当前位置:文档之家› 低噪声放大器匹配技术

低噪声放大器匹配技术

低噪声放大器匹配技术
低噪声放大器匹配技术

射频低噪声放大器电路设计详解

射频低噪声放大器电路设计详解 射频LNA 设计要求:低噪声放大器(LNA)作为射频信号传输链路 的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为 高性能射频接收电路的第一级LNA 的设计必须满足:(1)较高的线性度以抑 制干扰和防止灵敏度下降;(2)足够高的增益,使其可以抑制后续级模块的噪 声;(3)与输入输出阻抗的匹配,通常为50Ω;(4)尽可能低的功耗, 这是无线通信设备的发展趋势所要求的。 InducTIve-degenerate cascode 结构是射频LNA 设计中使用比较多的结构之一,因为这种结构能够增加LNA 的增益,降低噪声系数,同时增加输入级 和输出级之间的隔离度,提高稳定性。InducTIve-degenerate cascode 结构在输入级MOS 管的栅极和源极分别引入两个电感Lg 和Ls,通过选择适当的电感 值,使得输入回路在电路的工作频率附近产生谐振,从而抵消掉输入阻抗的虚部。由分析可知应用InducTIve-degenerate cascode 结构输入阻抗得到一个50Ω的实部,但是这个实部并不是真正的电阻,因而不会产生噪声,所 以很适合作为射频LNA 的输入极。 高稳定度的LNA cascode 结构在射频LNA 设计中得到广泛应用,但是当工作频率较高时 由于不能忽略MOS 管的寄生电容Cgd,因而使得整个电路的稳定特性变差。 对于单个晶体管可通过在其输入端串联一个小的电阻或在输出端并联一个大的 电阻来提高稳定度,但是由于新增加的电阻将使噪声值变坏,因此这一技术不 能用于低噪声放大器。 文献对cascode 结构提出了改进,在其中ZLoad=jwLout//(jwCout)-

GSM900低噪声放大器设计

微波电路与系统仿真实验报告 一、实验名称:GSM900频段低噪声放大器仿真 二、实验技术指标: 1.频段:909-915MHz 2.增益:≥17dB 3.噪声系数:<0.7dB 4.输入反射系数:优于-20dB 5.输出反射系数:优于-15dB 6.芯片选择:A TF-54143或VMMK-1218 三、报告日期:2015年12月14日 四、报告页数:共7页 五、报告内容: 1.电路原理图(原理图应标明变量名称的含义,可用文字表述或画图说明) 如下图所示,a为低噪声放大器的原理框图,包括晶体管以及输出输入匹配,在图中未画出部分还有晶体管的偏置电路。对于低噪声放大器设计与最大功率传输的放大器设计不同,最大功率传输放大器的设计必须满足双共轭匹配,而这样噪声的功率也会很大,所以为了获得最小噪声系数,应选择最佳信源反射系数Гopt。此时放大器的输入匹配网络的任务是使管子端口满足如下图b中所示的要求。 (a)微波晶体管放大器原理图(b)最佳噪声匹配放大器的设计步骤为:1、选管;题目指标给出了放大器设计可选择的管子,所以本次设计选择了ATF-54143,查阅ATF-54143晶体管的模型参数,由于ATF-54143晶体管在ADS2011中没有模型,所以本文是查找网络资源下载的ATF-54143的模型文件导入到设计中的,A TF-54143模型如下图所示,左图为晶体管封装模型,右图为内部电路。2、确定工

作电流和工作电压;查阅ATF-54143介绍资料确定Vds和Ids的值,如下图所示,可以看出工作频率为900MHz时的晶体管在不同电压电流下的增益、噪声系数、P1dB、三阶截断功率的值,根据这些值选择Vds=4V,Ids=60mA,此时的Vgg=0.58V。设置电压电流,建立晶 体管的直流偏置电路。

GPS低噪声放大器的设计

低噪声放大器的设计 姓名:#### 学号:################ 班级:1######## 一、设计要求 1. 中心频率为1.45GHz ,带宽为50MHz ,即放大器工作在1.40GHz-1.50GHz 频率段; 2. 放大器的噪声系数NF<0.8dB , S11<-10dB ,S22<-15dB ,增益Gain>15dB 。 二、低噪声放大器的主要技术指标 低噪声放大器的性能主要包括噪声系数、合理的增益和稳定性等。 1. 噪声系数NF 放大器的噪声系数(用分贝表示)定义如下: ()10lg in in out out S N NF dB S N ??= ??? 式中NF 为射频/微波器件的噪声系数;in S ,in N 分别为输入端的信号功率和噪声功率;out S ,out N 分别为输出端的信号功率和噪声功率。 噪声系数的物理含义是,信号通过放大器后,由于放大器产生噪声,使得信噪比变坏,信噪比下降的倍数就是噪声系数。 2. 放大器的增益Gain 在微波设计中,增益通常被定义为传输给负载的平均功率与信号源的最大资用功率之比: S L P P Gain = 增益的值通常是在固定的频率点上测到的,低噪声放大器都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,因此增益Gain 要下降。噪声最佳匹配情况下的增益称为相关增益。通常,相关增益比最大增益大概低2~4dB. 3.稳定性 一个微波管的射频绝对稳定条件是2 2 1112212212211,1,1K S S S S S S ><-<-。只有当3个条件都满足时,才能保证放大器是绝对稳定的。

三、低噪声放大器的设计步骤 1.下载并安装晶体管的库文件 (1)由于ADS2008自带的元器件库里并没有ATF54143的元器件模型,所以 需要从Avago公司的网站上下载ATF54143.zap,并进入ADS主界面,点击【File】——【Unarchive Project】进行安装。 (2)新建工程ATF54143_LNA_1_prj,执行菜单命令【File】——【Include/Remove Projects】将ATF54143_prj添加到新建工程中,这样新建工程就能使用器件ATF54143了。 2.确定直流工作点 低噪声放大器的设计的第一步是设置晶体管的直流工作点。 (1)在ADS中执行菜单【File】——【New Design】,在弹出的对话框中的 Schematic Design Templates下拉列表中选择“DC_FET_T”模板,在Name 文本框中输入DC_FET_T,单击【OK】,这样DC_FET控件就被放置在原理图中了。 (2)在原理图中放置器件ATF54143,设置DC_FET控件的参数并连接原理图如 图1所示。 图1 完整DC_FET_T原理图 (3)仿真得到ATF54143的直流特性图如图2所示。

低噪放大器的原理应用及其常用规格

低噪放大器定义: 噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数 F=1(0分贝),其物理意义是输入信噪比等于输出信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极基联的低噪声放大电路。 低噪放大器的原理: 地球站的品质因数(G/T)主要取决于天线和低噪声放大器(LNA)的性能。接收系统的噪声温度Ts是指折算到LNA输入端的系统等效噪声温度,它主要由天线噪声温度TA、馈线损耗LALA 和低噪声接收机噪声三个部分组成。 低噪放大器的应用: 低噪放大器(LNA)主要面向移动通信基础设施基站应用,例如收发器无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端/数字无线宽带头端设备等应用设计,并为低噪声指数(NF, Noise Figure)立下了新标竿。目前无线通信基础设施产业正面临必须在拥挤的频谱内提供信号质量和覆盖度的挑战,接收器灵敏度是基站接收路径设计中最关键的要求之一,合适的LNA选择,特别是第一级LNA可以大幅度改善基站接收器的灵敏度表现,低噪声指数也是关键的设计目标,Avago提供了1900MHz下0.48dB同级产品的噪声指数。另一个关键设计为线性度,它影响了接收器分辨紧密接近信号和假信号分别的能力,三阶截点OIP3可以用来定义线性度,在1900MHz和5V/51mA的典型工作条件下,Avago特有的GaAs增强模式pHEMT工艺技术可以带来0.48dB的噪声指数和35dBm的OIP3,在2500MHz和5V/56mA的典型工作条件下,噪声指数为0.59dB,OIP3则为35dBm。通过低噪声指数和高OIP3,这些Avago的新低噪声放大器可以提供基站接收器路径比现有放大器产品更大的设计空间。 LNA经历了早期液氦致冷的参量放大器、常温参量放大器的发展过程,随着现代科学技术的高速发展,近几年已被微波场效应晶体管放大器所取代,此种放大器具有尺寸小、重量轻和成本低的优异特性。特别是在射频特性方面具有低噪声、宽频带和高增益的特点。在C、Ku、Kv 等频段中已被广泛的使用,目前常用的低噪声放大器的噪声温度可低于45K。 在雷达射频接收系统中,对系统性能指标的要求越来越高,其中低噪声放大器是影响着整个接收系统的噪声指标的重要因素。与普通的放大器相比,低噪声放大器作用比较突出,一方面可以减少系统的杂波干扰,提高系统的灵敏度;另一方面可以放大系统的射频信号,保证系统正常工作。因此,低噪声放大器的性能制约着整个接收系统的性能,对整个接收系统性能的提高起了决定性的作用。因此,研制宽频带、高性能、更低噪声的放大器,已经成为微波技术中发展的核心之一。 由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于2分贝。

GPS低噪声放大器的设计

NF(dB)=10lg ? 一个微波管的射频绝对稳定条件是K>1,S 11<1-S12S21,S22<1-S12S21。 低噪声放大器的设计 姓名:####学号:################班级:1######## 一、设计要求 1.中心频率为1.45GHz,带宽为50MHz,即放大器工作在1.40GHz- 1.50GHz频率段; 2.放大器的噪声系数NF<0.8dB,S11<-10dB,S22<-15dB,增益 Gain>15dB。 二、低噪声放大器的主要技术指标 低噪声放大器的性能主要包括噪声系数、合理的增益和稳定性等。 1.噪声系数NF 放大器的噪声系数(用分贝表示)定义如下: ?S in N in? ?S out N out? 式中NF为射频/微波器件的噪声系数;S in ,N in 分别为输入端的信号功率和噪 声功率;S out ,N out 分别为输出端的信号功率和噪声功率。 噪声系数的物理含义是,信号通过放大器后,由于放大器产生噪声,使得信噪比变坏,信噪比下降的倍数就是噪声系数。 2.放大器的增益Gain 在微波设计中,增益通常被定义为传输给负载的平均功率与信号源的最大资用功率之比: Gain=P L P S 增益的值通常是在固定的频率点上测到的,低噪声放大器都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,因此增益Gain要下降。噪声最佳匹配情况下的增益称为相关增益。通常,相关增益比最大增益大概低2~4dB. 3.稳定性 22

只有当3个条件都满足时,才能保证放大器是绝对稳定的。 三、低噪声放大器的设计步骤 1.下载并安装晶体管的库文件 (1)由于ADS2008自带的元器件库里并没有ATF54143的元器件模型,所以 需要从Avago公司的网站上下载A TF54143.zap,并进入ADS主界面,点击【File】——【Unarchive Project】进行安装。 (2)新建工程A TF54143_LNA_1_prj,执行菜单命令【File】—— 【Include/Remove Projects】将A TF54143_prj添加到新建工程中,这样新建工程就能使用器件A TF54143了。 2.确定直流工作点 低噪声放大器的设计的第一步是设置晶体管的直流工作点。 (1)在ADS中执行菜单【File】——【New Design】,在弹出的对话框中的 Schematic Design Templates下拉列表中选择“DC_FET_T”模板,在Name文本框中输入DC_FET_T,单击【OK】,这样DC_FET控件就被 放置在原理图中了。 (2)在原理图中放置器件A TF54143,设置DC_FET控件的参数并连接原理图 如图1所示。 图1完整DC_FET_T原理图 (3)仿真得到A TF54143的直流特性图如图2所示。

低噪声放大器

低噪声放大器(Low Noise Amplifier,LNA)广泛应用于射电天文、卫星接收、雷达通信等收信机灵敏度要求较高的领域,主要作用是放大所接收的微弱信号、降低噪声、使系统解调出所需的信息数据。而噪声系数(Noise Figure,NF)作为其一项重要的技术指标直接反映整个系统的灵敏度,所以LNA设计对整个系统的性能至关重要。 1 GPS接收机低噪声放大器的设计 设计的LNA主要指标为:工作频率为1 520~1 600 MHz;噪声系数NF16.0 dB;输入驻波比<2;输出驻波比<1.5。 1.1 器件选择 选择合适的器件,考虑到噪声系数较低、增益较高,所以选择PHEMT GaAsFET低噪声晶体管。在设计低噪声放大器前,首先要建立晶体管的小信号模型,一般公司都会提供具有现成模型的放大器件。这里选择Agilent公司的生产的ATF-54143。1.52~1.60 GHz频带内,设计反τ型匹配网络,该匹配网络由集总元件电感、电容构成。选择电感时,要选择高Q 电感。为了在模拟仿真中能够与实际情况相符合,选用Murata公司的电感和电容模型。这里选用贴片电感型号为LQWl8,贴片电容型号为GRMl8,电感LQWl8在1.6 GHz典型Q值为80。 1.2 直流偏置 在设计低噪声放大器中,设计直流偏置的目标是选择合适的静态工作点,静态点的好坏直接影响电路的噪声、增益和线性度。由电阻组成的简单偏置网络可以为ATF-54143提供合适的静态工作点,但温度性较差。可用有源偏置网络弥补温度性差的缺点,但有源偏置网络会使电路尺寸增加,加大了电路板排版的难度以及增加了功率消耗。在设计实际电路中,要根据具体情况选择有源偏置网络,或是电阻偏置网络。就文中的LNA而言,考虑到结构和成本,这里选择电阻无源偏置网络。采用Agilenl的ATF54143,根据该公司给出的datasheet 指标,设计Vds=3.8 V、Ids=ll mA偏置工作点。因为在电流为llmA时ATF-54143性能较好。电阻R3为100 Ω;R2为680 Ω;R1为60 Ω,如图1所示。

低噪声放大器设计指南

低噪声放大器设计指南 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分 别为获得 F min 时的最佳源反射系数、 晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF -1)/G 1G +…… (4) 232其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。 所以,一般来说低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

低噪声放大器设计 论文

低噪声放大器设计 摘要:微弱信号检测就是利用近代电子学和信号处理方法从噪声中提取有用信号,其关键在于抑制噪声。恢复、增加和提取有用信号。与普通放大器相比,低噪声放大器应具有低得多的噪声系数。欲使放大器获得良好的低噪声特性,除使用好的低噪声器件外,还要有周密的设计。本文将从低噪声放大器在通讯系统中的作用,低噪声放大器的主要技术指标以及低噪声放大器的设计方法来论述低噪声放大器,以获得最佳噪声性能的低噪声放大器。重点介绍了低噪声放大器的设计方法。 关键词:低噪声,微弱信号检测,噪声系数,放大器 0.引言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的

低噪声功率放大器设计

微波电子线路大作业 ——低噪声功率放大器设计 班级:021013班 学号:02011268 姓名:

低噪声放大器的设计 一、设计要求: 已知GaAs FET 在4 GHz 、50 Ω系统中的S 参数和噪声参量为 S11=0.6∠-60°,S21=1.9∠81°, S12=0.05∠26°,S22=0.5∠-60° Fmin=1.6 dB Γout=0.62∠100°RN=20 Ω 设计一个低噪声放大器,要求噪声系数为2 dB ,并计算相应的最大增益。 若按单向化进行设计,则计算GT 的最大误差。 二、低噪声放大器设计原理及思路 1.1低噪声放大器功能概述 低噪声放大器是射频/微波系统的一种必不可少的部件,它紧接接收机天线,放大天线从空中接收到的微弱信号。低噪声放大器在对微弱信号放大的同时还会产生附加于扰信号,因此它的设计目标是低噪声,足够的增益,线性动态范围宽。低噪声放大器影响整机的噪声系数和互调特性,分析如下 (1) 系统接收灵敏度: (2) 多个级连网络的总噪声系数 1.2 放大器工作组态分类 A 类放大器(导通角360度,最大理论效率50%)用于小信号、低噪声,通常是接收机前端放大器或功率放大器的前级放大。 B 类(导通角180度,最大理论效率78.5%)和 C 类(导通角小于180度,最大理论效率大于78.5% )放大器电源效率高,愉出信号谐波成分高,需要有外部混合电路或滤波电路.由B 类和C 类放大器还可派生出 D 类、 E 类、P 类等放大器。 min 114(dBm/Hz)NF 10log BW(MHz)/(dB) S S N =-+++321112121 11n tot A A A A A An F F F F F G G G G G G ---=+ +++L L

低噪声放大器的应用与发展状况及趋势

低噪声放大器的应用与发展状况及趋势 1 低噪声放大器的应用 低噪声放大器是现代无线通信、雷达、电子对抗系统等应用中一个非常重要的部分,常用于接收系统的前端,在放大信号的同时抑制噪声干扰,提高系统灵敏度。 如果在接收系统的前端连接高性能的低噪声放大器,在低噪声放大器增益足够大的情况下,就能抑制后级电路的噪声,则整个接收机系统的噪声系数蒋主要取决于放大器的噪声。如果低噪声放大器的噪声系数降低,接收机系统的噪声系数也会变小,信噪比得到改善,灵敏度大大提高。由此可见低噪声放大器的性能制约了整个接收系统的性能,对于整个接收系统技术水平的提高,也起了决定性的作用。 低噪声放大器是雷达、电子对抗及遥测遥控接受系统等的关键部件。L、S 波段低噪声放大器一般用于遥测、遥控系统。在电子对抗、雷达侦察中,由于要接收的信号的频率范围未知,其实频率范围也是要侦察的内容之一,所以要求接收系机的频率足够宽,那么放大器的频率也要求足够宽。而且,雷达侦察接收的是雷达发射的折射波,是单程接收;而雷达接收的是目标回波,从而使侦察机远在雷达作用距离之外就能提早发现雷达目标。灵敏度高的接收机侦察距离就远,如高灵敏度的超外差式接收机可以实现超远程侦察,用以监视敌远程导弹的发射,所以,要增高侦察距离,就要提高接收机灵敏度,就要求高性能的低噪声放大器。 在国际卫星通信应用中, 低噪声放大器的主要发展要求是改进性能和降低成本。由于国际通信量年复一年地迅速增加, 所以必须通过改进低噪声放大器的性能来满足不断增加的通信要求。因此, 要不懈地不断努力去展宽带低噪声放大器的带宽和降低其噪声温度。从经济观点出发, 卫星通信整个系统的成本必须减少到能与海底电缆系统相竞争。降低低噪声放大器的噪声温度是降低卫星通信系统成本的一种最有效的方法, 因为地面站天线的直径可以通过改善噪声温度性能而减小。 另一方面, 在国内卫星通信应用中, 重点放在低噪声放大器的不用维修特性以及低噪声和宽带性能, 因为在这些系统中越来越广泛地采用无人管理的工作方式, 特别在电视接收地面站中更是如此。 卫星通信用的低噪声放大器可以分为两种类型——低噪声参量放大器和场效应晶体管低噪声放大器。这些低噪声放大器用在几个频段内, 包括4GHz, 12

浅谈低噪声放大器的设计

浅谈低噪声放大器的设计 摘要为提高低噪声放大器的增益,降低接收机系统的噪声系数,宜采用多级低噪声放大器。本文介绍了低噪声放大器的设计方法及单级低噪声放大器间的级连方式,详述了采用传输短接线方式进行级间匹配级连的过程,通过比较传输短接线和匹配网络两种级连方式的效果,建议电子设备应根据接收机系统对噪声和增益指标的要求来合理选择低噪声放大器间的级间方式,以达到经济实用设计功效。 关键词低噪声放大器;级连;匹配;S参数;增益平坦度 前言 随着电子科技工业的飞速发展,对雷达、通信、电子对抗、遥感测控等系统技术的要求也越来越高,功率辐射小,稳定性好,频带宽,作用距离远等技术已成为电子装备科研生产单位的普遍追求,这对系统的接收灵敏度也提出了更高的要求。 1 接收机系统灵敏度 接收机系统灵敏度即接收机系统可以接收到的并仍能正常工作的最低信号强度,为保持接收机正常工作的最小可接收信号强度,灵敏度可用功率来表示。我们知道,如果没有噪声,那无论多么微弱的信号,只要充分地加以放大,信號总是可以被检测出来的。但在实际应用中,噪声是不可避免存在的,它与微弱信号一起被放大或被衰减,影响着接收机对信号的辨别,噪声成为限制接收机灵敏度的主要因素,因此,接收机的低噪声设计就显得尤其重要。接收系统灵敏度的计算公式如下: P=kTOBNF(W)(1) 式中,k为波尔兹曼常数,K=1.38×10-23J/K,TO为接收机工作环境的绝对温度,TO=290k,B为系统带宽,NF为接收机噪声系数,P为最小可检测功率。 由公式(1)可知,在系统带宽确定、工作环境相对稳定的通信系统中,要提高系统灵敏度(最小可检测功率越小),关键就是降低接收机的噪声系数NF。接收机的噪声系数是由位于接收机最前端的放大器决定的,也即我们通常所说的低噪声放大器,低噪声放大器的主要作用是放大天线从空中接收来的微弱信号,降低噪声的干扰,使系统能解调出所需的信息数据[1]。 单级放大器的增益一般不能满足系统接收机的要求,通常需要采用多级放大器来达到系统接收机对增益要求。 对多级放大器而言,其噪声系数的计算公式为:

低噪声放大器--产品规格

低噪声放大器 一种位于放大链路输入端,针对给定的增益要求,引入尽可能小的内部噪声,并在输出端获得最大可能的信噪比而设计的放大器。 低噪声放大器,噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。 低噪声放大器low noise amplifier噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放 低噪声放大器 大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低 低噪声放大器 噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te 可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。在工作频率和信源内阻均给定的情况下,噪声系数也和晶体管直流工作点有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极级联的低噪声放大电路。 应用 噪声放大器(LNA)主要面向移动通信基础设施基站应用,例如收发器无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端/数字无线宽带头端设备等应用设计,并为低噪声指数(NF, Noise Figure)立下了新标竿。目前无线通信基础设施产业正面临必须在拥挤的频谱内提供最佳信号质量和覆盖度的挑战,接收器灵敏度是基站接收路径设计中最关键的要求之一,合适的LNA选择, 低噪声放大器 特别是第一级LNA可以大幅度改善基站接收器的灵敏度表现,低噪声指数也是关键的设计目标,Avago提供了1900MHz下0.48dB同级产品最佳的噪声指数。另一个关键设计为线性度,它影响了接收器分辨紧密接近信号和假信号分别的能力,三阶截点OIP3可以用来定义线性度,在1900MHz和5V/51mA的典型工作条件下,Avago特有的GaAs

关于低噪声放大器的设计详细剖析

关于低噪声放大器的设计详细剖析 在整个接收系统中,低噪声放大器总是处于前端的位置。整个接收系统的噪声取决于低噪声放大器的噪声。与普通放大器相比,低噪声放大器一方面可以减小系统的杂波干扰,提高系统的灵敏度;另一方面放大系统的信号,保证系统工作的正常运行。总之,低噪声放大器的性能不仅制约了整个接收系统的性能,而且,对于整个接收系统技术水平的提高,也起了决定性的作用。 1 低噪声放大器的设计指标 低噪声放大器的主要性能指标包括:稳定性、功率增益、噪声系数、增益平坦度等,在这些指标之中噪声系数和放大增益对系统性能的影响较大。因此对低噪声放大器的设计主要从稳定性、功率增益、噪声系数、输入输出电压驻波比等方面进行考虑。 1.1 稳定性 放大器电路必须满足的首要条件之一是其在工作频段内的稳定性。因为假如在设计和制造放大器时不谨慎从事,在微波频率上一些不可避免的寄生因素往往足以引起振荡。 所以为了保证电路的稳定性,主要采取以下措施:1)可以在源极引入负反馈,使电路处于稳定状态;2)采用铁氧体隔离器能稳定电路;3)在漏极串联电阻或∏型阻性衰减器,通常接在低噪声放大器末级或末前级输出口。而目前提高电路稳定性常用的是引入负反馈。 1.2 功率增益以及增益平坦度 放大电路的增益是放大电路最重要性能指标,也是设计放大电路的一个基本参数。因此在放大器的设计中增益指标的完成很是重要,功率增益主要有3种描述方式:可用功率增益GA,工作功率增益GP,转换功率增益GT。 增益平坦度对于低噪声放大电路来说,就是全频带范围内增益变化要平缓,不允许增益变化陡变。 1.3 噪声系数 噪声系数是LNA的另一重要指标,如果接收系统噪声系数过大,信号会被噪声埋没,致

第1节低噪声放大器指标.doc

第1节低噪声放大器指标 低噪声放大器 低噪声放大器(LNA)是射频接收机前端的主要部分。 它主要有四个特点。 1)它位于接收机的最前端,这就要求它的噪声越小越好。为了抑制后面各级噪声对系统的影响,这要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不能过大。放大器在工作频段内应该是稳定的。 2)它所接收的信号是很微弱的,所以低噪声放大器必定是个小信号放大器。而且由于受传输路径的影响,信号的强弱又是变化的,在接收信号的同时又可能伴随着很多强信号的干扰,因此要求放大器有足够大的线性范围,而且增益最好是可以调节的。 3)低噪声放大器一般通过传输线直接和天线或者天线的滤波器相连,放大器的输入端必须和它们很好的匹配,以达到功率最大传输或者最小的噪声系数,并能保证滤波器的性能。 4)低噪声放大器应该具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器。 低噪声放大器的所有指标都是互相牵连的,甚至是相互矛盾的。这些指标不仅取决于电路的结构,对集成电路来说,还取决于工艺技术。在设计中如何采用折衷的原则,兼顾各项指标,是很重要的。 1)低功耗 LNA是小信号放大器,必须给它设置一个静态偏置。而降低功耗的根本办法是采用低电源电压、低偏置电流,但伴随的结果是晶体管的跨导减小,从而引起晶体管及放大器的一系列指标的变化。 2)工作频率 放大器所能允许的工作频率和晶体管的特征频率Ft有关。减小偏置电流的结果会使晶体管的特征频率降低。在集成电路中,增大晶体管的面积会使极间电容增加,这也降低了特征频率。 3)噪声系数 任何一个线性网络的噪声系数可以表示为: (4.1)

利用ADS仿真设计低噪声放大器内容摘要本文给出了利用ADS仿真

利用ADS仿真设计低噪声放大器 内容摘要:本文给出了利用ADS仿真设计低噪声放大器的设计方法及步骤,同时给出了该电路的优化仿真结果及电路性能在批量生产中的合格率。通过设计方法可以看出,利用ADS进行微波电路仿真,它不但很方便的得出最佳电路设计,同时也能对微波电路的容差特性进行了仿真分析,是微波产品设计的良好工具。 关键词:S参量仿真、噪声系数、稳定性、YIELD、Y4IELD优化仿真。 1.引言: ADS软件在射频电路的仿真分析与设计方面的应用非常方便,通常对于小信号特性可以进行S参量仿真(?),可以得到电路的噪声系数、输入输出驻波比、增益及电路的稳定性。在电原理分析中可以利用仿真器YIELD进行电路的合格率分析,可以利用仿真器YIELD OPTIM进行电路最大合格率的优化分析,从而得到电路的最佳容差设计。利用ADS软件进行低噪声放大器的设计我们会采用以上的工具进行电路的设计与优化,输出一个合格率较高的产品设计,为最终产品的开发成功奠定良好的基础。 2.设计目标 在无线通信领域,为了提高接收信号的灵敏度,一般在接收机的最前端放置低噪声放大器,由于低噪声放大器的噪声系数较小,而接收系统经过合理的增益分布后,噪声系数主要由低噪声放大器决定,因此,降低低噪声放大器的噪声系数,是提高接收灵敏度的一种关键手段。本文讲述的是用PHEMT场效应管ATF34143进行电路第一级的设计方法。对于电路的第二级以及后续电路可以采用MMIC微波单片放大器完成。因此低噪声放大器的关键设计是电路的第一级。 我们利用ATF34143完成的第一级低噪声放大的设计目标是: 频率范围:1710MHZ~1980MHZ 增益:大于12dB 增益平坦度:每5MHZ带内小于0.2 dB 输入回波损耗:小于1.5 输出回波损耗:小于2.0 噪声系数:小于0.8dB (纯电路噪声系数不考虑连接损耗) 第二级对第一级呈现纯50Ω阻抗。 3.仿真设计: a)利用小信号S参量仿真A TF34143场效应管的最佳噪声系数下的源阻抗匹配及负载 阻抗匹配条件。首先我们根据器件特性选择最佳条件,我们选择V DS=3V ,I D=40mA 得到初始ATF34143的最佳噪声系数匹配条件, 图1 ATF34143最佳噪声匹配条件

低噪声放大器设计指南

低噪声放大器设计指南 文件标识:基础知识 当前版本: 1.0 作者:刘明宇 日期:2006.12.2 审阅\修改: 修改日期: 文件存放: 版本历史 版本作者日期修改内容 盖受控章 除非加盖文件受控章,本文一经打印或复印即为非

1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分别为获得 F min 时的最佳源反射系数、晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF 3-1)/G 1G + (4) 22其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪

低噪声放大器的设计制作与调试报告

微波电路CAD 射频实验报告 姓名 班级 学号

实验一低噪声放大器的设计制作与调试 一、实验目的 (一)了解低噪声放大器的工作原理及设计方法。 (二)学习使用ADS软件进行微波有源电路的设计,优化,仿真。 (三)掌握低噪声放大器的制作及调试方法。 二、实验内容 (一)了解微波低噪声放大器的工作原理。 (二)使用ADS软件设计一个低噪声放大器,并对其参数进行优化、仿真。 (三)根据软件设计的结果绘制电路版图,并加工成电路板。 (四)对加工好的电路进行调试,使其满足设计要求。 三、实验步骤及实验结果 (一)晶体管直流工作点扫描 1、启动软件后建立新的工程文件并打开原理图设计窗口。 2、选择File——New Design…进入下面的对话框; 3、在下面选择BJT_curve_tracer,在上面给新建的Design命名,这里命名为BJT Curve; 4、在新的Design中,会有系统预先设置好的组件和控件; 5、如何在Design中加入晶体管;点击,打开元件库; 6、选择需要的晶体管,可以点击查询; 7、对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型; 8、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描; 9、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 10对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型 11、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描 12、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 图1 BJT Curve仿真原理图

(完整版)24G射频低噪声放大器毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 摘要 近年来,以电池作为电源的电子产品得到广泛使用,迫切要求采用低电压的模拟电路来降低功耗,所以低电压、低功耗模拟电路设计技术正成为研究的热点。本文主要讨论电感负反馈cascode-CMOS-LNA(共源共栅低噪声放大器)的噪声优化技术,同时也分析了噪声和输入同时匹配的SNIM技术。以噪声参数方程为基础,列出了简单易懂的设计原理。为了实现低电压、低噪声、高线性度的设计指标,在本文中使用了三种设计技术。第一,本文以大量的篇幅推导出了一个理想化的噪声结论,并使用Matlab分析了基于功耗限制的噪声系数,取得最优化的晶体管尺寸。第二,为了实现低电压设计,引用了一个折叠式的共源共栅结构低噪声放大器。第三,通过线性度的理论分析并结合实验仿真的方法,得出了设计一个高线性度的最后方案。另外,为了改善射频集成电路的器件参数选择的灵活性,在第四章中使用了一种差分结构。所设计的电路用CHARTER公司0.25μm CMOS 工艺技术实现,并使用Cadence的spectre RF 工具进行仿真分析。本文使用的差分电路结构只进行了电路级的仿真,而折叠式的共源共栅电路进行了电路级的仿真、版图设计、版图参数提取、电路版图一致性检查和后模拟,完成了整个低噪声放大器的设计流程。 折叠式低噪声放大器的仿真结果为:噪声系数NF为1.30dB,反射参数S11、S12、S22分别为-21.73dB、-30.62dB、-23.45dB,正向增益S21为14.27dB,1dB压缩点为-12.8dBm,三阶交调点IIP3 为0.58dBm。整个电路工作在1V电源下,消耗的电流为8.19mA,总的功耗为8.19mW。

低噪声放大器的设计

低噪声放大器的设计 参数: 低噪声放大器的中心频率选为2.4GHz,通带为8MHz 通带内增益达到11.5dB,波纹小于0.7dB 通带内的噪声系数小于3 通带内绝对稳定 通带内输入驻波比小于1.5 通带内的输出驻波比小于2 系统特性阻抗为50欧姆 微带线基板的厚度为0.8mm,基板的相对介电常数为4.3 步骤: 1.打开工程,命名为dzsamplifier。 2.新建设计,命名为dzsamplifier。设置框如下: 点击OK后,如下图。

模板为BJT_curve_traver,带有这个模板的原理图可以自动完成晶体管工作点扫描工作。 3.在ADS元件库中选取晶体管。单击原理图工具栏中的, 打开元件库,然后单击,在 搜索“32011”。其中sp开头的原件是S参数模型,可以用来作S参数仿真,但这种模型不能用来做直流工作点扫描。以pb开头的原件是封装原件,可以做直流工作点扫描,此处选择pb开头的。 4.按照下图进行连接

5.将参数扫描控制器中的 【Start】项修改为Start=0. 6.点击进行仿真,仿真结束后,数据显示窗自动弹出。 如下图: 7.晶体管S参数扫描。 (1)重新新建一个新的原理图S_Params,进行S参数扫描。如下图:

点击OK后,出现: (2)在ADS元件库中选取晶体管。单击原理图工具栏中 的,打开元件库,然后单击,在 搜索“32011”。此处选择sp 开头的。 (3)以如图的形式连接。 (4)双击S参数仿真空间SP,将仿真控件修改如下。

(5)点击仿真按钮,进行仿真。数据如下图所示: (6)双击S参数的仿真控件,选中其中的【Calculate Noise】,如图 执行后:

正确选择低噪声放大器(LNA)

正确选择低噪声放大器(LNA) 2006-06-05 14:27:39 作者:Maxim 公司来源:电子系统设计 关键字:噪声低频模拟放大 该应用笔记检验了影响放大器噪声的关键参数,说明不同放大器设计(双极型、JFET输入或CMOS输入设计)对噪声的影响。本文还阐述了如何选择一款适合低频模拟应用(如数据转换器缓冲、应变仪信号放大和麦克风前置放大器)的低噪声放大器。基于CMOS输入放大器,MAX4475,举例说明多数低频模拟应用中这种新型CMOS放大器的设计优势。 目前,有关低噪声放大器的讨论常常关注于RF/无线应用,但实际应用中,噪声对于低频模拟产品(如数据转换器缓冲、应变仪信号放大和麦克风前置放大器)也有很大影响,是一项重要的考虑因素。为了选择一款合适的放大器,设计工程师必须首先了解放大器是否拥有低噪声特性和相关的噪声参数。另外,还要了解不同类型放大器(双极型、JFET输入或CMOS 输入)的噪声参数差异。 噪声参数 尽管影响放大器噪声性能的参数有很多,但最重要的两个参数是:电压噪声和电流噪声。电压噪声是指在没有它噪声干扰的情况下,放大器输入短路时出现在输入端的电压波动。电流噪声是指在没有其它噪声干扰的情况下,放大器输入开路时出现在输入端的电流波动。 描述放大器噪声的典型指标是噪声密度,也称作点噪声。电压噪声密度单位为nV/√Hz,电流噪声密度通常表示为pA/√Hz。在低噪声放大器数据资料中可以找到这些参数,而且,一般给出两种频率下的数值:一个是低于200Hz的闪烁噪声;另一个是在1kHz通带内的噪声。简单起见,这些测量值以放大器输入端为参考,不需要考虑放大器增益。 图1所示为电压噪声密度与频率的对应关系曲线。噪声曲线与两个主要的噪声成份有关:闪烁噪声和散粒噪声。闪烁噪声是所有线性器件固有的随机噪声,也称作1/f 噪声,因为噪声振幅与频率成反比。闪烁噪声通常是频率低于200Hz时的主要噪声源,如图1所示。1/f角频率是指噪声大小基本相同、不受频率变化影响的起始频率。散粒噪声是流过正向偏置pn结的电流波动所造成的白噪声,也出现在该频段。值得注意的是:电压噪声的1/f角频率与电流噪声的1/f角频率可能会不同。

相关主题
文本预览
相关文档 最新文档