当前位置:文档之家› 新马歇特除草剂

新马歇特除草剂

新马歇特除草剂
新马歇特除草剂

除草剂

丁草胺是一种酰胺类内吸传导型选择性芽前除草剂,又称为去草胺、马歇特、灭草特,纯品为淡黄色油状液体,具有微芳香味。难溶于水,易溶于多种有机溶剂。在常温及中性、弱碱性条件下化学性质稳定。强酸条件下会加速其分解,在土壤中可被降解。对人畜低毒,对皮肤、眼睛有刺激作用,对鱼类高毒。主要通过杂草幼芽吸收,其次是通过根部吸收。植物吸收丁草胺后,在体内抑制和破坏蛋白酶,影响蛋白质的形成,抑制杂草幼芽和幼根正常生长发育,从而使杂草死亡。对萌动及2叶期以前杂草有效,适用于稻田防除稗草,异型莎草、碎米莎草、千金子、牛王草等1年生禾本科杂草。也可用于冬大麦、小麦防除硬草、看麦娘、鸭舌草、节节草、尖瓣花、萤蔺、棒头草等杂草,但对水三棱、偏秆藨草、野慈姑等多年生杂草无明显防效。在粘壤土及有机质含量较高的土壤上使用,药剂可被土壤胶体吸收,不易被淋溶,持效期可达1-2个月。

药害

施药后只有少量丁草胺能被稻苗吸收,并且在体内迅速完全分解代谢,因而稻苗有较强的耐药力。但在用药量过大的情况下,会对水稻幼苗造成药害,出现生长受抑、根肿大等症状,严重的会导致死苗。在移栽稻田和直播稻田使用,每亩纯药用量不能超过90克,否则会对水稻秧苗造成药害。

丁草胺药害症状可分为轻、中、重三种类型:

轻度药害表现为植株轻度矮缩,叶色稍褪绿。

中度药害表现为植株矮缩,叶色明显褪绿,分蘖受抑制。

重度药害表现为植株矮缩,心叶扭曲或无心叶,叶片颜色加深,呈深绿色,无分蘖,水稻根变黄,新根生长受到抑制,严重时可出现死苗。

从药害对水稻生育和产量影响来看,轻度药害对水稻生育和产量无明显影响。中度药害和重度药害使水稻生育受抑制,植株矮缩,分蘖停止,因而对产量的影响较大。

针对丁草胺产生药害的原因:施药量过大、施药不均匀、施药时田间水层过深,淹没水稻心叶。

使用方法

我们在施用时要严格控制使用剂量,做到均匀施药,一旦田间出现药害,可用清水冲洗多次,将原来的田水换掉,并追施磷酸二氢钾等速效肥料,以缓解药害。

剂型:60%丁草胺乳油

在旱田应用需在土壤润湿的条件下施药。

早直播田可在播后"浸蒙头水"之后施药。播种后至出苗前,每亩用100-125毫升,对水50公斤,均匀喷洒于土地表面。

注意事项

(l)直播田施药播种后,切忌田面淹水。

(2)对出土前杂草防效较好,大草防效差,应尽量在播种定植前施药。

(3)苗后用药,水层不能淹过秧苗心叶,如遇暴雨应及时排水。否则易产生药害。

(4)土壤有一定温度时使用丁草胺效果好。旱田应在施药前浇水或喷水,以提高药效。(5)喷药要力求均匀,防止局部用药过多造成药害,或漏喷现象。

(6)在稻田和直播稻田使用,60%丁草胺每亩用量不得超过150cm,切忌田面淹水。早稻秧田若气温低于15℃时施药会有不同程度药害。

(7)丁草胺对三叶期以上的稗草效果差,因此必须掌握在杂草一叶期以前,三叶期使用,水不要淹没秧心。

【商品名称】千金(Clincher)【通用名称】氰氟草酯(cyhalofop-butyl)【加工剂型】10%乳油【用药量】每公顷用10%千金乳油600~900毫升。【使用时期】育秧田在稗草1.5~2叶期,直播田、抛秧田、插秧田在稗草2~5叶期施药。【防治对象】旱稗、稻稗、千金子、马唐、狗尾草、双穗雀稗、牛筋草、剪股颖等禾本科杂草。【使用技术】茎叶喷雾,不宜用作土壤处理(毒土或毒肥法)。施药时,土表水层小于1厘米或排干(土壤水分为饱和状态)有好的药效;杂草植株50%高于水面有较好的药效。旱育秧田或旱直播田,施药时田间持水量饱和可保证杂草生长旺盛,从而保证最佳药效;施药后24小时内灌水,防止新杂草萌发。干燥情况下应酌量增加用量。在可喷匀条件下,喷液量尽量用低量,一般每公顷300一600升。

(完整版)农药生物测定复习题

农药生物测定复习题 名词解释 农药生物测定:是指运用特定的试验设计,利用生物的整体或离体的组织、细胞对农药(或某些化合物)的反应,并以生物统计为工具,分析供试对象在一定条件下的效应,来度量(判断或鉴别)某种农药的生物活性。 负温度系数的杀虫剂:在一定温度范围内,杀虫剂的毒效随温度的降低而升高,称为负温度系数的杀虫剂。如溴氰菊酯对伊蚊幼虫的毒力在10℃时比30℃时大7倍。 正温度系数的杀虫剂:在一定温度范围内,杀虫活性随温度升高而增强。如敌百虫。 标准目标昆虫:指被普遍采用的、具有一定代表性和经济意义以及抗药力稳定均匀的农药杀虫毒力和毒效指示试虫群体。 杀虫剂内吸毒力:药剂可通过植物根、茎、叶等部位吸收到植株内部,随着植物体液输导,当害虫取食植物或刺吸汁液时,药剂进入虫体并将之杀死。 熏蒸毒力:在适当气温下,利用有毒气体、液体或固体挥发产生的蒸气来毒杀害虫(或病菌)。熏蒸毒力测定:测定杀虫剂从昆虫气孔或气门进入呼吸系统而引起试虫中毒致死的熏杀毒力。化学保护:用药剂处理植物和植物环境,在病菌侵入寄主植物前发挥药效,保护植物不受病菌侵染的措施。 化学治疗:在病原菌侵入植物之后使用杀菌剂消灭病菌,使植物不再发病。将药剂内吸到植物内部起作用。 化学免疫:植物通过药剂的作用,使植物具有对病菌的抵抗能力,避免或减轻病菌的侵害。杀菌剂的离体活性测定:只包括病原菌和药剂而不包括寄主或寄主植物的培养皿内测定方法,通常根据病菌与药剂接触后的反应,如孢子不萌发、不长菌丝等来作为毒力评判的标准。 杀菌剂的活体活性测定:包括病原菌、药剂和寄主植物在内的活性测定,通常以寄主植物的发病情况(普遍程度、严重程度)来评判药剂的毒力。 致死中量(LD50)(medium lethal dosage):指杀死供试昆虫群体内50%的个体所需要的药剂剂量。指一定条件下,可致供试生物半数死亡机会的药剂剂量,表示单位:mg/kg、μg/g或μg/头。 致死中浓度(LC50)(medium lathal concentration):指杀死供试昆虫群体内50%的个体所需要的药剂浓度。 校正死亡率:采用Abbort(1975)校正死亡率公式,以去除自然死亡对结果的影响。校正死亡率(%)=(处理组死亡率—对照组死亡率)/(1—对照组死亡率)

除草剂标准

磺酰脲类除草剂合理使用准则 (Guidelin for safety application of sulfonylureas herbicide) 1范围 本标准规定了磺酰脲类除草剂防治田间杂草的使用剂量、使用时期、方法、作物品种敏感性、轮作后茬作物安全间隔期。 本标准适用于指导磺酰脲类除草剂在水稻、小麦、大豆、油菜等作物田防治杂草安全、有效、合理使用,起到增产增收的目的。 2术语和定义 下列术语和定义适用于本标准。 2.1 磺酰脲类除草剂(sulfonylureas herbicide) 分子中具有磺酰脲结构的一类除草剂。化学结构通式包括芳环、磺酰脲桥及杂环三部分: 芳环————————脲桥————————杂环 其中X=N、CH Y=Cl、COOH、CO 2CH 3 、SO 2 CH 2 CH 3 、CH 2 CF 3 、CF 3 、OCH 2 Cl、OCH 3 、 OCH 2CF 3 、NO. 2 、OCH 2 CH 3 、O(CH 2 ) 2 OCH 3 、O(CH 2 ) 2 Cl、COOC 2 H 5 、CON(CH 3 ) 2 R=CH 3 R 1 =CH 3 、CL、OCH 3 、CHOF 2 、NHCH 3 、N(CH 3 ) 2 、CF 3 、SCH 3 R 2 =OCH 3 、CH 3 、CL、CHOF 2 、OC 2 H 5 、OCH 2 CF 3 除草活性随各取代基的性质和位置不同而异,以上化学结构,通过模 式结构改造与修饰,将苯环改为吡啶、噻吩、呋喃、萘环时化合物也有

较强活性,酰嘧磺隆无芳环结构,磺酰脲桥上无取代基;含三氮环或嘧啶环,环上第四与第六位含取代基CH 3、OCH 3、Cl ;单嘧磺隆为单一取代基,以上统称为磺酰脲类除草剂。这类化合物对杂草有较高活性,可用于农田、林地及非耕地等防除杂草。 2.2 长残留性除草剂 long resideual herbicide 除草剂使用后,在土壤中残留时间较长,即使有微量残留也易造成在敏感作物药害,这类除草剂称为长残留性除草剂。磺酰脲类长残留性效除草剂品种如氯磺隆、甲磺隆、胺苯磺隆、氯嘧磺隆、单嘧磺隆等。 3 磺酰脲类除草剂使用技术准则 3.1 使用技术准则(见下表)

莠去津

莠去津 1、产品特点: 本制剂为选择性内吸传导型苗前、苗后除草剂,植物以根部和叶部吸收,迅速传导到全株,抑制植物的光合作用,使杂草枯萎而死。 2、适用作物及防除对象 可用于玉米、甘蔗、茶园、高粱及庭院、库区杂草的防除,能有效的防除由种子繁殖的一年生杂草,对许多禾本科杂草也有较好的防效。 3、推荐用量 4、施药方法 按规定每公顷用药量对水600~900千克(每亩用药量对水40~60千克),春玉米播前、播后阔叶杂草2-4叶期、单子叶杂草1-2叶期均匀喷洒于地表,播前施药结合秋翻春耙形成10厘米左右的毒土层;高粱及糜子播后苗前土壤喷雾施药;甘蔗播后苗前、植后苗前、苗后大部分杂草子叶出土时喷洒施药;茶园3月下旬至4月上旬结合春、夏茶施肥施药。其它作物使用方法见使用说明书。 5、注意事项 ①在玉米田除草时,该产品可与金秋乙草胺混用,除草效果好,但不建议与其它产品混用。 ②施药量应根据土质、有机质含量、杂草种类、密度而定、酸性、有机质含量高,杂草密度大的地块适当加大用药量,沙土地、盐碱地及有机质含量低的地块药量酌减。 ③应选择雨前、雨中(小雨)、雨后土壤墑情较好时施药,提高除草效果。如遇低温15℃以下、干旱、大风天气不利于药效发挥。产品有沉淀时,搅拌均匀后使用。 ④本制剂的残留期较长,对豆类、麦类、棉花、水稻、十字花科蔬菜以及杨树等根系树木易产生药害,避免应用。 ⑤施药时面积要量准,药量均匀,不重不漏。施药后及时填压效果更好。 ⑥施药器具不要在池塘、水渠中清洗,以免污染其他作物。 ⑦对没有使用经验的地区、品种,尤其是自交系应先进行小区试验,取得经验后再推广使用。 ⑧一亩等于667平方米,一公顷等于15亩。 6、中毒急救措施 误服后大量饮水催吐并携带此标签及时送医院治疗。施药时应注意劳动保护、避免眼睛、皮肤接触药液,溅到眼睛、皮肤上及时用清水或肥皂水冲洗,严重时送医院治疗。7、贮存和运输方法

除草剂阿特拉津体内生物学毒性的进展

[ 文章编号] 1671-587Ⅹ(2012)06-1236-05[收稿日期] 2012-07- 20[基金项目] 国家自然科学基金项目资助课题(30973187 )[作者简介] 刘 剑(1985-),女,吉林省长春市人,在读医学硕士,主要从事生殖系统肿瘤方面的研究。[通信作者] 赵淑华(Tel:0431- 88796569,E-mail:zhaoshuhua-1966@163.com);赵丽晶(Tel:0431-88796569,E-mail:zhao_lj @jlu.edu.cn)除草剂阿特拉津体内生物学毒性的研究进展 Advance research on biological toxicity  of herbicide atrazine in vivo刘 剑1,赵 菁2,郑晶莹1,张凌怡1,赵淑华1,赵丽晶2 (1.吉林大学第二医院妇产科,吉林长春130041;2.吉林大学白求恩医学院病理生理学系,吉林长春130021 )[摘 要] 在神经系统,阿特拉津(ATR)可干扰大脑发育和分化,诱导小鼠行为反射的发育模式发生改变;抑制多巴胺的摄取和储存,导致细胞内多巴胺增加,进一步导致氧化损伤。在免疫系统,ATR可减少免疫系统构成细胞并影响淋巴细胞分布,影响树突状细胞(DC)细胞成熟,干扰体液和细胞介导的免疫反应。在生殖系统,ATR可诱导小鼠睾丸发生变性,抑制黄体生成素从而抑制排卵并诱发流产。在内分泌系统,ATR可作为内分泌干扰物损伤线粒体功能引起胰岛素抵抗,抑制雌激素引起的黄体生成素和催乳素高峰。此外,ATR还具有遗传学毒性并可引起氧化应激损伤。 [关键词] 阿特拉津;除草剂;毒性;生物体[中图分类号] R114 [文献标志码] A 阿特拉津( atrazine,ATR)又名莠去津,化学名为2-氯-4-乙氨基-6-异丙氨基-1,3,5三氯苯,是国际上应用最广泛的除草剂之一,我国ATR的使用量呈逐年上升趋势。虽然ATR的毒性为中等偏低,但由于其使用量大、残留期长(半衰期为244d)和污染范围广(水环境、土壤、大气) ,使其在环境中持久存在并生物蓄积,可能对人类健康构成重大威胁。本文作者从神经系统毒性、免疫系统毒性、生殖系统毒性、内分泌系统毒性、氧化应激毒性和遗传毒性方面阐述ATR对生物体的影响。1 ATR的神经系统毒性 Belloni等[1] 以ATR处理孕期及哺乳期雌鼠,观察 2~15d龄仔鼠的行为反射指标发现:对照组与ATR组仔鼠在出生质量、抓握反射成熟、超声波发声分布及光谱特性等方面具有显著差异,且低剂量ATR对行为反射的影响更为明显,提示在孕期和哺乳期雌鼠即使接触低剂量ATR,也可能干扰仔鼠大脑发育和分化,诱导仔鼠的行为反射发育模式发生改变。为了探讨低浓度ATR对神经系统 的作用机制,Coban等[2] 以ATR喂饲C57BL/6雄性幼鼠 14d发现:ATR可剂量依赖性地减少纹状体内多巴胺(DA)及其代谢产物水平,该效应持续至ATR处理后1周;ATR还可时间及剂量依赖性地降低黑质致密层和腹侧被盖区酪氨酸羟化酶阳性(TH+)多巴胺能神经元的数目,在ATR处理终止7周后该效应仍较明显,因此推测ATR可导致基底节神经元内DA的短暂改变及TH+神经元 的持续减少,从而产生神经毒性。Hossain等[3] 发现: ATR处理15min的纹状体囊泡摄取DA的量明显减少,摄取速率下降,且低浓度ATR即可明显增加突触小体的摄取。体内外实验均证实:ATR可影响突触囊泡和突触小体的吸取,干扰突触囊泡储存和摄取DA。 Giusi等[4] 从受体角度进一步研究ATR神经毒性的作 用机制。该实验于妊娠14d到出生后21d,以ATR处理小鼠发现:高浓度ATR可诱导仔鼠的下丘脑以上神经元如大脑皮质和纹状体发生神经元损伤,海马和下丘脑核亦发生显著变化,以雌性仔鼠的变化更为典型。雌性仔鼠下丘脑尤其视上核细胞中神经生长抑素受体亚型2(sst2)mRNA表达上调;雄性仔鼠下丘脑和杏仁区细胞中神经生长抑素受体亚型3(sst3)mRNA表达上调,皮质区和海马 区细胞sst3表达下调;Allen等[5] 的研究提示:ATR作用 后,在不同性别小鼠的大脑不同区域中,生长抑素亚型呈二相性表达。 2 ATR的免疫系统毒性 Nikolay等[6] 以A TR处理1月龄的C57BL/6小鼠14d发现:高浓度ATR处理后小鼠胸腺指数、脾指数和构成细胞数呈剂量依赖性减少,7d后该效应仍存在,7周后该效应在胸腺中消失而在脾脏中仍存在。胸腺所有细胞表型均受ATR影响,其中以CD4+/CD8+T细胞最为显著。低剂 6 321第38卷 第6期 2012年11月吉 林 大 学 学 报 (医 学 版) Journal of Jilin University( Medicine Edition)Vol.38No.6  Nov.2012

生物除草剂剂型研究进展_赵航

专论与综述 Reviews 收稿日期: 2005-01-11 修订日期: 2005-05-20基金项目: 国家自然科学基金资助(30370942);浙江省科技厅项目(2004C32003,2005C22018)*通讯作者 生物除草剂剂型研究进展 赵 航, 周勇军, 刘小川, 余柳青 * (中国水稻研究所,浙江杭州 310006) 摘要 生物除草剂由于受到生物因素、环境因素和技术因素的影响,使其开发受到一定限制。生物除草剂固体剂型与液体剂型在一定程度上克服了对湿度的依赖性,使其保证了生物活性,使用时在目标植物上能保持湿润,在田间适宜条件下发挥其优良效果;由于若干新型添加剂和先进技术的应用,使其液体剂型得到进一步开发。本文介绍了生物除草剂一些新的固体和液体剂型的研究进展。关键词 农药学; 生物除草剂; 剂型; 植物性活性物质中图分类号 S 482.4 Advances in bioherbicide formulation ZHAO Hang , Z HO U Yong -jun , LI U Xiao -chuan , YU Liu -qing (China National Rice Research I nstitute ,Hangz hou 310006,China ) Abstract Reducing dew dependence is a principal aim in the formulatio n of many po tential bio herbicides .In the present paper ,the research attempting in part to overcome this problem via the development of novel solid and liquid fo rmulations is described .Ty pically solid formulations must be able to survive the field co nditions and remain inactivated until suitable conditions appear .Liquid formulatio ns have the po tential to function soon after application provided they remain moist on the target plant surface .Several a ttempts to improve w ater -holding capacity in liquid formula tio ns have been ex amined .T he use of multiple emulsions o f w ater in oil has recently show n promise . Key words pesticide sciences ; bioherbicides ; formula tio n ; phy to -activ e substances 20世纪中晚期,科学家提出利用植物病原菌控制杂草的新观念。当时应用特殊真菌病原体孢子作为真菌除草剂,在可控试验条件下其防除杂草效果受到了科学家们的关注。 自从真菌除草剂Devine ?[1]和Collego ?[2]分别于1981年和1982年在美国注册后,另外6种产品也先后在国际上注册。其中Cam perico ?是细菌除草剂,其剂型研制技术广泛用于同类型产品的研制开发。但与此领域中的研究成本投入相比较,新产品的数量增长缓慢。原因之一是尽管确定了一个对于某种杂草有效并具潜力的新病原菌种,但是其后的研究发展过程却漫长而复杂。因此,能看到相当数量的文章明确了具有潜力的菌种,但却只有相对少的论文报道生物除草剂的规模生产、剂型、贮存和应用等技术,有许多因素限制了生物除草剂的 发展。 1 生物除草剂发展的限制因素 限制生物除草剂发展的因素可分为生物因素、环境因素、技术因素和商业因素。生物限制因素包括寄主的生长变化和抗性增加,这种限制通常在方案实施的早期就被人们所认识,如果其影响较大,则会导致研究的失败;环境限制因素包括温度、湿度等。湿度是最主要的影响因子,它影响生物除草剂的除草效果;技术限制因素包括大规模生产和剂型工艺,这些知识通常超出了杂草学家和病理学家的研究领域,而聘请生物剂型和发酵工艺的工程专家需花费较高的成本;特定的病原菌只能防除特定种类的杂草,使得生物除草剂产品的杀草谱有限,从而影响进入市场。

农药生物测定复习题

农药生物测定复习题 名词讲明 农药生物测定:是指运用特定的试验设计,利用生物的整体或离体的组织、细胞对农药(或某些化合物)的反应,并以生物统计为工具,分析供试对象在一定条件下的效应,来度量(判定或鉴不)某种农药的生物活性。 负温度系数的杀虫剂:在一定温度范畴内,杀虫剂的毒效随温度的降低而升高,称为负温度系数的杀虫剂。如溴氰菊酯对伊蚊幼虫的毒力在10℃时比30℃时大7倍。 正温度系数的杀虫剂:在一定温度范畴内,杀虫活性随温度升高而增强。如敌百虫。 标准目标昆虫:指被普遍采纳的、具有一定代表性和经济意义以及抗药力稳固平均的农药杀虫毒力和毒效指示试虫群体。 杀虫剂内吸毒力:药剂可通过植物根、茎、叶等部位吸取到植株内部,随着植物体液输导,当害虫取食植物或刺吸汁液时,药剂进入虫体并将之杀死。 熏蒸毒力:在适当气温下,利用有毒气体、液体或固体挥发产生的蒸气来毒杀害虫(或病菌)。熏蒸毒力测定:测定杀虫剂从昆虫气孔或气门进入呼吸系统而引起试虫中毒致死的熏杀毒力。化学爱护:用药剂处理植物和植物环境,在病菌侵入寄主植物前发挥药效,爱护植物不受病菌侵染的措施。 化学治疗:在病原菌侵入植物之后使用杀菌剂消灭病菌,使植物不再发病。将药剂内吸到植物内部起作用。 化学免疫:植物通过药剂的作用,使植物具有对病菌的抗击能力,幸免或减轻病菌的侵害。杀菌剂的离体活性测定:只包括病原菌和药剂而不包括寄主或寄主植物的培养皿内测定方法,通常依照病菌与药剂接触后的反应,如孢子不萌发、不长菌丝等来作为毒力评判的标准。 杀菌剂的活体活性测定:包括病原菌、药剂和寄主植物在内的活性测定,通常以寄主植物的发病情形(普遍程度、严峻程度)来评判药剂的毒力。 致死中量(LD50)(medium lethal dosage):指杀死供试昆虫群体内50%的个体所需要的药剂剂量。指一定条件下,可致供试生物半数死亡机会的药剂剂量,表示单位:mg/kg、μg/g或μg/头。 致死中浓度(LC50)(medium lathal concentration):指杀死供试昆虫群体内50%的个体所需要的药剂浓度。 校正死亡率:采纳Abbort(1975)校正死亡率公式,以去除自然死亡对结果的阻碍。校正死亡率(%)=(处理组死亡率—对比组死亡率)/(1—对比组死亡率)

莠去津

莠去津(阿特拉津) ●理化性质:外观为白色粉末,熔点为173-175℃,20℃时的蒸气压为40μPa,在 水中的溶解度为33mg/L,氯仿28g/L、丙酮31g/L、乙酸乙酯24g/L、甲醇 15g/L,在微酸或微碱性介质中较稳定,但在较高温度下,碱或无机酸可使其水解。 ●剂型: 40%悬浮剂、50%可湿性粉剂。 ●毒性:低毒,小鼠急性经口LD50为1869~3 080mglkg,小鼠急性经皮LD50为 3100mg/kg。 ●是内吸选择性苗前、苗后封闭除草剂。根吸收为主,茎叶吸收很少。杀草作用和 选择性同西玛津,易被雨水淋洗至土壤较深层,对某些深根草亦有效,但易产生药害。持效期也较长。 ●它的杀草谱较广,可防除多种一年生禾本科和阔叶杂草。适用于玉米、高粱、甘 蔗、果树、苗圃、林地等旱田作物防除马唐、稗草、狗尾草、莎草、看麦娘、蓼、藜、十字花科、豆科杂草,尤其对玉米有较好的选择性(因玉米体内有解毒机制),对某些多年生杂草也有一定抑制作用。 ●玉米田的使用夏玉米在播种后出苗前用药,土壤有机质含量大于3%-6%的东北 地区,每亩用50%可湿性粉剂200-250克,或40%的悬浮剂200-250克,沙质土壤用下限,粘质土壤用上限。播种后1-3天,对水30公斤均匀喷雾土表。玉米出苗后用药,适期为玉米4叶期,杂草2-3叶期;有机质含量低的沙质土壤,每亩用50%可湿性粉剂或40%悬浮剂200-250克。对水30-50公斤喷雾。春玉米每亩用40%悬浮剂200-250毫升,加水30-50公斤,播后苗前土表喷雾,春旱药后混土,或适量灌溉。或在玉米4叶期作茎叶处理。玉米和冬小麦连作区,为减轻或消除莠去津对小麦的药害,可用莠去津减量与草净津、拉索、都尔、2,4-D丁酯、伴地农、绿麦隆除草剂混用。 ●莠去津是芽前土壤处理除草剂,也可芽后茎叶处理。使用中干旱对药效发挥影响 较大,主要作用于双子叶植物,侧重封闭,对大草效果比较不理想。 ●主要通过植物根部吸收并向上传导,抑制杂草(如苍耳属植物、狐尾草、豚草属 植物和野生黄瓜等)的光合作用,使其枯死。叶绿体膜中存在两套光合作用系统,分别称为光合体系Ⅰ(PSⅠ)和光合体系Ⅱ(PSⅡ)。在PSⅡ中,存在中心色素P680、去镁叶绿素及质体醌。当光能传递到P680时,电子从P680移动,经PSⅡ色素分子,到达质体醌。这个过程重复进行,直至质体醌在还原反应中接受两个电子,被还原为质体氢醌(二酚)。质体醌充当PSⅡ和PSⅠ之间的“电子传

除草剂阿特拉津生物降解研究进展_董春香

除草剂阿特拉津生物降解研究进展 董春香 姜桂兰 (吉林大学朝阳校区化学系,长春130026) 摘 要 本文综述了近年来国内外在阿特拉津降解菌及降解途径方面的研究进展,及在微生物产生的阿特拉津降解酶、其操作基因方面的研究现状,并提出了阿特拉津生物降解的研究趋势。 关键词 除草剂 阿特拉津 生物降解 Progress in study of biodegradation of the herbicide atrazine Dong Chunxiang Jiang Guilan (Departm ent of Chemistry,Jilin University,Changchun130026) A bstract The summary of current prog ress in studies on microo rganisms,pathways, sy stem of enzy mes and genetic operatio n of biodeg radation of atrazine at home and abroad is presented.The trend of research in biodegradation of atrazine is put forw ard too. Key words herbicide;atrazine;biodegradation 1 引 言 除草剂阿特拉津(Atrazine)又名莠去津,全称为2-氯-4-乙胺-6-异丙胺-1,3,5-三嗪,是一种广泛使用的除草剂。阿特拉津是选择性内吸传导型苗前、苗后除草剂,用于玉米、高粱、甘蔗、果树、林地等,可防除一年生禾本科杂草和阔叶杂草,对某些多年生杂草也有一定的抑制作用[1]。 目前,阿特拉津在世界各国得到了大面积使用。在美国,阿特拉津被列为使用最广泛的除草剂之一。在1980—1990年间,每年喷洒阿特拉津达8000万磅[20]。1986年,瑞典全国施用了120t的阿特拉津[2]。1980年,全球释放到环境中的阿特拉津总计9×104t[2]。阿特拉津虽然是一种低毒除草剂,但在土壤中具有中等持留性,其半存留期长达4—57周[3,4]。由于其广泛使用,该化合物及其降解产物已在地表水[2,5,6]、地下水[7]、雨水[8]、大气[9]中检测出来,其浓度远远超过美国环保局规定的安全浓度[10],造成对环境的污染。 阿特拉津具有一定的生物毒性,达到一定浓度时,能抑制多种藻类的光合作用及生长[11],使鱼体内的Ca2+、Mg2+等无机离子浓度显著下降,导致其重要的生理功能发生紊乱。当浓度达到3μg/L时,可使小鼠的染色体受损,杀死水底节肢动物[12]。通过食物链富集会危害人类健康。20世纪60年代以来,许多国家均致力于寻找高效降解阿特拉津的微生物。到目前为止,已分离出能彻底降解阿特拉津的单菌株[13,14]。阿特拉津生物降解机理的研究也获得了迅速发展。近两年来,国内也开始了阿特拉津生物降解的研究报道[15,16]。 第2卷第3期环境污染治理技术与设备Vol.2,N o.3 2001年6月T echniques and Equipment fo r Environmental Pollution Co ntrol Jun.,2001

除草剂分类大全

除草剂分类大全 (一)、按除草剂的作用方式分类 1、选择性除草剂 除草剂在不同植物间具有选择性,即能毒害或杀死杂草而不伤害作物,甚至只毒杀某种杂草,而不损害作物和其他杂草,凡具有这种选择性作用的除草剂称为选择性除草剂。通俗地讲就是能用于某种作物、杀死其中的一部分杂草的除草剂。如精喹能用于花生、大豆、西红柿等阔叶作物田防除狗尾草等禾本科杂草,而不能用于玉米田,否则它会将玉米当成禾本科杂草杀死,它也不能杀死阔叶杂草。再如莠去津能用于玉米田防除阔叶杂草和部分禾本科杂草,而即使用量稍高也不伤害玉米。精喹和莠去津的这种性质就叫选择性。 但是选择性对用量是有要求的,如果提高莠去津的用量到一定程度,不仅可以轻易地杀死玉米,甚至可以杀死大片的灌木林。 2、灭生性除草剂 这种除草剂对植物缺乏选择性或选择性小,草苗不分,“见绿就杀”。灭生性除草剂能杀死所有植物,如百草枯见绿就杀,既不区分作物和杂草,也不区分杂草所属种类。再如前面所述的提高莠去津用量杀死灌木林,这时的莠去津就成了灭生性除草剂。 (二)、按使用方法分类 1、土壤处理剂 土壤处理剂也叫做苗前封闭剂,施用于土壤中,通过杂草的根、芽鞘或下胚轴等部位吸收而发挥除草作用,可防除未出土杂草,对已出土的杂草效果差一些,一般在作物播前、播后苗前或移栽前施用,如乙草胺、异丙甲草胺、氟乐灵等。 2、茎叶处理剂 指用于杂草苗后,施用在杂草茎叶上而起作用的除草剂,如精喹、烟嘧磺隆。 很多除草剂既可作为土壤处理剂也可作为茎叶处理剂,被称为土壤处理剂是因为它在土壤中的药效更强些,如氰草津,以根吸收为主,也可由茎叶吸收。 应该说明,这种分类中所讲的苗前苗后中的“苗”严格地讲是“杂草苗”,而不是“作物苗”。“作物苗前”施用的不一定全是土壤处理剂,比如玉米田播后苗前为了杀死已经出苗的大草,可以喷施百草枯,这是在作茎叶处理而不是土壤处理;同样,“作物苗后”施用的也不一定全是茎叶处理剂,比如在玉米苗后早期施用莠去津,此时的莠去津仍多为杂草根部吸收,所以仍然应归为土壤处理剂。 (三)、按传导性能分类 按药剂在杂草体内传导性的差异,将其分为触杀型和传导型,触杀型造成的是外伤,药效表现迅速,但是当喷雾不匀时杂草会死而复生;传导型造成的是内伤,药效表现相对慢一些,但杂草所受的伤害不易恢复。 1、触杀型除草剂 这类除草剂与杂草接触后,只对接触部位起作用,而不能或很少在植物体内传导。这类除草剂在施用时要求尽量均匀。如百草枯,如果只覆盖了少量杂草叶面,其余的大量叶面仍能正常进行光合作用,杂草会表现出受害症状,受到一定程度的抑制,然后又慢慢恢复生长能力。 2、内吸传导型除草剂 这类除草剂在被杂草吸收后,能够在其体内传导,药剂能到达未着药部位,甚至传遍全株。如草甘膦,可以由杂草茎叶吸收,经传导到达其余的部位,甚至

阿特拉津

1.物质的理化常数: 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:本品对皮肤和眼睛有刺激作用。属低毒除草剂。动物实验致癌、致畸为阳性。对人有致突变作用。 二、毒理学资料及环境行为 急性毒性:LD 672mg/kg(大鼠经口);850mg/kg(小鼠经口);750mg/kg(兔经口); 50 7500mg/kg(兔经皮) 刺激性:人经皮500mg,中等刺激;人经眼100mg,严重刺激。

危险特性:不易燃烧。受高热分解,放出有毒的烟。 燃烧(分解)产物:一氧化碳、二氧化碳、氮氧化物、氯化氢。 3.现场应急监测方法: 4.实验室监测方法: 气相色谱法《水和废水标准检验方法》15版,中国建筑工业出版社,1985年高效液相色谱法(中国环境监测总站,水质) 5.环境标准: 6.应急处理处置方法: 一、泄漏应急处理 隔离泄漏污染区,周围设警告标志,建议应急处理人员戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,小心扫起,避免扬尘,运至废物处理场所。用水刷洗泄漏污染区,经稀释的污水放入废水系统。如大量泄漏,收集回收或无害处理后废弃。 二、防护措施 呼吸系统防护:生产操作或农业使用时,必须佩戴防毒口罩。紧急事态抢救或逃生时,应该佩戴自给式呼吸器。 眼睛防护:戴化学安全防护眼镜。

防护服:穿相应的防护服。 手防护:戴防护手套。 其它:工作现场禁止吸烟、进食和饮水。工作后,淋浴更衣。注意个人清洁卫生。实行就业前和定期的体检。 三、急救措施 皮肤接触:用肥皂水及清水彻底冲洗。就医。 眼睛接触:拉开眼睑,用流动清水冲洗15分钟。就医。 吸入:脱离现场至空气新鲜处。就医。 食入:误服者,饮适量温水,催吐。洗胃。就医。 灭火方法:泡沫、干粉、砂土。

浅谈生物除草剂的发展状况与应用前景

浅谈生物除草剂的发展状况与应用前景据统计全世界广泛分布的杂草有30 000多年种,每年约1 800种对作物造成不同程度的危害,每年因杂草危害造成的农作物减产高达9.7%。近百年来采用化学除草剂有效地控制了许多杂草,但化学药剂的大量使用也引发了一系列的问题,诸如除草剂抗性杂草植株的出现、土壤污染、水质的退化、以及对非杂草生物(特别是人、畜)的危害等。随着人们环境意识的提高和农业可持续发展的需要,高效、环保、无害的微生物除草剂的研究越来越显示其重要的社会意义和经济价值。 一生物除草剂的发展历史及现状 利用生物防除杂草已有近200年的历史。随着人们对植物病原菌认识的深入,上世纪中叶开始了微生物除草剂的开发研究。近几十年来,随着植物病原菌的不断分离和研究,尤其是从杂草病株中筛选出来的一些植物病原菌表现出了潜在的除草活性,有可能开发成为可替代化学除草剂的新型生物除草剂。 1981年,Devine在美国被注册登记为第一个生物除草剂,Devine是美国弗罗里达州的棕榈疫霉致病菌株的厚垣孢子悬浮剂,用于防治杂草莫伦藤,防效可达90%以上,且持效期可达2年,被广泛用于桔园杂草防除。 (一)生物除草剂的除草效果及杀草机理 生防杂草有机体筛选,从理论上说主要依据两条标准:有效性(药效)和专一性(安全性)。而对于生物除草剂的发展,有效性则是最关键的因素。生物除草剂的药效包括控制杂草的水平、速度以及具体操作的难易程度等。除草机理涉及到它对防治对象的侵染能力、侵染速度以及对杂草的损害性等。侵染能力可以从侵染途径、侵染部位、侵染后在组织中的感染能力等反映,如某些菌可以侵染但不能在组织中感染发病。对杂草的损害常表现为引起杂草严重的病症如炭疽病、枯萎、萎蔫叶斑等,这些症状的发生,有时与真菌的特异植物毒素的产生有关。真菌的侵害一开始和杂草生长处于相互拮抗和斗争状态。杂草的防御机制和生长会修复侵染物导致的损害、只有侵害速度高于杂草生长速度才能控制住杂草,虽然飞机草尾孢的侵染力强和专一性高,但侵染速度远滞后于紫茎泽兰的快速生长,

除草剂

除草剂,是用以消灭或控制杂草生长的农药被称为除草剂。除草剂可按作用方式、施药部位、化合物来源等多方面分类。根据作用方式分为选择性除草剂和灭生性除草剂。根据除草剂在植物体内的移动情况分为触杀型除草剂、内吸传导型除草剂和内吸传导、触杀综合型除草剂。根据化学结构分为无机化合物除草剂和有机化合物除草剂。按使用方法分为茎叶处理剂、土壤处理剂和茎叶、土壤处理剂等。 1、除草剂的发展趋势 1.1除草剂的发展特点 (1)品种多。目前全世界生产的除草剂品种多达300多个左右,总的趋势是向着高效、低毒、选择性强、杀草谱广的方向发展且以茎叶处理剂为主流。(2)剂型日益增多。一种原药平均有10余种加工剂型。在美国,一个药剂甚至有36个剂型及混配制剂。近年来,市场上出现了控制释放剂、高浓度颗粒剂、胶悬剂、大粒剂等新剂型。可以说,一种好的药剂要取得成功,一半在于制剂的研究。(3)使用方法多种多样。使用技术是发挥药效的关键问题。目前喷雾方式的革新,施药器械的改进,以及用药方法的完善、可以用最少的药 剂发挥最大的除草效果。(4)使用面积迅速扩大。随着耕作方式由人力、畜力向机械耕作方式转变,劳动力的减少,杂草危害加剧,农田化学除草的面积也在迅速扩大。(5)增长速度快。以美国为例,除草剂销售量1984年上升到农药总量的66%。其后由于引人超高效除草剂磺酰脲类及其他化合物,用量有所下降,但仍超过杀虫剂、杀菌剂,1993年达40%。(6)混用与增效剂的普及。为了取长补短,使用方式日益趋向除草剂之间、除草剂与其他农药间的混用及增效剂的应用。这样能降低用量,提高和延长药效,降低残留,增强对气候 条件的适应性,扩大杀草谱,提高对作物的安全性。(7)安全剂、解毒剂进一步发展。目前这一领域研究相当活跃,使用也日趋广泛。 1.2除草剂推广应用中出现的问题除了雾滴漂移是除草剂大面积使用中经常发生的问题外,环境条件不良时,除草剂也可能对生长不良的作物引起药害。更值得注意的问题还有:(1)杂草抗药性问题。最近20年来,世界范围内至少有30个以上的国家发现不同杂草对化学结构不同的多种类型除草剂产生了抗性,其中以抗三氮肥苯除草剂的杂草种子类最多,其他较多的是ALS抑制剂和光合作用抑制剂等。突出表现是抗性形成速度加快,范围更广。早期应用的除草剂品种从开始应用到杂草产生抗性约需10年以上,而最近则仅用4~5年便产生抗性。另一个重要表现是多抗性与交互抗性增多。(2)杂草群落组成发生明显变化。长期使用单一除草剂后,由于环境的变化,农田杂草群落组成逐步演替,使得原来危害较小或在群落中处于次要地位的杂草迅速演替为优势杂草。(3)降解产物对作物发生危害。

农田系统中除草剂阿特拉津的环境行为和生态修复研究进展

植物保护 农田系统中除草剂阿特拉津的环境行为和生态修复研究进展 薛晓博,周岩梅,许兆义 (北京交通大学市政环境系,北京100044) 摘要: 对阿特拉津在农田土壤中的行为进行了分析,着重评述了阿特拉津的吸附机制与影响因素、化学降解、生物降解、生态毒理、生物修复,最后提出微生物降解法修复阿特拉津污染农田具有广阔的研究前景。关键词:阿特拉津;土壤;环境行为;生态修复 中图分类号:S451.2文献标识码:A文章编号:1006-6500(2006)04-0028-04 ResearchAdvanceofEnvironmentalFateandEcologicalRemediationofHerbicideAtrazineinFarm-landEcosystem XUEXiao-bo,ZHOUYan-mei,XUZhao-yi (DepartmentofCivilandEnvironmentEngineeringofBeijingJiaotongUniversity,Beijing100044,China) Abstract:Byintroducingadvancesinthedomesticandinternationaluseofatrazine,itprovidesakeyreviewonthefollowingas-pectsofatrazine’sabsorptionmechanism,influentialfactors,chemicalandbiologicaldegradation,eco-toxicologicalassessmentandecologicalremediation.Itprovedthewideapplicationfutureinmicrobialdegradationofatrazine.Keywords:atrazine;soils;environmentalfate;ecologicalremediation 收稿日期:2006-08-14;修订日期:2006-10-27基金项目:国家自然科学基金(20537020) 作者简介:薛晓博(1983—),女,山西大同人,在读硕士生,主要从事环境化学研究工作. 农药包括杀虫剂、杀菌剂、除草剂和植物生长调节剂。在现代农业中,农药在防治农作物的病虫草害和保证高产方面起着极为重要的作用。在农业中使用农药有着巨大的经济效益,并可降低单位产品消耗的社会劳动,特别是除草剂的使用,极大地降低了劳动强度,直接或间接地提高了农业的生产水平。但是由于农药具有难降解和水溶性强的特点,在食品和饮用水中不断检测到农药的残留。据统计,我国现有耕地受污染面积已达 2.667×107hm2,其中受农药残留和过量施肥污染 面积为1.0×107hm2[1]。这种以牺牲环境为代价的 农业生产越来越受到生态和环境科学工作者的关注,对农药的环境行为和生态修复问题进行研究已迫在眉睫。 1阿特拉津简介 1.1阿特拉津的物理化学性质 常温下,阿特拉津的纯品是无色、无臭晶体,熔点173~175℃,在25℃时,蒸气压为38.5μPa, 水中溶解度为33mg/L。在微酸和微碱介质中稳定,但在高温下,碱和无机盐可将其水解为除草活性的羟基衍生物[2]。 1.2阿特拉津在农田系统中的应用 除草剂阿特拉津(atrazine)又名莠去津,化学名为2-氯-4-乙氨基-6-异丙氨基-1,3,5-三嗪, 系均三氮苯类农药。阿特拉津是选择性内传导型除草剂,适用于玉米、甘蔗、高梁、茶园和果园等,可防除1年生禾本科杂草和阔叶杂草,对某些多年生杂草也有一定的抑制作用[3]。阿特拉津是在 1952年由瑞士BaselGeigy化学公司开发,1958年 申请专利,1959年在美国注册商业生产[4]。 我国从20世纪80年代开始使用,近年来使用面积不断扩大,1996年阿特拉津全年的使用量为1800t,1998年为2130t,1999年为2205t,2000年为2835.2t,每年用量平均以20%的速度递增[5]。2阿特拉津在土壤中的环境行为 阿特拉津使用的主要环境问题是在土壤中长 2006,12(4):28-31 天津农业科学TianjinAgriculturalSciences

微生物在农业中的作用

微生物在农业中的作用 摘要:论述了微生物新型农业的理论基础,营养结构原理,增加食物链原理等,简述了微生物在新型农业中的广泛应用,如发展微生物饲料,微生物化肥,微生物农药,微生物食品,和微生物环保机制等分析了微生物新型农业的发展前景。关键词:微生物,新型农业。 第一章绪论 农业的本质是开发利用生物资源,传统农业是利用植物、动物资源形成“二维结构”,将传统农业调整为植物、动物和微生物资源组成的“三维结构”新型农业,是实现农业战略性调整之一。地球上三大生物资源之一的微生物资源是至今尚未充分开发利用的生物资源宝库,应用高科技生物工程技术开发微生物资源,创立微生物产业化利用的工业型农业,这类新型农业是在洁净生产车间内进行生产,人们穿戴白色工作服从事劳动,故有人形象的称之为“白色农业”。与水土为主的绿色植物生产——“绿色农业”和海洋的水产农业——“蓝色农业”并称为三色农业。 第二章微生物应用于农业的理论基础 1.1 营养结构原理 在农业生态系统中,植物是生产者,把太阳能转化为化学能储存到生态系统中,为人类和动物提供植物性食品和营养及能量。动物是消费者,以生产者的产品为最初食物来源,通过自身转化,生产营养丰富、经济价值高的产品如肉、蛋、奶等。微生物是分解者,以动植物残体及其他有机物为食,使构成有机成分的元素和储存的能量通过它的分解释放到环境中,使有限量的元素可持续利用,通过它的繁殖和活动将人类不能直接利用的物质转变为可利用的产品。这三大功能类群通过食物营养关系组成的食物链、食物网是生态系统的营养结构。开发微生物新型农业,将微生物在农业系统中的被动、隐形作用主动化和显性化,提高系统的综合生产能力,所以营养结构原理是微生物新型农业的理论基础。 1.2 增加食物链理原 在生态系统中,能量的流动和传递,每个营养级只能利用前一营养级所持有能量的10%-20%,每经过一个营养级能量损失80%-90%,大部分的能量和有机物被浪费,这是十分不经济的转化。所以每一级的损失物质必须经过多次循环利用。在农业生态系统中植物产品约占80%是人类不能直接利用的初级产品,大部分是第二、三级生产者的资源,通过增加食物链能充分利用废弃物,是每个食物链环节上生产转化的产率提高,进而提高整个系统人类可直接利用产品的输出。 提高物质和能量的转化。如秸秆等废料→生产食用菌→菌糠作饲料喂畜→畜粪 便进入沼气池→沼气渣养蚯蚓→蚯蚓喂鸡→鸡粪养鱼→塘泥肥田。 此食物链中生物能量总利用率达90%,氮素总利用率可达90%以上,增加食物

阿特拉津生产废水处理工艺设计及运行

阿特拉津生产废水处理工艺设计及运行 方宇媛1,吴文忠2,3,彭书传2,成卓韦4 (1.池州学院资源环境与旅游系,安徽池州247100;2.合肥工业大学资环学院,安徽合肥230009; 3.杭州中环环保工程有限公司,浙江杭州310020; 4.浙江工业大学生环学院,浙江杭州310014) [摘要]采用碱性热解+三效蒸发除盐预处理+A 2O 生化处理工艺处理阿特拉津生产废水。在进水阿特拉津为 36.0mg/L 、COD Cr 为2000mg/L 时,处理后出水阿特拉津≤1.0mg/L 、COD Cr ≤300mg/L 。工程实践表明:阿特拉津和COD Cr 的去除率分别达到98.8%~99.6%和83.1%~91.2%,出水指标远低于污水综合排放标准(GB 8798—1996)中的 三级标准。 [关键词]阿特拉津;废水;碱性热解;A 2O [中图分类号]X703.1 [文献标识码]B [文章编号]1005-829X (2011)05-0082-03 Design and operation of the treating technology for atrazine processing wastewater Fang Yuyuan 1,Wu Wenzhong 2,3,Peng Shuchuan 2,Cheng Zhuowei 4 (1.Department of Resource Environment and Tourism ,Chizhou College ,Chizhou 247100,China ; 2.School of Resources &Environmental Engineerning ,Hefei University of Technology ,Hefei 230009,China ; 3.Hangzhou Zhonghuan Environmental Protection Engineering Co.,Ltd.,Hangzhou 310020,China ; 4.College of Biological and Environmental Engineering ,Zhejiang University of Technology ,Hangzhou 310014,China )Abstract :The practical treatment of atrazine processing wastewater by neutralization and anaeroxic-anoxic-oxic (A 2O )process is introduced.According to the wastewater quality ,the biochemical treatment process ,alkaline pyrolysis and the three -effect evaporation desalination pretreatment +A 2O ,have been used for treating atrazine processing wastewater.When the influent mass concentrations of atrazine and COD Cr are 36.0mg/L and 2000mg/L ,respectively ,the treated effluent mass concentrations are below 1.0mg/L and 300mg/L ,respectively.The engineering practice indicates that the average removal rates of atrazine and COD Cr are 98.8%-99.6%and 83.1%-91.2%respectively.And ,the effluent quality is far better than the third grade standard of Integrated Wastewater Discharge Standard (GB 8798—1996). Key words :atrazine ;wastewater ;alkaline pyrolysis ;A 2O 阿特拉津又名莠去津,是选择性三氮苯类除草剂,广泛用于玉米、高粱和甘蔗的除草防护〔1〕。阿特拉津极易溶于水,因此生产过程中排放的废水(特别是水洗工段)含有大量阿特拉津,盐分和COD Cr 也较高。阿特拉津结构稳定,若直接排入水体,会对生态环境构成潜在威胁,其环境雌激素效应也已得到证实〔2-4〕。阿特拉津的处理技术有物化超声气浮—生化组合技术及生物原位修复技术等〔5-7〕。笔者采用碱性热解+三效蒸发除盐+A 2O 组合工艺处理某化工厂的阿特拉津废水,以确保废水最终达标排放。 1 工程概况与废水特点 1.1 工程概况与水质水量 浙江湖州某化工厂年产阿特拉津3000t ,原有 污水处理设施无法实现达标排放。为了消除污染,拟兴建处理规模为300m 3/d 的废水处理站,要求处理后出水中的阿特拉津执行《杂环类农药工业水污染物排放标准》(GB 21523—2008),COD Cr 、氨氮指标执行《进城市污水处理厂水质标准》,其他污染物(甲苯)指标执行《污水综合排放标准》(GB 8978—1996)中的三级标准。设计水质水量如表1所示。 [基金项目]池州学院引进研究生科研启动项目(2009RC035) 第31卷第5期2011年5月 工业水处理 Industrial Water Treatment Vol.31No.5May ,2011 82

相关主题
文本预览
相关文档 最新文档