当前位置:文档之家› 动力学(第1章)

动力学(第1章)

动力学(第1章)
动力学(第1章)

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

第10章 结构动力学

FBFr 第十章 10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。 (a) (b) EI 1=∞ EI m y ? 分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度y ,?。 (c) (d) 在集中质量处施加刚性链杆以限制质量运动体系。有四个自由度。 10-8 图示结构横梁具有无限刚性和均布质量m ,B 处有一弹性支座(刚度系数为k ),C 处有一阻尼器(阻尼系数为c ),梁上受三角形分布动力荷载作用,试用不同的方法建立体系的运动方程。 解:1)刚度法 该体系仅有一个自由度。 可设A 截面转角a 为坐标顺时针为正,此时作用于分布质量m 上的惯性力呈三角形分布。其 端部集度为.. ml a 。 取A 点隔离体,A 结点力矩为: (3) 121233 I M m l a l l mal =???= 由动力荷载引起的力矩为: ()()2121 233 t t q l l q l ??= 由弹性恢复力所引起的弯矩为:.21 33 la k l c al ? ?+ 根据A 结点力矩平衡条件0I p s M M M ++=可得: () 3 (322) 1393 t q l ka m a l l c a l ++= 整理得:() . .. 33t q ka c a m a l l l ++= 2)力法 . c α 解:取AC 杆转角为坐标,设在平衡位置附近发生虚位移α。根据几何关系,虚 功方程为:() (20111) 0333 l t q l l k l l l c m x xdx ααααααα-?-?-?=? 则同样有:() . .. 33t q ka c a m a l l l + +=。 10-9 图示结构AD 和DF 杆具有无限刚性和均布质量m ,A 处转动弹簧铰的刚度系数为k θ,C 、E 处弹簧的刚度系数为k ,B 处阻尼器的阻尼系数为 c ,试建立体系自由振动时的运动方程。

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

李廉锟《结构力学》(第5版)(下册)课后习题-第14章 结构的极限荷载【圣才出品】

第14章 结构的极限荷载 复习思考题 1.什么叫极限状态和极限荷载?什么叫极限弯矩、塑性铰和破坏机构? 答:(1)极限状态和极限荷载的含义: ①极限状态是指整个结构或结构的一部分超过某一状态就不能满足设计规定的某一功能要求时所对应的特定状态; ②极限荷载是指结构在极限状态时所能承受的荷载。 (2)极限弯矩、塑性铰和破坏机构的含义: ①极限弯矩是指某一截面所能承受的弯矩的最大数值; ②塑性铰是指弯矩不能再增大,但弯曲变形则可任意增长的截面; ③破坏机构是指出现若干塑性铰而成为几何可变或瞬变体系的结构。 2.静定结构出现一个塑性铰时是否一定成为破坏机构?n次超静定结构是否必须出现n+1个塑性铰才能成为破坏机构? 答:(1)静定结构出现一个塑性铰时一定成为破坏机构。 因为根据几何组成分析,当静定结构出现一个塑性铰时,结构由几何不变变成几何可变或几何瞬变体系,此时该结构一定成为了破坏机构。 (2)n次超静定结构不必出现n+1个塑性铰才能成为破坏机构。 因为n次超静定结构出现n个塑性铰时,如果塑性铰的位置不合适,也可能使原结构变成几何瞬变的体系,此时的结构也成为了破坏机构。

3.结构处于极限状态时应满足哪些条件? 答:结构处于极限状态时应满足如下三个条件: (1)机构条件 机构条件是指在极限状态中,结构必须出现足够数目的塑性铰而成为机构(几何可变或瞬变体系),可沿荷载作正功的方向发生单向运动。 (2)内力局限条件 内力局限条件是指在极限状态中,任一截面的弯矩绝对值都不超过其极限弯矩。 (3)平衡条件 平衡条件是指在极限状态中,结构的整体或任一局部仍维持平衡。 4.什么叫可破坏荷载和可接受荷载?它们与极限荷载的关系如何? 答:(1)可破坏荷载和可接受荷载的含义: 可破坏荷载是指满足机构条件和平衡条件的荷载(不一定满足内力局限条件); 可接受荷载是指满足内力局限条件和平衡条件的荷载(不一定满足机构条件)。 (2)与极限荷载的关系 极限荷载是所有可破坏荷载中的最小者,是所有可接受荷载中的最大者。 习题 14-1 已知材料的屈服极限σs=240MPa。试求下列截面的极限弯矩值:(a)矩形截面b=50mm,h=100mm;(b)20a工字钢;(c)图示T形截面。

ANSYS 高清晰 精品资料:第14章 瞬态结构动力分析实例

第十四章 瞬态结构动力分析实例 瞬态动力学分析(亦称时间-历程分析)是用于确定承受任意的随时间变化载荷的结构的动力学响应的一种方法。可以用瞬态结构动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合作用下随时间变化的位移,应变,应力以及力。瞬态结构动力分析中,载荷和时间的相关性使得惯性力和阻尼作用比较重要。如果惯性力和阻尼作用对于分析的问题不是很重要,就可以用静力学分析代替瞬态结构动力分析。 14.1 问题描述 本实例要用缩减法进行瞬态结构动力学分析以确定对有限上升时间的恒定力的动力学响应。问题的实际结构是一根钢梁支撑着集中质量并承受一个动态载荷。钢梁长为L ,支撑着一个集中质量M 。这根梁承受着一个上升时间为,最大值为F τt 1的动态载荷F(t)。梁的质量可以忽略,确定产生最大位移响应时的时间及响应。同时要确定梁中的最大弯曲应力max t max y bend σ。 求解过程中用不到梁的特性,其截面积可以算1个单位值。取加载结束时间为0.1秒,以使质量体达到最大弯曲。在质量体的侧向设定一个主自由度。第一个载荷步用于静力学求解。根据本实例的结构关系和载荷分布可以在此模型中使用对称性。在进行后处理时,选定在最大响应时间(0.092秒)处做扩展计算。已知数据如下: 材料特性:杨氏模量EX =2E5 Mpa ,质量M =0.0215Tn ,质量阻尼ALPHAD =8, 几何尺寸:L =450mm I =800.6mm 4 h =18mm 载荷为:F 1=20N t r = 0.075sec

图14.1 钢梁支撑集中质量的几何模型 14.2 建立模型 在ANSYS6.1中,首先我们通过完成如下工作来建立本实例的有限元模型,需要完成的工作有:指定分析标题,定义材料性能,定义单元类型,定义单元实常数,建立有限元模型等。由于本实例有限元模型比较简单,无需先建立几何模型再对其进行有限元网格划分。同第11章的实例一样可以通过生成节点和单元的方法,直接建立有限元计算模型。下面将详细讲解分析过程。 14.2.1指定分析标题并设置分析范畴 本实例是如图14.1所示钢梁支撑集中质量的模型进行瞬态结构动力学分析来确定对有限上升时间的恒定力的动力学响应,仍然属于结构分析范畴。为了在后面进行菜单方式操作时的方便,需要在开始分析时就指定本实例分析范畴为“Structural”。为了数据的存档和以后分析的方便必须养成给分析的问题加标题的习惯。本实例的标题可以命名为:“Transient Response To a Constant Force With a Finite Rise Time”,具体的操作过程如下:1.选取菜单路径Utility Menu | File | Change Jobname,将弹出Change Jobname (修改文件名)对话框,如图14.2所示: 图14.2 修改文件名对话框 2.在Enter new jobname (输入新文件名)文本框中输入文字“CH14”,为本分析实例的数据库文件名。单击对话框中的按钮,完成文件名的修改。 3.选取菜单路径Utility Menu | File | Change Title,将弹出Change Title (修改标题)对话框,如图14.3所示: 图14.3 修改标题对话框 4在Enter new title (输入新标题)文本框中输入文字“Transient Response To a Constant Force With a Finite Rise Time”,为本分析实例的标题名。单击对话框中的按钮,完成对标题名的指定。

结构动力学习题解答(一二章)

第一章单自由度系统 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1)对系统进行受力分析,得到系统所受的合力; (2)利用牛顿第二定律∑ x m ,得到系统的运动微分方 =F 程; (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1)对系统进行受力分析和动量距分析; (2)利用动量距定理J∑ θ ,得到系统的运动微分方程; =M (3)求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程θ θ??- ???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。

第10章结构动力学

FBFr 第十章 10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。 (a) (b) EI 1=∞ EI m y ? 分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度y ,?。 (c) (d) 在集中质量处施加刚性链杆以限制质量运动体系。有四个自由度。 10-8 图示结构横梁具有无限刚性和均布质量m ,B 处有一弹性支座(刚度系数为k ),C 处有一阻尼器(阻尼系数为c ),梁上受三角形分布动力荷载作用,试用不同的方法建立体系的运动方程。 解:1)刚度法 该体系仅有一个自由度。 可设A 截面转角a 为坐标顺时针为正,此时作用于分布质量m 上的惯性力呈三角形分布。其 端部集度为.. ml a 。 取A 点隔离体,A 结点力矩为: (3) 121233 I M ml a l l mal =???= 由动力荷载引起的力矩为: ()()2121 233 t t q l l q l ??= 由弹性恢复力所引起的弯矩为:.21 33 la k l c al ? ?+ 根据A 结点力矩平衡条件0I p s M M M ++=可得: ( )3 (322) 1393 t q l ka m al l c al ++= 整理得:() . .. 33t q ka c a m a l l l ++= 2)力法 . c α 解:取AC 杆转角为坐标,设在平衡位置附近发生虚位移α。根据几何关系,虚 功方程为:() (20111) 0333 l t q l l k l l l c m x xdx ααααααα-?-?-?=? 则同样有:() . .. 33t q ka c a m a l l l + +=。 10-9 图示结构AD 和DF 杆具有无限刚性和均布质量m ,A 处转动弹簧铰的刚度系数为k θ,C 、E 处弹簧的刚度系数为k ,B 处阻尼器的阻尼系数为c ,试建立体系自由振动时的运动方程。

第10章 结构动力学

10- 71 习 题 10-1 试说明动力荷载与移动荷载的区别。移动荷载是否可能产生动力效应? 10-2 试说明冲击荷载与突加荷载之间的区别。为何在作厂房动力分析时,吊车水平制动力可视作突加荷载? 10-3 什么是体系的动力自由度?它与几何构造分析中体系的自由度之间有何区别?如何确定体系的 动力自由度? 10-4 将无限自由度的振动问题转化为有限自由度有哪些方法?它们分别采用何种坐标? 10-5 试确定图示各体系的动力自由度,忽略弹性杆自身的质量。 (a) (b) EI 1=∞ EI m y ? 分布质量的刚度为无穷大,由广义坐标法可知,体系仅有两个振动自由度y ,?。 (c) (d) 在集中质量处施加刚性链杆以限制质量运动体系。有四个自由度。 10-6 建立单自由度体系的运动方程有哪些主要方法?它们的基本原理是什么? 10-7 单自由度体系当动力荷载不作用在质量上时,应如何建立运动方程? 10-8 图示结构横梁具有无限刚性和均布质量m ,B 处有一弹性支座(刚度系数为k ),C 处有一阻尼器(阻尼系数为 c ),梁上受三角形分布动力荷载作用,试用不同的方法建立体系的运动方程。 t )

10- 72 解:1)刚度法 该体系仅有一个自由度。 可设A 截面转角a 为坐标顺时针为正,此时作用于分布质量m 上的惯性力呈三角形分布。其端部集度为.. ml a 。 取A 点隔离体,A 结点力矩为:.... 3121233 I M m l a l l mal =???= 由动力荷载引起的力矩为: ()()2121 233 t t q l l q l ??= 由弹性恢复力所引起的弯矩为:.21 33 la k l c al ? ?+ 根据A 结点力矩平衡条件0I p s M M M ++=可得: () 3 (3221393) t q l ka m a l l c a l ++= 整理得:() . .. 33t q ka c a m a l l l ++= 2)力法 . c α 解:取AC 杆转角为坐标,设在平衡位置附近发生虚位移α。根据几何关系,虚功方程 为:() (2) 01110333 l t q l l k l l l c m x xdx ααααααα-?-?-?=? 则同样有:() . .. 33t q ka c a m a l l l ++=。 10-9 图示结构AD 和DF 杆具有无限刚性和均布质量m ,A 处转动弹簧铰的刚度系数为k θ,C 、E 处弹簧的刚度系数为k ,B 处阻尼器的阻尼系数为c ,试建立体系自由振动时的运动方程。 解:

相关主题
文本预览
相关文档 最新文档