溶液:pH=3。 吸取2.0 mol/L 盐酸(4.9)0.50 ml,用水稀释至1 000 ml,混匀。

公共场所空气中氨检验方法

公共场所空气中氨检验方法 一、靛酚蓝分光光度法 1 原理 空气中氨吸收在稀硫酸中,在亚硝基铁氰化钠及次氯酸钠存在下,与水杨酸生成蓝绿色的靛酚蓝染料,根据着色深浅,比色定量。 2 试剂和材料 本法所用的试剂均为分析纯,水为无氨蒸馏水,制备方法见附录A。 2.1吸收液[C(H 2SO 4 )=0.005mol/L]:量取2.8ml浓硫酸加入水中,并稀释至1L。 临用时再稀释10倍。 2.2水杨酸溶液(50g/L):称取10.0g水杨酸[C 6H 4 (OH)COOH]和10.0g柠檬酸钠 (Na 3C 6 O 7 ·2H 2 O),加水约50ml,再加55ml氢氧化钠溶液[C(NaOH)=2mol/L], 用水稀释至200ml。此试剂稍有黄色,室温下可稳定一个月。 2.3亚硝基铁氰化钠溶液(10g/L):称取1.0g亚硝基铁氰化钠[Na 2 Fe(CN) 5·NO·2H 2 O],溶于100ml水中,贮于冰箱中可稳定一个月。 2.4次氯酸钠溶液(CaCIO)=0.05mol/L):取1ml次氯酸钠试剂原液,用碘量法标准定其浓度(标定方法见附录B)。然后用氢氧化钠溶液[C(NaOH)=2mol/L]称释成0.05mol/L的溶液。贮于冰箱中可保存两个月。 2.5氨标准溶液 2.5.1标准贮备液:称取0.3142g经105℃干燥1h的氯化铵(NH 4 Cl),用少量水溶解,移入100ml容量瓶中,用吸收液(见2.1)稀释至刻度,此液1.00ml 含1.00mg氨。 2.5.2标准工作液:临用时,将标准贮备液(见2.5.1)用吸收液稀释成1.00ml 含1.00μm氨。 3 仪器、设备 3.1大型气泡吸收管:有10ml刻度线,见图1,出气口内径为1mm,与管底距离应为3~5mm。

环境空气—氯化氢的测定—硫氰酸汞分光光度法

FHZHJDQ0105 环境空气氯化氢的测定硫氰酸汞分光光度法 F-HZ-HJ-DQ-0105 环境空气—氯化氢的测定—硫氰酸汞分光光度法 1 范围 本方法可用于空气中氯化氢的测定。5mL样品溶液中含2μg氯化氢,可有0.033吸光度。 本法检出限为1μg/5mL,若采样体积为200L时,最低检出浓度为 0.01mg/m3;测定范围为5mL样品溶液中含2~20μg氯化氢,若采样体积为200L时,可测浓度范围为0.02~0.40mg/m3。 2 原理 空气中氯化氢吸收在碱溶液中,在酸性溶液中与硫氰酸汞反应置换出硫氰酸根,再与高铁离子作用生成硫氰酸铁红色化合物,比色定量。 3 试剂 所有试剂均用蒸馏水或去离子水配制。 3.1 吸收液:0.05mol /L氢氧化钠溶液。 3.2 无水乙醇。 3.3 硫氰酸汞-乙醇溶液:称取0.4g硫氰酸汞用无水乙醇溶解成 100mL。 3.4 高氯酸:70%~72%。 3.5 硫酸铁铵溶液:称取6g硫酸铁铵用(1+2)高氯酸溶解成100mL。 3.6 标准溶液:准确称量0.2045g经105℃干燥2h的氯化钾(一级),用水溶解后,移入1000mL 容量瓶中,并稀释至刻度。此溶液1.00mL含0.1mg氯化氢。再用吸收液稀释成1.00mL含10μg 氯化氢的标准溶液。 4 仪器 4.1 气泡吸收管:普通型,有10mL刻度线。 4.2 空气采样器:流量范围0.2~3L/min,流量稳定。使用时,用皂膜流量计校准采样系列在采样前和采样后的流量误差应小于5%。 4.3 具塞比色管,10mL 4.4 分光光度计,用20mm比色皿,在波长460nm下,测定吸光度。 5 采样 串联两个各装10mL吸收液的普通型气泡吸收管,以2.5L/min流量采气200L。长时间采样,需用水补充到原体积。 6 操作步骤 6.1 标准曲线的绘制 按下表制备标准色列管。 0 1 2 3 4 5 6 7 标准溶液V/mL 0 0.20 0.40 0.60 0.80 1.00 1.50 2.00 吸收液V/mL 5.0 4.80 4.60 4.40 4.20 4.00 3.50 3.00 氯化氢含量m/μg 0 2 4 6 8 10 15 20 于标准色列各管中加入2mL硫酸铁铵溶液,混匀。加入1mL硫氰酸汞-乙醇溶液,混匀。 在室温下放置10~30min。用20mm比色皿,以水作参比,在波长460nm下,测定各管溶液 吸光度。以氯化氢含量(μg)为横坐标,吸光度为纵坐标,绘制标准曲线,并计算回归线的斜率。以斜率倒数作为样品测定的计算因子B S(μg)。 6.2 样品测定

食品中汞的测定方法

食品中汞的测定方法 冷原子吸收光谱法 1.原理 样品经过硝酸-硫酸、硝酸-硫酸-五氧化二钒或硝酸-过氧化氢高压消解,使样品中的汞转为离子状态,在强酸性中以氯化亚锡为还原剂,将离子状态的汞定量的还原为汞原子。在常温下易蒸发为汞原子蒸气,以氮气或干燥清洁空气为载气,将汞吹出。而汞原子对波长253.7nm 的共振线具有强烈的吸收作用,在一定浓度范围其吸收大小与汞原子浓度的关系符合比尔定律,与标准系列比较定量。最低检出浓度为0.11-0.30ng/ml,最低检出量为0.002mg/kg。该方法适用于各类食品中总汞的测定。 2.试剂 除特别注明外,本标准所用试剂均为分析纯试剂,水均为去离子水。 玻璃对汞有吸附作用,因此测汞所用一切器皿需用硝酸溶液(1+3)浸泡,洗净后备用。(1)硝酸(优极纯) (2)硫酸(优极纯) (3) 30%过氧化氢 (4) 300g/L氯化亚锡溶液:称取30g氯化亚锡(SnCl2·2H2O),加少量水,再加2ml硫酸使溶解后,加水稀释至100ml,放置冰箱保存。 (5)变色硅胶:干燥用。 (6)硫酸+硝酸+水混合酸液(1+1+8):量取10ml硫酸,再加入10ml硝酸,慢慢倒入80ml 水中,混匀后冷却。 (7)五氧化二钒。 (8) 50g/L高锰酸钾溶液:配好后煮沸10min,静置过夜,过滤,贮于棕色瓶中。 (9) 200g/L盐酸羟胺溶液。 (10)汞标准储备溶液:精密称取0.1354g于干燥器干燥过的二氯化汞,加混合酸(1+1+8)溶解后移入100ml容量瓶中,并稀释至刻度,混匀,此溶液每毫升相当于1mg汞。 **为了避免在配制稀汞标准溶液时玻璃对汞的吸附,最好先在容量瓶内加进部分底液,再加入汞贮备液。 为保证汞贮备液稳定性,通常在溶液中加少量重铬酸钾。配制方法:取0.5g重铬酸钾,用水溶解,加50ml优极纯硝酸,加水至1L。用此保存液来配制汞标准贮备溶液(1ml含10μg 汞)可保存2年不变,若配制汞标准应用液(1ml含0.1μg汞),置于冰箱中保存10天不变。

室内空气中氨的测定方法

仪器文献- 室内空气中氨的测定方法 频道:仪器仪表发布时间:2008-03-05 测定空气中氨的化学方法有次氯酸钠—水杨酸分光光度法、纳氏试剂分光光度法、靛酚蓝试剂比色法;仪器法有离子选择电极法和光离子化气相色谱法等。 f.1次氯酸钠—水杨酸分光光度法 f.1.1 相关标准和依据 本方法主要依据gb/t14679 《空气质量氨的测定次氯酸钠-水杨酸分光光度法》。 f.1.2 原理 氨被稀硫酸吸收液吸收后,生成硫酸铵。在亚硝基铁氰化钠存在下,铵离子、水杨酸和次氯酸钠反应生成蓝色化合物,根据颜色深浅,用分光光度计在697nm波长处进行测定。 f.1.3 测定范围 在吸收液为10ml,采样体积为 10~20 l时,测定范围为 0.008~110 mg/m3,对于高浓度样品测定前必须进行稀释。本方法检出限为0.1μg/ml,当样品吸收液总体积为10ml,采样体积为10l时,最低检出浓度 0.008mg/m3。 f.1.4 试剂 分析中所用试剂全部为符合国家标准的分析纯试剂;使用的水为无氨水。 f.1.4.1 水:无氨,可用下述方法之一制备。 f.1.4.1.1 蒸馏法向1000ml的蒸馏水中加0.1ml硫酸(ρ=1.84g/ml),在全玻璃装置中进行重蒸馏,弃去50ml初馏液,于具塞磨口的玻璃瓶中接取其余馏出液,密封,保存。 f.1.4.1.2 离子交换法将蒸馏水通过强酸性阳离子交换树脂柱,其流出液收集在具塞磨口的玻璃瓶中。 f.1.4.2 硫酸吸收液 硫酸溶液c(1/2 h2so4)=0.005mol/l。 f.1.4.3 水杨酸—酒石酸钾溶液 称取10.0g水杨酸〔c6h4(oh)cooh〕置于150ml烧杯中,加适量水,再加入5mol/l氢氧化钠溶液 15ml,搅拌使之完全溶解。另称取10.0g酒石酸钾钠(knac4h4o6·4h2o),溶解于水,加热煮沸以除去氨,冷却后,与上述溶液合并移入200ml容量瓶中,用水稀释到标线,摇匀。此溶液ph=6.0~6.5,贮于棕色瓶中,至少可以稳定一个月。 f.1.4.4 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{na2〔fe[(cn) 5no〕·2h2o},置于10ml具塞比色管中,加水至标线,摇动使之溶解。临用现配。 f.1.4.5 次氯酸钠溶液 市售商品试剂,可直接用碘量法测定其有效氯含量,用酸碱滴定法测定其游离碱量。方法如下: 有效氯的测定:吸取次氯酸钠1.00ml,置于碘量瓶中,加水50ml,碘化钾2.0g,混匀。加c(1/2h2so4)= 6mol/l硫酸溶液5ml,盖好瓶塞,混匀,于暗处放置5min后,用c(na2s2o3)=0.1000mol/l硫代硫酸钠标准溶液滴定至浅黄色,加淀粉溶液1ml,继续滴定至蓝色刚消失为终点。按下式计算有效氯:

食品中菌落总数的测定

【说明】蛋糕具有松软香甜,携带方便、食用简单等特点,因此成为人们居家生活特别是旅途中不可或缺的一种美食,深受人们的喜爱。测定蛋糕中的菌落总数可以用来判定其被微生物污染的程度及卫生质量,它反映蛋糕在生产过程中是否符合卫生要求,以便对被检样品做出适当的卫生学评价,菌落总数的多少在一定程度上标志着蛋糕产品质量的优劣,因此,测定蛋糕中的菌落总数具有重要意义。目前应用于测定食品中菌落总数的方法有: 纸片法、电阻抗法等。本实验采用国标法(GB\T 对独立包装小蛋糕中菌落总数进行测定。并与GB 7099-2003糕点、面包卫生标准中规定的冷加工糕点中菌落总数≤10000(cfu/g)的数据对比初步判断样品是否符合卫生要求。 一、实验目的 1、学习并掌握测定蛋糕中菌落总数的方法及原理。 2、通过对比实验验证冷藏对蛋糕的保鲜及抑菌作用。 3、了解菌落总数测定在食品卫生学评价中的意义。 二、实验原理 菌落总数即为食品检样经过处理,在一定条件下(如培养基、培养温度和培养时间等)培养后,所得每g(mL)检样中形成的微生物菌落总数。 菌落总数主要作为判定食品被污染程度的标志,也可以应用这一方法观察细菌在食品中繁殖动态,以便对被检样品进行卫生学评价时提供依据。每种细菌都有它一定的生理特性,培养时应用不同的营养条件及其他生理条件(如温度、培养时间、pH、需氧性质等)去满足其要求才能将各种细菌都培养出来。但在实际工作中,一般都只用一种常用的方法。细菌菌落总数的测定,所得结果,只包括一群能在营养琼脂上发育的嗜中温性需氧菌的菌落总数。菌落总数并不表示样品中实际存在的所有细菌总数,菌落总数并不能区分其中细菌的种类,所以有时被称为杂菌数,需氧菌数等。 三、实验设备与材料 除微生物实验室常规灭菌及培养设备外,其他设备和材料如下: 恒温培养箱:36 ℃±1℃,30℃±1 ℃。 冰箱:2 ℃~5 ℃。

HJ 543-2009 固定污染源废气 汞的测定 冷原子吸收分光光度法(暂行)

中华人民共和国国家环境保护标准 HJ 543—2009 固定污染源废气汞的测定 冷原子吸收分光光度法(暂行) Stationary source emission-Determination of mercury- Cold atomic absorption spectrophotometry 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2009-12-30发布 2010-04-01实施 环 境 保 护 部 发 布

目次 前言..............................................................................................................................................II 1 适用范围 (1) 2 规范性引用文件 (1) 3 方法原理 (1) 4 干扰 (1) 5 试剂和材料 (1) 6 仪器和设备 (3) 7 样品 (3) 8 分析步骤 (3) 9 结果计算 (4) 10 质量保证和质量控制 (5)

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范固定污染源废气中汞的监测方法,制定本标准。 本标准规定了测定固定污染源废气中汞的冷原子吸收分光光度法。 本标准由环境保护部科技标准司组织制订。 本标准起草单位:北京市环境保护监测中心。 本标准环境保护部2009年12月30日批准。 本标准自2010年4月1日起实施。 本标准由环境保护部解释。

HJ 533-2009 环境空气和废气 氨的测定 纳氏试剂分光光度法

中华人民共和国国家环境保护标准 HJ 533-2009 代替GB/T14668-93 环境空气和废气 氨的测定 纳氏试剂分光光度法 Air and exhaust gas―Determination of ammonia― Nessler’s reagent spetcrophotometry 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2009-12-31发布 2010-04-01实施环 境 保 护 部 发布

目 次 前 言....................................................................II 1适用范围. (1) 2方法原理 (1) 3干扰及消除 (1) 4试剂和材料 (1) 5仪器和设备 (3) 6样品 (3) 7分析步骤 (3) 8结果计算 (4) 9准确度和精密度 (5) 10质量保证和质量控制 (5) I 标准分享网 https://www.doczj.com/doc/3c12981469.html, 免费下载

前言 为贯彻《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范氨的监测方法,制定本标准。 本标准规定了测定环境空气和工业废气中氨的纳氏试剂分光光度法。 本标准对《空气质量 氨的测定 纳氏试剂比色法》(GB/T14668-93)进行修订。 本标准首次发布于1993年,原标准起草单位是上海市环境保护监测中心。本次为首次修订。本次修订的主要内容如下: ——增加了警告。 ——增加了吸收液体积为10mL的采样方式及其检出限。 ——增加了质量保证和质量控制条款,其中包括:无氨水的检查、采样全程空白、试剂配制和采样的注意事项等。 ——合并了结果的计算公式。 自本标准实施之日起,原国家环境保护局1993年10月27日批准、发布的国家环境保护标准《空气质量 氨的测定 纳氏试剂比色法》(GB/T14668-93)废止。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:沈阳市环境监测中心站。 本标准环境保护部2009年12月31日批准。 本标准自2010年4月1日起实施。 本标准由环境保护部解释。 II

相关主题
文本预览
相关文档 最新文档