当前位置:文档之家› 飞行控制系统实验指导书

飞行控制系统实验指导书

飞行控制系统实验指导书
飞行控制系统实验指导书

计算机组成原理实验指导书

“计算机组成原理” 实验指导书 伟丰编写 2014年12月

实验一算术逻辑运算实验 一、实验目的 1、掌握简单运算器的组成以及数据传送通路。 2、验证运算功能发生器(74LS181)的组合功能。 二、实验容 运用算术逻辑运算器进行算术运算和逻辑运算。 三、实验仪器 1、ZY15Comp12BB计算机组成原理教学实验箱一台 2、排线若干 四、实验原理 实验中所用的运算器数据通路如图1-1所示。其中运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关(INPUT)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。运算器的输出经过一个三态门(74LS245)和数据总线相连。数据显示灯已和数据总线(“DATA BUS”)相连,用来显示数据总线容。

图1-l 运算器数据通路图 图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。其中除T4为脉冲信号,其它均为电平控制信号。实验电路中的控制时序信号均已部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G 各电平控制信号与“SWITCH”单元中的二进制数据开关进行跳线连接,其中ALU_G、SW_G 为低电平有效,LDDR1、LDDR2为高电平有效。按动微动开关PULSE,即可获得实验所需的单脉冲。 五、实验步骤 l、按图1-2连接实验线路,仔细检查无误后,接通电源。(图中箭头表示需要接线的地方, 2、用INPUT UNIT的二进制数据开关向寄存器DR1和DR2置数,数据开关的容可以用与开关对应的指示灯来观察,灯亮表示开关量为“1”,灯灭表示开关量为“0”。以向DR1中置入11000001(C1H)和向DR2中置入01000011(43H)为例,具体操作步骤如下:首先使各个控制电平的初始状态为:CLR=1,LDDR1=0,LDDR2=0,ALU_G=1,SW_G=1,S3 S2 S1 S0 M CN=111111,并将CONTROL UNIT的开关SP05打在“NORM”状态,然后按下图所示步骤进行。

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

《控制系统CAD》实验指导书

《控制系统CAD及仿真》实验指导书 自动化学院 自动化系

实验一SIMULINK 基础与应用 一、 实验目的 1、熟悉并掌握Simulink 系统的界面、菜单、工具栏按钮的操作方法; 2、掌握查找Simulink 系统功能模块的分类及其用途,熟悉Simulink 系统功能模块的操作方法; 3、掌握Simulink 常用模块的内部参数设置与修改的操作方法; 4、掌握建立子系统和封装子系统的方法。 二、 实验内容: 1. 单位负反馈系统的开环传递函数为: 1000 ()(0.11)(0.0011) G s s s s = ++ 应用Simulink 仿真系统的阶跃响应曲线。 2.PID 控制器在工程应用中的数学模型为: 1 ()(1)()d p i d T s U s K E s T s T s N =+ + 其中采用了一阶环节来近似纯微分动作,为保证有良好的微分近似效果,一般选10N ≥。试建立PID 控制器的Simulink 模型并建立子系统。 三、 预习要求: 利用所学知识,编写实验程序,并写在预习报告上。

实验二 控制系统分析 一、 实验目的 1、掌握如何使用Matlab 进行系统的时域分析 2、掌握如何使用Matlab 进行系统的频域分析 3、掌握如何使用Matlab 进行系统的根轨迹分析 4、掌握如何使用Matlab 进行系统的稳定性分析 5、掌握如何使用Matlab 进行系统的能观测性、能控性分析 二、 实验内容: 1、时域分析 (1)根据下面传递函数模型:绘制其单位阶跃响应曲线并在图上读标注出峰值,求出系统 的性能指标。 8 106) 65(5)(2 32+++++=s s s s s s G (2)已知两个线性定常连续系统的传递函数分别为1G (s)和2G (s),绘制它们的单位脉冲响 应曲线。 4 5104 2)(2 321+++++=s s s s s s G , 27223)(22+++=s s s s G (3)已知线性定常系统的状态空间模型和初始条件,绘制其零输入响应曲线。 ?? ??????????--=????? ???? ???212107814.07814.05572.0x x x x []?? ????=214493 .69691.1x x y ??? ???=01)0(x 2、频域分析 设线性定常连续系统的传递函数分别为1G (s)、2G (s)和3G (s),将它们的Bode 图绘制在一张图中。 151)(1+= s s G ,4 53.0)(22++=s s s G ,16.0)(3 +=s s G 3、根轨迹分析 根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析系统稳定 的K 值范围。 ) 2)(1()()(++= s s s K s H s G

飞行控制系统

飞行控制系统 为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案。为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统。与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗。多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台。 关键词:无人机;飞行控制系统;SmartFusion芯片;μC/OS-Ⅱ 0 引言 飞行控制系统是无人机的重要组成部分,是飞行控制算法的运行平台,它的性能好坏直接关系着无人机能否安全可靠的飞行。随着航空技术的发展,无人机飞行控制系统正向着多功能、高精度、小型化、可复用的方向发展。高精度要求无人机控制系统的精度高,稳定性好,能够适应复杂的外界环境,因此控制算法比较复杂,计算速度快,精度高;小型化则对控制系统的重量和体积提出了更高的要求,要求控制系统的性能越高越好,体积越小越好。此外,无人机飞行控制系统还要具有实时、可靠、低成本和低功耗的特点。基于以上考虑,本文从实际工程应用出发,设计了一种基于SmartFusion的无人机飞行控制系统。 1 飞控系统总体设计

飞行控制系统在无人机上的功能主要有两个:一是飞行控制,即无人机在空中保持飞机姿态与航迹的稳定,以及按地面无线电遥控指令或者预先设定好的高度、航线、航向、姿态角等改变飞机姿态与航迹,保证飞机的稳定飞行,这就是通常所谓的自动驾驶;二是飞行管理,即完成飞行状态参数采集、导航计算、遥测数据传送、故障诊断处理、应急情况处理、任务设备的控制与管理等工作。 飞行控制系统主要完成3个功能任务,其层次构成为三层:最底层的任务是提高无人机运动和突风减缓的固有阻尼——三个轴方向的阻尼器功能;第2层的任务是稳定无人机的姿态角——基本驾驶仪的功能(主要进行角运动控制);第3层的任务是控制飞行高度、航迹和飞行速度,实现较高级自动驾驶功能。飞行控制系统原理框图见图1。 由上述分析易知,飞行控制系统主要由飞行控制器、传感器(或敏感元件)、舵机3部分组成。无人机飞行控制系统的基本架构如图2所示。

PLC控制系统实验指导书(三菱)(精)

电气与可编程控制器实验指导书 实验课是整个教学过程的—个重要环节.实验是培养学生独立工作能力,使用所学理解决实际问题、巩固基本理论并获得实践技能的重要手段。 一 LC控制系统实验的目的和任务实验目的 1.进行实验基本技能的训练。 2.巩固、加深并扩大所学的基本理论知识,培养解决实际问题的能。 3.培养实事求是、严肃认真,细致踏实的科学作风和良好的实验习惯。为将来从事生产和科学实验打下必要的基础。 4.直观察常用电器的结构。了解其规格和用途,学会正确选择电器的方法。 5.掌握继电器、接触器控制线路的基本环节。 6.初步掌握可编程序控制器的使用方法及程序编制与调试方法。 应以严肃认真的精神,实事求是的态度。踏实细致的作风对待实验课,并在实验课中注意培养自己的独立工作能力和创新精神 二实验方法 做一个实验大致可分为三个阶段,即实验前的准备;进行实验;实验后的数据处理、分及写出实验报告。 1.实验前的准备 实验前应认真阅读实验指导书。明确实验目的、要求、内容、步骤,并复习有关理论知识,在实验前要能记住有关线路和实验步骤。 进入实验室后,不要急于联接线路,应先检查实验所用的电器、仪表、设备是否良好,了解各种电器的结构、工作原理、型号规格,熟悉仪器设备的技术性能和使用

方法,并合理选用仪表及其量程。发现实验设备有故障时,应立即请指导教师检查处理,以保证实验顺利进行。 2. 联接实验电路 接线前合理安排电器、仪表的位置,通常以便于操作和观测读数为原则。各电器相互间距离应适当,以联线整齐美观并便于检查为准。主令控制电器应安装在便于操作的位置。联接导线的截面积应按回路电流大小合理选用,其长度要适当。每个联接点联接线不得多余两根。电器接点上垫片为“瓦片式”时,联接导线只需要去掉绝缘层,导体部分直接插入即可,当垫片为圆形时,导体部分需要顺时针方向打圆圈,然后将螺钉拧紧,下允许有松脱或接触不良的情况,以免通电后产生火花或断路现象。联接导线裸露部分不宜过长。以免相邻两相间造成短路,产生不必要的故障。 联接电路完成后,应全面检查,认为无误后,请指导老师检查后,方可通电实验。 在接线中,要掌握一般的控制规律,例如先串联后并联;先主电路后控制电路;先控制接点,后保护接点,最后接控制线圈等。 3.观察与记录 观察实验中各种现象或记录实验数据是整个实验过程中最主要的步骤,必须认真对待。 进行特性实验时,应注意仪表极性及量程。检测数据时,在特性曲线弯曲部分应多选几个点,而在线性部分时则可少取几个点。 进行控制电路实验时。应有目的地操作主令电器,观察电器的动作情况。进一理解电路工作原理。若出现不正常现象时,应立即断开电源,检查分析,排除故障后继续实验。 注意:运用万用表检查线路故障时,一般在断电情况下,采用电阻档检测故障点;在通电情况下,检测故障点时,应用电压档测量(注意电压性质和量程;此外,还要注意

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

计算机组成原理虚拟实验指导书

计算机组成原理实验指导书 (虚拟实验系统)

实验1 1位全加器 ?实验目的 ?掌握全加器的原理及其设计方法。 ?熟悉组成原理虚拟教学平台的使用。 ?实验设备 与非门(3片)、异或门(2片)、开关若干、指示灯若干 ?实验原理 1位二进制加法器单元有三个输入量:两个二进制数Ai,Bi和低位传来的进位信号Ci,两个输出量:本位和输出Si以及向高位的进位输出C(i+1),这种考虑了全部三个输入量的加法单元称为全加器。来实验要求利用基本门搭建一个全加器,并完成全加器真值表。 ?实验步骤 各门电路芯片引脚显示于组件信息栏。 1. 测从组件信息栏中添加所需组件到实验流程面板中,按照图1.1所示搭建实验。 图1.1 组合逻辑电路实验流程图

2. 打开电源开关,按表1设置开关的值,完成表1-1。 表1-1 实验2 算术逻辑运算实验 ?实验目的 ?了解运算器的组成结构 ?掌握运算器的工作原理 ?掌握简单运算器的组成以及数据传送通路 ?验证运算功能发生器(74LS181)的组合功能 ?实验设备 74LS181(2片),74LS273(2片), 74LS245(2片),开关若干,灯泡若干,单脉冲一片 ?实验原理 实验中所用的运算器数据通路图如图2.1所示,实验中的运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开关用来给出参与运算的数据(A和B),并经过一个三态门(74LS245)和数据显示灯相连,显示结果。 ?74LS181:完成加法运算 ?74LS273:输入端接数据开关,输出端181。在收到上升沿的时钟信号前181和其 输出数据线之间是隔断的。在收到上升沿信号后,其将输出端的数据将传到181, 同时,作为触发器,其也将输入的数据进行保存。因此,通过增加该芯片,可以通 过顺序输入时钟信号,将不同寄存器中的数据通过同一组输出数据线传输到181 芯片的不同引脚之中 ?74LS245:相当于181的输出和数据显示灯泡组件之间的一个开关,在开始实验后

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

计算机过程控制系统(DCS)课程实验指导书(详)

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、分析分别用P、PI和PID调节时的过程图形曲线。 3、定性地研究P、PI和PID调节器的参数对系统性能的影响。 二、实验设备 AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。 三、实验原理 图2-15为单回路水箱液位控制系统 单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。 图2-16 P、PI和PID调节的阶跃响应曲线

计算机组成原理实验

计算机组成原理上机实验指导

一、实验准备和实验注意事项 1.本课程实验使用专门的TDN-CM++计算机组成原理教学实验设备,使用前后均应仔细检查主机板,防止导线、元件等物品落入装置内导致线路短路、元件损坏。 2.完成本实验的方法是先找到实验板上相应的丝印字及其对应的引出排针,将排针用电缆线连接起来,连接时要注意电缆线的方向,不能反向连接;如果实验装置中引出排针上已表明两针相连,表明两根引出线内部已经连接起来,此时可以只使用一根线连接。 3.为了弄清计算机各部件的工作原理,前面几个实验的控制信号由开关单元“SWITCH UNIT”模拟输入;只有在模型机实验中才真正由控制器对指令译码产生控制信号。在每个实验开始时需将所有的开关置为初始状态“1”。 4.本实验装置的发光二极管的指示灯亮时表示信号为“0”,灯灭时表示信号为“1”。 5.实验接线图中带有圆圈的连线为实验中要接的线。 6.电源关闭后,不能立即重新开启,关闭与重启之间至少应有30秒间隔。 7.电源线应放置在机内专用线盒中。 8.保证设备的整洁。

二、实验设备的数据通路结构 利用本实验装置构造的模型机的数据通路结构框图如下图。其中各单元内部已经连接好,单元之间可能已经连接好,其它一些单元之间的连线需要根据实验目的用排线连接。 图0-2 模型机数据通路结构框图

实验一运算器实验:算术逻辑运算实验 一.实验目的 1.了解运算器的组成结构; 2.掌握运算器的工作原理; 3.掌握简单运算器的数据传送通路。 4.验证运算功能发生器(74LSl81)的组合功能。 二.实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 三.实验原理 实验中所用的运算器数据通路如图1-l所示。其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-B控制,控制运算器运算的结果能否送往总线,低电平有效。 为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。要将数据总线上的数据锁存到DR1、DR2中,锁存器的控制端LDDR1和LDDR2必须为高电平,同时由T4脉冲到来。 数据开关(“INPUT DEVICE”)用来给出参与运算的数据,经过三态门(74LS245)后送入数据总线,三态门由SW-B控制,低电平有效。数据显示灯(“BUS UNIT”)已和数据总线相连,用来显示数据总线上的内容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲。 ALU运算所需的电平控制信号S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B均由“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDRl、LDDR2为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

计算机组成原理实验指导书

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 计算机组成原理实验报告 Computer Organization Lab Reports ______________________________________________________________________________ 班级: ____ 姓名:____学号:_____ 实验日期:____

一.实验目的 1. 熟悉Dais-CMX16+达爱思教仪的各部分功能和使用方法。 2. 掌握十六位机字与字节运算的数据传输格式,验证运算功能发生器及进位控制的组合功能。了解运算器的工作原理。 3. 完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。 ______________________________________________________________________________二.实验环境 Dais-CMX16+达爱思教仪 ______________________________________________________________________________三.实验原理 实验中所用的运算器数据通路如图1-1所示。ALU运算器由CPLD描述。运算器的输出经过2片74LS245三态门与数据总线相连,2个运算寄存器AX、BX的数据输入端分别由4个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。 图1-1 运算器数据通路 图1-1中,AXW、BXW在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的负脉冲把总线上的数据打入,实现AXW、BXW写入操作。 表1-1 ALU运算器编码表 算术运算逻辑运算 M M13 M12 M11 功能M M13 M12 M11 功能 M S2 S1 S0 M S2 S1 S0 0 0 0 0 A+B+C 1 0 0 0 读B 0 0 0 1 A—B —C 1 0 0 1 非A 0 0 1 0 RLC 1 0 1 0 A-1

自动飞行控制系统电子讲稿第一部分

学习情景1 课程导论 1.飞行控制系统发展概述 自动飞行控制系统已有100多年的研制历史,早在有人驾驶飞机出现之前,自动飞行装置即已出现。 1.1方向稳定器 1873年,法国雷纳德(C.C.Renard)无人多翼滑翔机的方向稳定器。 1.2 电动陀螺稳定装置-姿态稳定 1914年,美国的爱莫尔·斯派雷(Eimer Sperry)研制成功第一台可以保持飞机稳定平飞的电动陀螺稳定装置,该装置利用陀螺的稳定性和进动性,建立一个测量基准,用来测量飞机的姿态,它和飞机的控制装置连在一起,一旦飞机偏离指定的状态,这个机构就通过飞机的控制装置操纵飞机的舵面偏转使飞机恢复到原来的状态。 1.3 自动驾驶仪 20世纪30年代出现了可以控制和保持飞机高度、速度和航迹的自动驾驶仪。 第二次世界大战促使自动驾驶仪等设备得到进一步发展,由过去气动-液压到全电动,由三个陀螺分别控制三个通道改用一个 或两个陀螺来操纵飞机,并可作机动、爬高及自动保持高度等。 二次大战期间,美国和原苏联相继研制出功能较完善的电气式自动驾驶仪C-1和其仿制品A∏-5; 德国在二战后期研制成功飞航式导弹V-1和弹道式导弹V-2,

更进一步促进了飞行自动控制装置的研制和发展。 20世纪50年代后,和导航系统、仪表着陆系统相联,自动驾驶装置实现了长距离自动飞行和自动着陆。 1.4 自动飞行控制系统 1947年成功突破音障后,飞机的飞行包线(飞行速度和高度的变化范围)扩大,越来越复杂的飞行任务对飞机性能的要求也越来越高,仅靠气动布局和发动机设计所获得的飞机性能已经很难满足复杂飞行任务的要求。因此,借助于自动控制技术来改善飞机稳定性的飞行自动控制装置(如增稳系统)相继问世,在此基础上,自动驾驶仪的功能得到进一步的扩展,发展成为自动飞行控制系统(AFCS)。 20世纪60年代,产生了随控布局飞行器(congtrol configured vehicle--CCV)的设计思想。 20世纪60年代前的以模拟电路或模拟计算机为主要计算装置的飞行控制系统,逐渐发展成为现在已普遍应用的数字式飞行控制系统,这也为新技术应用和更复杂更完善系统的综合提供了实现的可能性。例如: 主动控制技术(active control technology—ACT); 余度技术 容错控制技术 20世纪80年代得到迅速发展的火/推/飞综合控制系统等。 20世纪70年代中期,由于计算机的应用使自动驾驶仪和飞机的指引系统组成一个综合系统,使飞机的各种传感器数据、指

飞行器自动控制导论_第一章飞行控制系统概述

第一章飞行控制系统概述 1.1飞行器自动控制 1.1.1飞行控制系统的功能 随着飞行任务的不断复杂化,对飞机性能的要求越来越高,不仅要求飞行距离远(例如运输机),高度高(高空侦察机),而且还要求飞机有良好的机动性(例如战斗机)。为了减轻驾驶员在长途飞行中的疲劳,或使驾驶员集中精力战斗,希望用自动控制系统代替驾驶员控制飞行,并能改善飞机的飞行性能。这种系统就是现代飞机上安装的飞行自动控制系统。 飞行控制系统的功能归结起来有两点:1)实现飞机的自动飞行;2)改善飞机的飞行性能。 飞机的自动飞行控制系统在无人参与的情况下,自动操纵飞机按规定的姿态和航迹飞行,通常可实现对飞机的三轴姿态角和飞机三个方向的空间位置的自动控制与稳定。例如,无人驾驶飞行器(如无人机或导弹等),实现完全的飞行自动控制;对于有人驾驶的飞机(如民用客机或军用飞机),虽然有人参与驾驶,但某些飞行阶段(如巡航段),驾驶员可以不直接参与操纵,而由飞行控制系统实现对飞机飞行的自动控制,但驾驶员应完成对自动飞行指令的设置和监督自动飞行的情况,并可以随时切断自动控制而实现人工驾驶。采用自动飞行具有以下优点: 1)长距离飞行时解除驾驶员的疲劳,减轻驾驶员的工作负担; 2)在一些恶劣天气或复杂的环境下,驾驶员难于精确控制飞机的姿态和航迹,自动飞行控制系统可以精确对飞机姿态和航迹的精确控制; 3)有一些飞行操纵任务,驾驶员难于精确完成,如进场着陆,采用自动飞行控制则可以较好地完成任务。 一般来说,飞机的性能和飞行品质是由飞机本身气动特性和发动机特性决定的,但随着飞机飞行高度及飞行速度的增加,飞机的自身特性将会变坏。如飞机在高空飞行时,由于空气稀薄,飞机的阻尼特性变坏,致使飞机角运动产生严重的摆动,靠驾驶员人工操纵将会很困难。此外,设计飞机时,为了减小质量和阻力,提高有用升力,将飞机设计成静不稳定的。对于这种静不稳定的飞机,驾驶员是难于操纵的。在飞机上采用增稳系统或阻尼系统可以很好地解决这些问题。

计算机组成原理实验指导书

计算机组成原理实验指导书 山东财经大学

第一节计算机组成原理常用部件实验 一、实验目的 1、掌握计算机组成原理常用部件的结构原理。 2、掌握常用部件的设计过程。 3、熟悉常用部件的功能与应用。 4、掌握常用部件的测试方法。 5、熟悉组成原理实验台和图形输入法软件的使用方法。 二、计算机组成原理中的常用部件 计算机组成原理中的常用部件通常指的是:加法器、数据选择器、译码器、寄存器和计数器等,这些常用部件均为运算器、总线、控制器、存储系统及数据通路的组成部分。熟练掌握常用部件对后续实验将有极大帮助。 三、实验系统置分调模式时,ispLSI1032E的输入、输出资源连接示意图 图1为本实验系统中ispLSI1032E的输入输出资源连接示意图。 ●输入开关:K15-8和K7-0共2组; ●发光管显示:LED15-8、LED7-0共2组; ●时钟脉冲:连续时钟和单脉冲2个; ●复位输入:RET2为ispLSI1032E的复位输入按键。 凡实验系统置分调模式时,以上输入、输出资源可任意编程使用。 图1 ispLSI1032E与输入、输出资源的连接示意图 四、常用部件实验 实验1 数据选择器 1、实验内容及说明 数据选择器是指从多路数据输入中选择一路作为输出,本实验要求设计一个三选一的数据选择器。图2所示为三路数据选择器的框图,图中:A= a3a2a1a0,B=b3b2b1b0,C=c3c2c1c0,E=e3e2e1e0。

2、实验步骤 (1)原理图输入:根据图3电路,采用图形输入法在计算机上完成实验电路的原理图输入。 (2)管脚定义:根据图1中的管脚连接示意图完成原理图中输入、输出管脚的定义。 其中a3a2a1a0定义在k15-k12(33-30),b3b2b1b0定义在k11-k8(29-26),c3c2c1c0定义在k7-k4(60-57),e3e2e1e0定义在LED3-LED0(79-76)。 图3 数据选择器原理图 (3)原理图编译、适配和下载:将实验系统中的模式开关(K23)置于分调模式;在图形输入软件环境中选择ispLSI1032E器件,进行原理图的编译和适配,无误后完成下载。 (4)数据选择器的调试:使用输入开关在数据选择器输入端预置任意数值,然后使AE、BE、CE 分别有效(高电平有效,即开关向上),观察输出E的值是否和相应的输入值相同。 (5)生成元件符号,以备以后使用。 实验2 寄存器 1、实验内容及说明 本实验要求设计一个8位的寄存器,其中d7—d0、q7—q0分别为寄存器的输入和输出,cp为寄存器的时钟脉冲。 图4为8位寄存器的框图。 图5电路为8位寄存器的线路原理图。

自动控制原理实验指导书(2017-2018-1)

自动控制原理实验指导书 王娜编写 电气工程与自动化学院 自动化系 2017年11月 实验一控制系统的时域分析

[实验目的] 1、熟悉并掌握Matlab 操作环境和基本方法,如数据表示、绘图等命令; 2、掌握控制信号的拉氏变换与反变换laplace 和ilaplace ,控制系统生成模型的常用函数命令sys=tf(num,den),会绘制单位阶跃、脉冲响应曲线; 3、会构造控制系统的传递函数、会利用matlab 函数求取系统闭环特征根; 4、会分析控制系统中n ζω, 对系统阶跃、脉冲响应的影响。 [实验内容及步骤] 1、矩阵运算 a) 构建矩阵:A=[1 2;3 4]; B=[5 5;7 8]; 解: >> A=[1 2;3 4] A = 1 2 3 4 >>B=[5 5;7 8] B = 5 5 7 8 b) 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A 的特征值、特征多项式和特征向量. 解:>> A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4]; >> [V ,D]=eig(A) V = 0.4181 -0.4579 - 0.3096i -0.4579 + 0.3096i -0.6044 0.6211 -0.1757 + 0.2740i -0.1757 - 0.2740i 0.0504 0.5524 0.7474 0.7474 -0.2826 0.3665 -0.1592 - 0.0675i -0.1592 + 0.0675i 0.7432 D = 13.0527 0 0 0 0 -4.1671 + 1.9663i 0 0 0 0 -4.1671 - 1.9663i 0 0 0 0 2.1815 >> p=poly(A) p = -6.9000 -77.2600 -86.1300 604.5500 2. 基本绘图命令 a) 绘制余弦曲线y=cos(x),x ∈[0,2π] 解:>> x=linspace(0,2*pi); >> y=cos(x); >> plot(x,y)

飞行控制系统功能介绍

飞行控制系统功能介绍

目录 一、综述 (1) 二、飞控的相关系统说明 (1) 1.飞控的基本子系统 (2) 1.1航向控制系统 (2) 1.2速度控制系统 (3) 1.3高度控制系统 (4) 1.4自动着陆系统 (5) 2.测试机飞控所需的子系统 (6) 2.1GPS系统 (7) 2.2传感器、温湿度传感器系统 (8) 2.3飞行器自动稳定控制系统 (11) 2.4航向偏离控制系统 (11) 2.5显示系统 (12) 2.6信号反馈控制系统 (12) 2.7自动飞行控制系统 (13) 2.8自动导航系统 (14) 3.测试机飞控所需扩充系统功能 (15) 3.1自动避障系统 (15) 3.2语音播报系统 (17) 3.3物联网系统 (17) 3.4摄录系统 (18) 4.测试机飞控的其他功能 (18) 4.1自动寻路控制系统 (18) 4.2自动跟踪系统 (19) 4.3一键返航系统 (19) 4.4双飞控系统 (19) 4.5降落伞系统 (19) 5.飞行控制系统的常用外设接口 (20)

一、综述 本设计调研依据飞行控制系统(以下简称“飞控”)功能进行的系统调研。本飞行控制系统删减了翻滚、特技系统功能;以此对飞控系统的相关系统功能进行功能收集,由于本人的资料有一大部分是网络收集,会造成信息描述不准,还请大家见谅!。 飞控系统的相关子系统描述如下图1: 图1 二、飞控的相关系统说明 飞控系统的子系统功能分类方式有很多种,可以按飞控系统的子系统功能分类,按飞控系统涉及的子系统关联关系分类,按飞控系统设计的子系统基本功能和选配功能分类等等,本文现阶段以调研飞控系统功能为主,故选择按飞控系统的系统功能分类为主。

计算机组成原理实验指导书

SAC-T3D 计算机组成原理教学实验仪 实验指导书 电气与信息学院

SAC-T3D 计算机组成原理教学实验仪 实验指导书 电气与信息学院

目录 第一章概述 (1) 第二章实验部分 (3) 实验一时序电路组成、控制原理实验 (3) 实验二运算器组成实验 (6) 实验三半导体存贮器原理实验 (10) 实验四数据通路实验 (14) 实验五微程序控制器实验 (17)

第一章概述 SAC—T3C计算机组成原理实验仪是根据理工科院校计算机组成原理课程大纲的要求和计算机教学迅速发展的需要,在吸收了国内外先进教学成果的基础上设计定型的。 系统采用模块化组合结构,为大学本科、专科、成人高校等层次的《计算机组成原理》、《计算机组成与结构》、《逻辑设计》,等课程提供了实验条件。 整个系统由运算器电路、存贮器电路、数据通路电路、时序发生器电路、微程序控制器电路、模拟输入逻辑开关、脉冲发生电路、电平脉冲测试电路等组成。 由于系统的模块化,学生可通过一系列积木式实验,对CPU 内部的运算功能、控制功能、总线结构、指令系统的设计和微指令的实现以及CPU内部如何工作有直观、深刻的认识。在各项分实验的基础上,通过自己设计并实现一台模型机的运行。从而对计算机的原理、结构,从部件到分系统,直到整机有一个形象的、生动的、本质的认识。有利于培养学生的动手能力,创造性分析问题和解决问题的能力。 SAC-T3C计算机实验仪布局框图如图1。 其中存贮器、运算器及数据通路、时序、微程序控制电路将在今后逐一详细介绍和使用。前四个实验UMBIN和UMAOUT之间的扁平通信线不用插。 作为辅助电路主要有:脉冲电平测试电路用来进行电平测试和脉冲测试,脉冲产生电路用来产生单拍脉冲和连续脉冲,单拍脉冲输出为P和/P常用作实验中的单拍脉冲信号源。连续脉冲输出为Q1、Q2、Q3、Q4其中Q1~Q4为倍频关系,频率决定于晶体频率,如晶体频率为2M,Q1~Q4分别为1MHZ、500KHZ、250KHZ、125KHZ,在实验中可任选一频率作为时序电路中H的连续脉冲输入。

相关主题
文本预览
相关文档 最新文档