当前位置:文档之家› 斐波那契数列问题

斐波那契数列问题

斐波那契数列问题
斐波那契数列问题

斐波那契数列问题。(专业C++作业ch4-1)

题目描述

著名意大利数学家斐波那契(Fibonacci)1202年提出一个有趣的问题。某人想知道一年内一对兔子可以生几对兔子。他筑了一道围墙,把一对大兔关在其中。已知每对大兔每个月可以生一对小兔,而每对小兔出生后第三个月即可成为“大兔”再生小兔。问一对小兔一年能繁殖几对小兔?

提示:

由分析可以推出,每月新增兔子数Fn={1,1,2,3,5,8,13,21,34,…}(斐波那契数列),可归纳出F1=1,F2=1,……,Fn=Fn-2+Fn-1。

仿照课本P128页的“2.基本题(1)”进行编程。注意,(1)课本上的程序显示出数列的前16项的所有数值,这里要求只显示第n项数值;(2)课本上的程序在每次循环时显示数列中的两个数值(i=3时,显示了数列的第3项和第4项)。输入描述

一个正整数n,表示求第n个月的新增的兔子数。

输出描述

对输入的n,求第n个月的新增的兔子数。

输入样例

16

输出样例

987

2. (18分)

求阶乘和。(专业C++作业ch4-2)

题目描述

编程求出阶乘和1!+2!+3!+…+n!。

注意:13!=6 227 020 800已经超出unsigned long的范围,故程序中不宜采用整型数据类型,而应使用双精度类型存放结果。

输入描述

一个正整数n,n的值不超过18。

输出描述

对输入的n,求阶乘和1!+2!+3!+…+n!。(输出结果时,可以用输出格式控制“cout<

输入样例

10

输出样例

4037913

除法问题。(专业C++作业ch4-3)

题目描述

编写一个函数原型为int f(int n);的函数,对于正整数n计算并返回不超过n 的能被3除余2,并且被5除余3,并且被7出余5的最大整数,若不存在则返回0。

应编写相应的主函数调用该函数,在主函数中接受用户输入的正整数n。

输入描述

一个正整数n。

输出描述

找到满足条件的整数显示,找不到显示0。

输入样例

100

输出样例

68

8分)

求立方根。(专业C++作业ch4-4)

题目描述

计算x的立方根的迭代公式为y0=1,yn+1=yn+(x/(yn*yn)-yn)/3 ,试编写一个函数double cuberoot(double x);计算浮点型数值的立方根,并编写一个主函数,在主函数中输x的值,计算x的立方根。

提示:可仿照课本P112页源代码4.3。请注意:计算x的y次幂的系统函数double pow(double x,double y);要求x非负。

输入描述

输入x,x可以是正数、零、负数。

输出描述

x的立方根,要求结果按定点小数方式显示,并精确到小数点后6位。

输入样例

17

输出样例

2.571282

细菌繁殖。(专业C++作业ch4-5)

题目描述

编程求解问题:有一种细菌,从其产生的第4分钟后,每分钟都产生一个同种细菌。若某初始时刻仅有一个这种细菌,那么此后第n分钟时共有多少种这种细菌?

提示:初始时刻(第t=0分钟),a(0)=1,b(0)=c(0)=d(0)=0,细菌总数为

s(0)=a(0)+b(0)+c(0)+d(0)=1。下一时刻d(t+1)=c(t)+d(t),c(t)=b(t),

b(t)=a(t),a(t)=d(t)。

输入描述

输入正整数n。

输出描述

输出n+1个数,表示从开始时刻(第0分钟)到第n分钟(共n+1个时刻),每个所有产生的细菌数的总数,数据之间用一个空格隔开。

输入样例

10

输出样例

1 1 1

2

3

4

5 7 10 14 19

6. (10分)

判断算式正确性。(专业C++作业ch4-6)

题目描述

给定一个算式,该算式中只含有一个四则运算符号,操作数及结果均为整数。要求判断改算式的正确性(规定:除法必须除尽才可能正确)。

输入描述

输入数据有多行,每行为一个算式。(从输入样例可见,操作数、运算符之间可能有空格字符,可能没有。在默认的情况下,抽取运算符将忽略数据项前的空白字符。可以仿照课本P66页源代码2.6的方式,使用

while(cin>>x>>…)进行输入数据的处理。)

输出描述

对于每一种情形,要求先输出“Case 序号: ”,然后输出correct(表示算式正确)或者incorrect(表示算式错误)。

输入样例

1+2=3

1 -

2 = -1

5/ 2 = 2

4 /2=2

输出样例

Case 1: correct Case 2: correct Case 3: incorrect Case 4: correct

斐波那契数列

第1章绪论 布置的作业共6题: 基础知识题:1.6 1.7 1.8 1.10 算法设计题:1.17 1.20 一、基础知识题 ◆1.6 ③在程序设计中,常用下列三种不同的出错处理方式: (1)用exit语句终止执行并报告错误; (2)以函数的返回值区别正确返回或错误返回; (3)设置一个整型变量的函数参数以区别正确返回或某种错误返回。 试讨论这三种方法各自的优缺点。] 答题思路:查错和容错能力 答:程序出错处理是指发现错误并根据出错的原因作出适当的处理,处理的目的是找到出错的原因。出错的原因一般包括缺乏某些资源和程序设计有问题两类。如果是前者,程序仍然可以继续运行,只是处于等待资源或执行其他流程的状态。如果是后者,则需要修改源代码。

◆1.7 ③在程序设计中,可采用下列三种方法实现输出和输入: (1)通过scanf和printf语句; (2)通过函数的参数显式传递; (3)通过全局变量隐式传递。 试讨论这三种方法的优缺点。 答题思路:错误局部化(软件模块化)、执行效率(内存开销) 答:在正规的软件设计中,要求各模块之间以恰当的方式进行调用,以便使各模块中出现的错误局部化。 其是方式3,在出现错误时查错的开销将很大,尽量不使用。

◆1.8 ④设n为正整数,试确定下列各程序段中前置以记号@的语句的频度。评析:频度≠时间复杂度 注意:(1)、(2)、(3)三个程序段中任何两段都不等效(即k和i的终值不相同 )

书后附有答案 标答:程序段(8)取自著名的McCarthy91函数 ? ??≤+>-=100 ))1((10010)(x x M M x x x M 对任何 x ≤100,M(x)=91。此程序实质上是一个双重循环,对每个y(>0)值,@语句执行11次,其中10次是执行x++。 刘解:请注意x 的初值已经是91了,必须加到101才能终止程序的循环。if 语句从x=91开始直到x=101都执行,共执行11次,其中10次是执行x++。

斐波那契数列资料

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1) 又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质 也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即:

斐波那契数列教案(六年级数学下册)

《斐波那契数列》教学设计 教学内容:第65页阅读资料“斐波那契数列”。 教学目标:1、使学生认识“斐波那契数列”及其部分特性。 2、在经历感知、分析、归纳和应用的过程中培养学生的思维能力。 3、培养积极的数学阅读习惯,形成积极的数学情感。 教学过程: 一、故事引入,提出问题 很久很久以前,有个意大利人发现了一对神奇的小兔子,和兔子相处一年之后,他便成为一个举世闻名的数学家。这一年到底发生了什么呢?他用一道数学题清楚的告诉了我们,请看大屏幕: 假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对兔子呢? 1、请学生读题,分析、理解题意。 你觉得题目中哪句话的意思很重要,需要提醒大家注意呢? 重点理解:①一对大兔生过一对小兔后,下个月会接着生,无死亡; ②小兔一个月后长成大兔,以后一直是大兔。 2、模拟兔子生长过程 ⑴请同学们讨论,你想了解哪些问题?如何解决?(这一年当中,兔子的数量到底是怎样增长的?)我们来模拟一下,好不好? ⑵师生共同参与模拟过程,记录数据。 1月—4月,由教师带领学生体会兔子变化过程。 ⑶引导发现规律,小组合作完成剩下月份的推导 ⑷汇报交流,解决问题。 二、合作探究,解决问题 1、刚才大家表现得很踊跃。下面我们就来研究这个著名的数学问题, 它就是这个数列:1,1,2,3,5,8,13,21,…… 2、观察前后数的关系,从这个数列中你发现了什么规律? ①学生举手汇报,说出规律:前两个数之和等于第三个数。 ②若一个数列,首两项等于 1,而从第三项起,每一项是前两项之和,则称该数列 为斐波那契数列。 三、应用新知,练习巩固 根据你发现的规律填空

斐波那契数列的通项公式推导解析

斐波那契数列的通项公式推导 山西省原平市原平一中任所怀 做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列的通项。 解:( 设,则()所以数列为等比数列,且首项为 ,公比为3。所以。 于是有,两边都除以得 设,则有 由累加法可得

因为所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列,其中,,求数列的通项。 解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为

所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

斐波那契数列的性质

斐波那契数列的性质 一、通项公式:a n = 5〔1+ 52〕n - 5 〔1? 52〕n 二、设p,q,u,v 为自然数且p = min{ p ,q , u , v} . 若p + q = u + v , 则对于斐波那契数列{ an} ,以下公式恒成立:a p a q - a u a v = (-1)p+1a u-p a q-u 三、a n +1a n?1 - a n 2 = (?1)n (n >= 1, n 属于 N) 四、a 2n +1 = a n +12 + a n 2 (n 属于N ) 五、a n +12 - a n?12 = a n 2 (n >= 1, n 属于N) 六、a n +m = a n?1a m + a n a m +1 (n >= 1, n 和m 属于N) 七、a 2n +2a 2n?1 - a 2n a 2n +1 = 1(n >= 1, n 属于N) 八、a m +n 2 - a m?n 2 = a 2m * a 2n (m > n >= 1) 九、a n?1?a n +2 - a n ?a n +1 = (?1)n (n >= 2) 十、{f 2n f 2n +1} 有极限且等于黄金分割率 5 ?12

下面是一篇文章:

斐波那契数列通项公式 斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、…… 这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。) 有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。 奇妙的属性 随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887…… 从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通) 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64

数学-斐波那契数列01

内蒙古自治区中小学教师教育技术水平(初级)试卷(试卷科目:中学数学)01 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( C)。 (2.5分) A.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践 B.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程C.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已D.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 第2题 (单选题)在美国,教育技术作为一个新兴的实践和研究领域而出现始于下列选项内容的是( A)。 (2.5分) A.视听运动 B.计算机辅助教育 C.程序教学法 D.网络技术应用 第3题 (单选题)"教师不应一味以传统集体传授教学的方式进行教学,而应使用能够让学生进行操作或进行社会活动的方式来学习",这反映的是( A )的学习观。 (2.5分) A.建构主义 B.人本主义 C.行为主义 D.认知主义 第4题 (单选题)在视听教学运动背景下,对教育技术基本内涵表述不恰当的是( C)。 (2.5分) A.在教学过程中所应用的媒体技术手段和技术方法 B.在教学过程中所应用的媒体技术和系统技术 C.在教学过程中所应用的媒体技术 D.在教学过程中所应用的媒体开发和教学设计 第5题 (单选题)关于教学方法的选择,下列选项中说法正确的是( C )。 (2.5分) A.教学方法的选择不涉及学习者特征方面因素

斐波那契数列中的数学美

最美丽的数列------斐波那挈数列 数学科学院宋博文1100500163 在原理课上,我们了解了斐波那挈数列,在课余生活中,我再读小说<达芬奇密码>时,提到了斐波那挈数列,它是被一个艺术家当作线索留给他人的,当时不知道他为什么被艺术家这么看重,以至于可以上升到生命的高度,因此我对斐波那挈数列产生了浓厚的兴趣,所以我结合了老师上课讲的东西,以及自己课下的了解,对斐波那挈数列有了一些认识,现在总结在这里,展示自己学到了什么. 在课上老师讲了斐波那挈数列是由意大利数学家,斐波那挈发明的.当时他是用一个形象的故事为例子而引入的斐波那挈数列. 兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子? 我们不妨拿新出生的一对小兔子分析一下: 第一个月小兔子没有繁殖能力,所以还是一对; 两个月后,生下一对小兔民数共有两对; 三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对; ------ 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89--144 表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。 这个特点的证明:每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,相加。 斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*[(1+√5/2)^n-(1-√5/2)^n](n=1,2,3.....) 因此斐波那挈数列又叫做兔子数列,我想这个例子真的让我感到数学源于生活,生活的需要是我们不段地通过现象发现数学问题,而不是为了学习而学习,我想斐波那挈不可能真的是通过兔子来发现的这个问题,但他是伟大的数学家,他想告诉我们这种数学问题的本质. 回到正体,提到了斐波那挈的伟大,现在我们在了解一下斐波那挈,我再课下了解到他竟叫做列昂纳多斐波那挈,与列昂纳多达芬奇,并被誉为比萨的列昂纳多.我想数学家有艺术家的称号,并不是一件简单的事. 直观的讲斐波那挈数列1、1、2、3、5、8、13、21、……从第三项开始,每一项都等于前两项之和,有趣的是这样的完全是自然数的数列,竟然可以用无理数来表达的,我记得老师当时好像讲过这一点但是当时好像并不太在意这一点,因为觉得这没什么,但是当我了解到,随着数列项的增加,前一项与后一项之比愈来愈逼近黄金分割的数值0.618时我却是被震惊到了,因为数学可以表达美,我想这是我们不得不赞叹的地方,当数学创造了好多的奇迹时,我想可能会很少人注意到我们数学本质是可以回归到自然的,这样的事例还有很多, 在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的

斐波那契数列的来历

斐波那契是意大利的数学家.他是一个商人的儿子.儿童时代跟随父亲到了阿尔及利亚,在那里学到了许多阿拉伯的算术和代数知识,从而对数学产生了浓厚的兴趣. 长大以后,因为商业贸易关系,他走遍了许多国家,到过埃及,叙利亚,希腊,西西里和法兰西.每到一处他都留心搜集数学知识.回国后,他把搜集到的算术和代数材料,进行研究,整理,编写成一本书,取名为《算盘之书》,于1202年正式出版. 这本书是欧洲人从亚洲学来的算术和代数知识的整理和总结,它推动了欧洲数学的发展.其中有一道"兔子数目"的问题是这样的: 一个人到集市上买了一对小兔子,一个月后,这对小兔子长成一对大兔子.然后这对大兔子每过一个月就可以生一对小兔子,而每对小兔子也都是经过一个月可以长成大兔子,长成大兔后也是每经过一个月就可以生一对小兔子.那么,从此人在市场上买回那对小兔子算起,每个月后,他拥有多少对小兔子和多少对大兔子? 这是一个有趣的问题.当你将小兔子和大兔子的对数算出以后,你将发现这是一个很有规律的数列,而且这个数列与一些自然现象有关.人们为了纪念这位兔子问题的创始人,就把这个数列称为"斐波那契数列". 你能把兔子的对数计算出来吗? 解: 可以这么推算: 第一个月后,小兔子刚长成大兔子,还不能生小兔子,所以只有一对大兔子. 第二个月后,大兔子生了一对小兔子,他有了一对小兔子和一对大兔子. 第三个月后,原先的大兔子又生了一对小兔子,上月出生的小兔子也长成了大兔子,他共有一对小兔子和两对大兔子. 第四个月后,两对大兔子各生一对小兔子,上月出生的小兔子又长成了大兔子,他共有两对小兔子和三对大兔子.

第五个月后,三对大兔子各生一对小兔子,上月出生的两对小兔子也长成了大兔子,他共有三对小兔子和五对大兔子. …… 以此类推,可知: 每月的小兔子对数等于上月大兔子的对数,每月大兔子的对数等于上月大兔子与小兔子的对数之和. 我们把大小兔子的对数写成上下两行,从买回小兔子算起,每个月后他所拥有的兔子对数便是: 仔细观察两行数发现它们是很有规律的: 每行数,相邻的三项中,前两项的和便是第三项. 有趣的是: 雏菊花花蕊的蜗形小花,有21条向右转,有34条向左转,而21和34,恰是斐波那契数列中相邻的两项;松果树和菠萝表面的凸起,它们的排列也分别成5:8和8:13这样的比例,也是斐波契数列中相邻两项的比. 这个数列不仅在数学,生物学中,还在物理,化学中经常出现,而且它还具有很奇特的数学性质,真是令人叫绝!

详解由递推公式求斐波那契数列的通项公式

详解由递推公式求斐波那契数列的通项公式 武汉市黄陂区第四中学 蔡从江 斐波那契数列的递推公式是121==a a ,11-++=n n n a a a (2≥n 且N n ∈),那么它的通项公式是怎样的呢?不少同学经常问到这个问题。 下面详细解答用待定系数法构造过渡数列求其通项公式。 由递推公式11-++=n n n a a a ,可设)(11-++=+n n n n a a a a λμλ,比较得1=-λμ且1=μλ,即012=-+λλ,解得251±-= λ。若251+-=λ,则251+=μ;若251--=λ,则2 51-=μ。 先以2 51+-=λ,251+=μ求解, 此时)2)(2 15(21521511≥-++=-+-+n a a a a n n n n , 所以)2()215()215()215(2151211≥+=-++=-+ -+n a a a a n n n n , 即)2()2 15(2511≥++-=+n a a n n n , 再另)2]()215([251)215( 11≥+--=+-++n x a x a n n n n 即n n n x x )2 15()215(215)215(1+=+-+++, 所以12 15215=-++x x 即55=x , 所以 ])215(55[251)215(5511n n n n a a +--=+-++, )2]()2 15(551[)251()215(552111≥+--=+--++n a n n n ,

所以)2]()2 15(551[)251()215(552111≥+--=+--++n a n n n , )2]()251()251[(5 1])215(551[)251()215(55112111≥--+=+--++=++-++n a n n n n n 所以)3]()251()251[(5 1≥--+=n a n n n , 又121==a a 适合上式,故 *)]()251()251[(51N n a n n n ∈--+=, 同理可得251--=λ,2 51-=μ时,*)]()251()251[(51N n a n n n ∈--+=, 因此斐波那契数列的通项公式是 *)]()251()251[(51N n a n n n ∈--+=

高三数学 教案 斐波那契数列通项公式推导过程

斐波那契数列 斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。 定义 斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 自然中的斐波那契数列 这个数列从第3项开始,每一项都等于前两项之和。 斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。 通项公式 递推公式 斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) 显然这是一个线性递推数列。 通项公式

高考数学题型全归纳:斐波那契数列(含答案)

斐波那契数列 每一对兔子过了出生第一个月之后,每个月生一对小兔子。现把一对初生小兔子放在屋内,问一年后屋内有多少对兔子? 先不在这里考虑兔子能否长大,或是某些月份没有生小兔子一类的问题,完全只由数学角度去考虑这问题,意大利数学家斐波那契(Fibonacci)解了这个题目,其内容大约是这样的:在第一个月时,只有一对小兔子,过了一个月,那对兔子成熟了,在第三个月时便生下一对小兔子,这时有两对兔子。再过多一个月,成熟的兔子再生一对小兔子,而另一对小兔子长大,有三对小兔子。如此推算下去,我们便发现一个规律: 不难发现,每个月成熟兔子的数目是上个月的兔子总数,而初生兔子的数目是上个月成熟兔子的数目,也即是两个月前的兔子总数,因此每个月的兔子总数刚好是上个月和两个月前的的兔子总数之和。由此可得每个月的兔子总数是 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 23, 377...,由此可知一年后有 377 对兔子。 若把上述数列继续写下去,得到的数列便称为斐波那契数列,数列中每个数便是前两个数之和,而数列的最初两个数都是 1。若果设 F0=1, F1=1, F2=2, F3=3, F4=5, F5=8, F6=13... 则成立这个关系式:当 n 大于 1,Fn+2=Fn+1+ Fn,而 F0=F1=1。下面是一个古怪的式子: (1) Fn看似是无理数,但当 n 是非负整数时,Fn都是整数,而且组成斐波那契数列,因为F0=F1=1,并且Fn+2=Fn+1+ Fn,这可用数学归纳法来证明。 利用斐波那契数列解决兔子数目的问题似乎没有甚么用途,因为不能保证兔子真的每月只生

用初等数学方法求斐波那契数列的通项公式

用初等数学方法求斐波那契数列的通项公式 斐波那契 (Fibonacci) 数列是着名的数列,有很高的实用价值。多年来,学者们一直在探究它的通项公式的求解方法,已经涌现出了多种方法。但据笔者们所知,这些方法大都需要比较高深的数学知识,例如组合数学的方法、概率的方等等,让人比较难理解,不容易接受。基于此,研究给出了一种简易的初等数学方法,先探求它们的特征多项式,然后通过求解线性方程组的思想,得出它们的通项公式。这种方法深入浅出,有一定的实用价值。 1.斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道着名的兔子繁殖问题. 问题是这样的: 如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子.假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12 个月以后会有多少对兔子呢解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2 对兔子.第四个月:最初的一对兔子又生一对兔子,共有2+1=3对兔子.则由第一个月到第十二个月兔子的对数分别是:1,1,2,3,5,8,13,21,34,55,89,144,……,人为了纪念提出兔子繁殖问题的斐波纳契,将这个兔子数列称为斐波那契数列,即把 1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 2.斐波那契数列的定义 定义:数列F1,F2,… ,Fn,…如果满足条件121==F F ,21--+=n n n F F F (对所有的正整数n ≥ 3),则称此数列为斐波那契(Fibonacci)数列。

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列: 1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公 式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1)

又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即: 根据斐波那契数列通项公式,可以得到 因为n是趋向于正无限的,因此我们可以知道: 那么我们就可以把分子和分母的第二项同时省略掉,即 这就是斐波那契数列的魅力之一——它和黄金分割比有密切的关系。下面将给出斐波那契数列的几个性质及其证明。

小学数学《斐波那契数列课题》教学设计

《斐波那契数列的应用》课题设计 一、课题的确定: 孩子们小学六年学习了六年的数学,却从来没有想过为什么要学习数学,有的同学是认为学习数学是为了计算,而有的同学是认为学习数学是为了应用于生活,却从来没有亲身体会感受过数学的神奇,有没有一个课题能让学生感受到学习数学的目的,特别是让学生亲自体会感受一下数学的美,感受大自然的造物的神奇呢?我思考再三最终确定了研究课题《斐波那契数列的应用》。 二、课题的布置与指导: 《斐波那契数列的应用》是数学史上非常著名的一个数列,课本是作为一段阅读材料呈现的,以《兔子的繁殖》为例介绍了斐波那契数列的产生,我本节课确定的目标主要是通过研究让孩子们领略学习数学的目的,感受一下数学本身的魅力以及大自然造物的神奇。我是从四个方面来布置的课题研究任务:1、以《兔子的繁殖》为例,研究数列的产生,每个小组都要进行研究。前一天进行了布置,第二天我们就进行了交流汇报,孩子们研究的不错。于是又接着分组布置了任务:第一小组:从计算的角度研究斐波那契数列的秘密。第二三小组:从应用的角度出发,到大自然中到生活中去观察是否有斐波那契数列。孩子们真的是很善于思考,第二小组潘珂在爸爸领着去花棚里买花时,发现了花瓣里的斐波那契现象,而另一个同学惠鹏程却在住的小区里发现了植物叶序也存在着斐波那契现象。第三小组的费枫舒在和妈妈去超市买东西时看到了正在削菠萝的阿姨,产生了兴趣蹲在那一个多小时发现了菠萝里的斐波那契现象。而惠荣薪则是在一次上课快迟到了,大步流星的迈楼梯,突发奇想研究研究台阶的迈法,和她的小伙伴发现了楼梯里的斐波那契的秘密,组成了课题研究的第四小组。我把孩子们的研究情况进行了汇总,考虑到时间有限,最终确定了把数列的产生不纳入到本节课的汇报当中。 三、课堂实录: (一)、导入: 师:大家喜欢数学吗?问大家一个问题:我们天天在学习数学,那你知

小学奥数 斐波那契数列典型例题

拓展目标: 一:周期问题的解决方法 (1)找出排列规律,确定排列周期。 (2)确定排列周期后,用总数除以周期。 ①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个 ②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。 例1: (1)1,2,1,2,1,2,…那么第18个数是多少? 这个数列的周期是2,1829 ÷=,所以第18个数是2.(2)1,2,3,1,2,3,1,2,3,…那么第16个数是多少? 这个数列的周期是3,16351 ÷=???,所以第16个数是1.二:斐波那契数列 斐波那契是 的有关兔子的问题: 假设一对刚出生的小兔,一个月后就能长成大兔,再过一个月便能生下一对小兔,并且此后每个月都生一对小兔。一年内没有发生死亡。那么,由一对刚出生的兔子开始,12个月后会有多少对 斐波那契数列(兔子数列) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

你看出是什么规律:。 【前两项等于1,而从第三项起,每一项是其前两项之和,则称该数列为斐波那契数列】 【巩固】 (1)2,2,4,6,10,16,(),() (2)34,21,13,8,5,(),2,() 例1:有一列数:1,1,2,3,5,8,13,21,34…..这个有趣的“兔子”数列,在前120个数中有个偶数?个奇数?第2004个数是数(奇或偶)? 【解析】120÷3=40 2004÷3=668 【巩固】有一列数按1、1、2、3、5、8、13、21、34……的顺序排列,第500个数是奇数还是偶数? 例2:(10秒钟算出结果!) (1)1+1+2+3+5+8+13+21+34+55= (2)1+2+3+5+8+13+21+34+55+89= 数学家发现:连续 10个斐波那契数之和,必定等于第 7个数的 11 倍! 巩固:34+55+89+144+233+377+610+987+1597+2584== 例3:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … (1)这列数中第2013个数的个位数字是几?

中学数学-1(斐波那契数列)

内蒙古自治区中小学教师教育技术水平(初级)试卷 (试卷科目:中学数学) 第一部分:基本知识题(本部分共8个题,每题2.5分,满分20分) 第1题 (单选题)教育技术的本质特征是( C )。 (2.5分) A.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的教学实践B.本题答案中所给出的其它3个选项都不对 C.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的理论和实践D.运用技术手段去优化教育、教学过程,以提高教育、教学的效果、效率和效益的理论研究 第2题 (单选题)关于教学评价中收集数据的工具与方法,下列说法中不正确的是( D )。 (2.5分) A.形成性练习是教学评价中经常使用的方法 B.结构化观察是教学评价中经常使用的方法 C.总结性测验是教学评价中经常使用的方法 D.在教学评价中无需使用态度量表 第3题 (单选题)课程结束时进行期末考试,考试依据课程标准来确定试题范围,采用纸笔测验试卷评分的方式。就这一评价(考试)的类型,以下选项中不准确的一项是( B )。 (2.5分) A.它是一种定量评价 B.它是诊断性评价 C.它是总结性评价 D.它是一种绝对评价 第4题 (单选题)将认知领域的教学目标分为了解(识记)、理解、运用、分析、综合、评价六个层次的美国心理学家是( C )。 (2.5分) A.加涅 B.布鲁纳 C.布卢姆 D.奥苏贝尔 第5题 (单选题)"知识积累的关键因素是刺激、反应以及两者之间的联系",持这一观点的学习理论流派是( D )。 (2.5分) A.建构主义 B.认知主义 C.人本主义 D.行为主义 第6题 (单选题)根据您对教育技术及相关基础知识的理解,下例选项不正确的一项是( B )。 (2.5分) A.教学设计是运用系统方法分析教学问题和确定教学目标,建立解决教学问题的策略方案、试行解决方案、评价试行结果和对方案进行修改的过程 B.教育技术与信息技术的涵义是一样的,只是用不同的名词来表述而已 C.教育信息化是指在教育教学的各个领域中,积极开发充分应用信息技术和信息资源,以促进教育现代化,培养满足社会需求人才的过程 D.教育技术就是为了促进学习,对有关的学习过程和资源进行设计、开发、利用、管理和评价的理论与实践

斐波那契数列的通项公式推导

斐波那契数列的通项公式推导 一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1 在数列{}n a 中,1=5a ,2=2a ,13=23n n n a a a --+ (3)n ≥,求数列{}n a 的通项。 (普通高中课程标准实验教科书人教A 版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列{}n a 的通项。 解:( 设,则()所以数列 为等比数列,且首项为 ,公比为3。所以 。 于是有,两边都除以得 设,则有 由累加法可得 因为 所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列{}n a ,其中,,求数列{}n a 的通项。

解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为 所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

斐波那契与斐波那契数列

斐波那契与斐波那契数列(初一、初二、初三) (519015)广东省珠海市第四中学陈湘平斐波那契(Leonardo Fibonacci,约1170-约1250),12、13世纪欧洲数学界的代表人物,生于比萨的列奥纳多家族,是一位意大利海关设在南部非洲布吉亚的官员的儿子。早年在北非受教育,由于他父亲的工作,成年后曾到埃及、叙利亚、希腊西西里、法国等地游学,并拜访过各地著名的学者,也熟悉了各国在商业上的所用的算术体系,掌握了印度-阿拉伯的十进制系统,该系统具有位置值并使用了零的符号。斐波那契看到了这种美丽的印度-阿拉伯数字的价值,并积极提倡使用它们。1202年他写了《算盘书》一书(注:“算盘”指的是当时欧洲人用来计算的沙盘,而非中国的算盘),这是一本广博的工具书,其中说明了怎样应用印度-阿拉伯数字,以及如何用它们进行加、减、乘、除计算和解题。此外还对代数和几何进行了进一步的探讨。此外他还出版了《几何实习》等书,书中首次引用了阿拉伯数字,这对当时盛行的罗马数字来讲也是一种挑战。后来人们通过对阿拉伯数字的不断接触,加上斐波那契和其他数学家的工作,终于使印度-阿拉伯数字系统被慢慢地接受,并得以推广。 很有意思的是,斐波那契在今天的出名,是缘于一个数列,而这个数列则来自于他的《算盘书》中一道并不出名的问题。他当时写这道题只是考虑作为一个智力练习。然而,到了19世纪,法国数学家E.

卢卡斯出版了一部四卷本的有关娱乐数学方面的著作时,才把斐波那契的名字,加到该问题的解答和所出现的数列上去。 《算盘书》中“兔子问题”,题目假定一对大兔子(一雌一雄)每一个月可以生一对小兔子(一雌一雄),而小兔子出生后两个月就有生育能力,问从一对小兔子开始,一年后能繁殖成多少对兔子?”由此引出了一个重要的数列――“斐波那契数列”:1,1,2,3,5,8,13,21,…,其规律是每一项(从第3项起)都是前两项的和。 斐波那契用顺推的办法解算如下: 第一个月:只有一对小兔。 第二个月:小兔尚未成熟,仍然是一对兔子。 第三个月:这对兔子生了一对小兔,这时共有兔子两对。 第四个月:原来的兔子又生了一对小兔,但上月出生的小兔仍未成熟,这样小兔共有三对。 ………… 如此分析下去,可以得到一年后的兔子数为144对。 上面顺推的办法着实有点笨,下面我们换一种思路推推看,我们容易发现: 从第三个月起兔子可以分为两类:一类是上个月的兔子,一类是当月新生的兔子,而这些兔子的对数恰好等于前两个月时的兔子对数,因为那个月份的的兔子在该月均能生小兔,这就是说:从第三个月起每月兔子数均为前两个月(上月和上上月)的兔子对数之和。这样一、二、三……诸月兔子数依次为:

斐波那契数列通项求法

斐波那契数列通项求法 为求得費波那西數列的一般表达式,可以借助线性代数的方法。高中的初等数学知识也能求出。 初等代数解法 已知 ? a 1 = 1 ? a 2 = 1 ? a n = a n ? 1 + a n ? 2 首先构建等比数列 设a n + αa n ? 1 = β(a n ? 1 + αa n ? 2) 化简得 a n = (β ? α)a n ? 1 + αβa n ? 2 比较系数可得: 不妨设β > 0,α > 0 解得: 所以有a n + αa n ? 1 = β(a n ? 1 + αa n ? 2), 即 为等比数列。 求出数列{a n + αa n ? 1} 由以上可得:

变形得:。令 求数列{b n}进而得到{a n} 设,解得。故数列为等比数列 即。而,故有 又有和 可得 得出a n表达式 线性代数解法 构建一个矩阵方程 设J n为第n个月有生育能力的兔子数量,A n为这一月份的兔子数量。

上式表达了两个月之间,兔子数目之间的关系。而要求的是,A n+1的表达式。求矩阵的特征值:λ 行列式:-λ*(1-λ)-1*1=λ2-λ-1 当行列式的值为0,解得λ1=或λ2= 特征矢量 将两个特征值代入 求特征矢量得 = = 分解首矢量 第一个月的情况是兔子一对,新生0对。 将它分解为用特征矢量表示。

(4)用数学归纳法证明 从 = 可得 (5) 化简矩阵方程 将(4)代入(5) 根据 3 求A的表达式 现在在6的基础上,可以很快求出A n+1的表达式,将两个特征值代入 6 中

(7) (7)即为A n+1的表达式 近似值 用计算机求解 可通过编程观察斐波那契数列。分为两类问题,一种已知数列中的某一项,求序数。第二种是已知序数,求该项的值。 可通过递归递推的算法解决此两个问题。事实上当n相当巨大的时候,O(n)的递推/递归非常慢……这时候要用到矩阵加速这一技巧。

斐波那契数列的应用论文

斐波那契数列的应用 摘要 斐波那契数列自问世以来,不断显示出它在数学理论和应用上的重要作用。而且斐波那契数列在现代物理、准晶体结构、生物、交通、化学等领域都有直接的应用。这个数列既是数学美的完美体现,又与许多数学概念有着密切的联系,很多看上去似乎彼此独立的数学概念,通过斐波那契数列,人们发现了其中的数学联系。从而进一步激发了人们探索数学的兴趣.对数学的认知更加系统化。因此对斐波那契数列的研究是一项非常重要的研究,它不仅能给各个学科带来很好的用处,它也会对我们的生活产生长远的影响,斐波那契数列的前景是不可估量的。 关键字:Fibonacci数列 Fibonacci数应用

1.斐波那契数列的提出 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34 、……,这个数列从第三项开始,每一项都等于前两项之和。即:如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0)=0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 确定的数列{ F(n)}(n≥1)叫做Fibonacci数列,F(n)叫做Fibonacci 数。 推导过程: 利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 , 则F(n)=C1*X1^n + C2*X2^n

斐波那契数列(1)

摘要 本论文主要研究斐波那契数列的性质及其应用,从“兔子繁殖”问题建立数学模型,引出斐波那契数列的定义;运用二阶常系数齐次线性递归方程的特征根解法推导出了斐波那契数列的通项公式。论述并证明了有关斐波那契数列的恒等式和相关结论,涉及斐波那契数列相邻两项之比(即黄金分割比率)在广泛的应用,以及运用斐波那契数列解决一些实际数学问题。 目录 绪论 (1) 论文提出的背景和价值及国内外研究动态 (1) 一斐波那契数列的提出 (2) 1.1 问题的引出 (2) 1.2 斐波那契额数列的定义迭代表示 (3) 二斐波那契数列通项公式的推导 (3) 2.1 线性递归数列线性递归方程及其特征方程的解法 (3) 2.2 斐波那契数列通项公式的特征方程方法的推导 (4) 三斐波那契数列的部分相关性质 (5) 3.1 有关斐波那契数列的等式关系性质 (5) 3.2 有关斐波那契数列的结论 (12) 四斐波那契数列的有关应用 (13) 4.1 斐波那契数列前项与后项比例极限和黄金分割比例 (13) 4.2 运用斐波那契数列解决实际问题 (14) 绪论 论文提出的背景和价值及国内外研究动态 斐波那契数列十三世纪初叶就已经提出了,但是现如今我们学习工作生活中仍然对它有所触及。随着它的一些奇妙属性慢慢被世人所发现:从埃及金字塔到准晶体结构,从艾略特波浪理论到华罗庚的优选法(0.618),从达芬?奇的《蒙娜丽莎的微笑》到生物学的“鲁德维格定律”……吸引了国内外许多学者去研究它。斐波那契数列在现代物

理、准晶体结构、化学、生物、金融﹑美术等领域都有直接的应用,为此,美国数学会从1960年代起出版了《斐波那契数列》季刊,专门刊载这方面的研究成果。 我在这片论文中主要研究了有关斐波那契数列的关系式和结论,通过观察斐波那契数列前几项,猜测推算提出结论,验证、论证命题,采用了数学建模的思想,数学归纳法,线性递归等方法论述论文。 一斐波那契数列的提出 1.1 问题的引出 斐波那契数列是由13世纪的意大利数学家列昂纳多·斐波那契提出的。在1202年他所撰写的《珠算原理》(由于翻译差别,有多种中文译名)以兔子繁殖问题为例而引人,故称“兔子数列”。下面引述该问题: 一般的,兔子在出生一个月后就有繁殖能力。假设一对兔子(一雌一雄)每个月可繁殖出一对小兔子来,并且所有的兔子都不死,这样在笼中圈养一对有繁殖能力的兔子,那么一年后可以繁殖多少对兔子。 分析: 经过一个月,原来的大兔子繁殖了一对小兔子,小兔子没繁殖能力,大兔子一对,小兔子一对; 经过二个月,原来的大兔子继续繁殖了一对小兔子,上个月的小兔子长成了大兔子,现在大兔子有两对,小兔子一对 经过三个月,上个月大兔子繁殖了一共两对小兔子,上个月的小兔子长成了大兔子,现在大兔子有三对,小兔子两对; …… 依次类推列下表: 经过月数123456789101112小兔子对数1123581321345589144大兔子对数123581321345589144233兔子总对数23581324345589144233377

相关主题
文本预览
相关文档 最新文档