当前位置:文档之家› On modeling boundary layer and gravity-driven fluid

On modeling boundary layer and gravity-driven fluid

On modeling boundary layer and gravity-driven fluid

mud transport

T.-J.Hsu,1P.A.Traykovski,2and G.C.Kineke3

Received19May2006;revised14November2006;accepted21November2006;published14April2007.

[1]A model for fine sediment transport processes in the fluvial and coastal environment

is proposed based on a simplified two-phase formulation.This simplified approach for

fine-sediment transport is essentially single-phased;however,it retains several critical

mechanisms originated from the complete two-phase formulation.By incorporating

closures of carrier fluid turbulence and turbulent suspension and rheology of the sediment,

the model is first tested with laboratory measurements of flow velocity and concentration

for fine-sand transport driven by steady currents.Next,particle diameter and density are

prescribed in the model according to fractal dimensions of typical flocs for fluid mud

observed on the continental shelf.The model is able to predict the dynamics of

tidal-driven lutocline behavior observed on the Amazon shelf and wave-supported

gravity-driven fluid mud transport measured at the Po prodelta.Model results also indicate

strong interplay between flow turbulence and fluid-mud concentration,suggesting that the

mechanism of sediment-induced stratification on damping the carrier fluid turbulence

is crucial in determining the fluid mud behavior.Results are encouraging for incorporation

in the future of more comprehensive descriptions on floc dynamics,mud-bed

consolidation and various mud rheology closures.

Citation:Hsu,T.-J.,P.A.Traykovski,and G.C.Kineke(2007),On modeling boundary layer and gravity-driven fluid mud transport, J.Geophys.Res.,112,C04011,doi:10.1029/2006JC003719.

1.Introduction

[2]Fine-sediment transport processes are of great impor-tance for fluvial,estuarine and coastal morphology,water quality and navigation.When fine cohesive sediments are delivered by the river and mixed with salt water in the coastal ocean,they flocculate and form aggregates.The initial deposition of terrestrial sediment from the river plume and the subsequent resuspension processes and interaction with adjacent beach sand(noncohesive)under combined tidal,wave,and current forcing are highly com-plex[e.g.,Wright and Nittrouer,1995;Bhattacharya and Giosan,2003;Geyer et al.,2004].Field observations of fluid-mud processes suggest resuspension on the continental shelf involves both boundary layer-driven and wave-supported gravity-driven sediment flows[e.g.,Wright et al.,2001;Kineke et al.,1996;Traykovski et al.,2000;Puig et al.,2004].Near the edge of the continental shelf,strong gravity-driven flow,such as turbidity currents,delivers sediment into the deep water[e.g.,Middleton,1993].For a negatively-buoyant river plume that has a high sediment-water ratio,the initial deposition may also take place through turbidity currents or the so-called hyperpyncal flow [e.g.,Mulder and Syvitski,1995].Hence,in terms of transport mechanisms,both boundary-layer shear-driven and gravity-driven sediment transport must be studied.Fluid mud is highly concentrated suspended sediment[e.g.,Ross and Mehta,1989]from concentrations of about10g/l to a few hundred g/l above a consolidated bed.On the Amazon shelf for example,fluid-mud thickness can be on the order of several meters near the salinity front and fluid-mud flow is the major mode of transport causing the growth of a sub-aqueous delta[Kineke et al.,1996]or coastal clinoform [Friedrichs and Wright,2004].

[3]Accurate prediction of fine-sediment transport requires detailed water column models that resolve time-dependent flow velocity and sediment concentration[Winterwerp and van Kesteren,2004].In general,the dynamics of sedi-ment transport is a multiphase phenomenon.A multiphase approach provides rigorously derived balance equations that incorporate fluid-sediment interactions and sediment granular rheology[e.g.,Gidaspow,1994]and hence allows modeling transport continuously from consolidating bed to dilute sus-pension.Existing water column models for mud suspension [e.g.,Li and Parchure,1998;Winterwerp,2001]incorporate the damping of flow turbulence due to sediment-induced stratification,which is a crucial mechanism for the formation of fluid mud.However,the rheology of sediment is often neglected.In order to model the concentrated region of the mud aggregate network[e.g.,Toorman,1999;Winterwerp and

JOURNAL OF GEOPHYSICAL RESEARCH,VOL.112,C04011,doi:10.1029/2006JC003719,2007 1Civil and Coastal Engineering,University of Florida,Gainesville,

Florida,USA.

2Applied Ocean Physics and Engineering,Woods Hole Oceanographic

Institution,Woods Hole,Massachusetts,USA.

3Geology and Geophysics,Boston College,Chestnut Hill,

Massachusetts,USA.

Copyright2007by the American Geophysical Union.

0148-0227/07/2006JC003719

van Kesteren,2004]and perhaps other important applications, such as the dissipation of wave energy on muddy coasts[e.g., Dalrymple and Liu,1978;Maa and Mehta,1987;Sheremet and Stone,2003],the rheology of sediment and the suspension must be incorporated.

[4]Recent advancements in multiphase noncohesive sed-iment transport[e.g.,Dong and Zhang,2002;Hsu et al., 2004]and physical-based description of floc dynamics [Kranenburg,1994;Winterwerp,1998]and consolidation [e.g.,Toorman,1999]provide the opportunity to develop a more complete water-column model for fine-sediment transport.The modeling framework reported herein is based on simplified two-phase equations for fluid and sediment. The two-phase approach is adopted as a starting point because boundary-layer and gravity-driven sediment trans-ports,the interaction between flow turbulence and sediment and the sediment granular rheology can be incorporated in the model.Unlike the two-phase model for noncohesive

sediment[e.g,Hsu et al.,2004],the complete two-phase formulation is simplified here in order to calculate fine-sediment processes typical of long timescales.The govern-ing equations of the proposed model are presented in section2.1.A detailed derivation of the governing equation simplified from the two-phase equations is documented in Appendix A.Closures on flow turbulence,rheology of sediment stresses and boundary conditions adopted in this paper are presented in sections2.2and2.3.The proposed model is validated with laboratory experiments[Coleman, 1986;Sumer et al.,1996]for noncohesive fine-sediment transport(section 3.1).We further demonstrate that by incorporating more complete physics on fluid-sediment interaction and sediment rheology,but without including detailed consititutive relationships for floc dynamics and consolidation,the model is already capable of capturing several essential features of fluid mud flows observed in the field,including fluid mud under tidal flows(section3.2) and wave-supported gravity-driven fluid mud transport (section3.3).Future work is summarized in section4. 2.Model Formulation

https://www.doczj.com/doc/3813901506.html,erning Equations

[5]We consider sediment of diameter,d,a density r s, transported in a bottom boundary layer that is locally uniform in the cross-shore x and alongshore y direction. According to field and laboratory observation of fluid-mud processes,the dynamics of fluid-mud transport involve a variety of physical mechanisms,including for example,the boundary-layer and gravity-driven transport[e.g.,Wright et al.,2001;Traykovski et al.,2000],the effects of sediment on carrier fluid turbulence[e.g.,Ross and Mehta,1989; Trowbridge and Kineke,1994]and the rheology due to intergranular interactions in high concentration suspension [e.g.,Maa and Mehta,1987;Winterwerp and van Kesteren, 2004].A general formulation that is capable of describing these essential mechanisms can be obtained based on two-phase theory.However,typical processes related to fluid-mud transport are of long timescales(e.g.,several tidal cycles)and the complete two-phase equations must be simplified for computational efficiency.The governing equations that we adopted here are based on a reduction procedure detailed in Appendix A.Assuming that fine sediment follows the ensemble-averaged carrier fluid velocities closely,governing equations for flow momen-tum and sediment concentration simplified from the two-phase equations are expressed in equations(A12)and (A13)(see Appendix A).Here,to study fluid-mud trans-port on the continental shelf with both cross-shore and alongshore flow,we extend(A12)and(A13)with an alongshore y component(Figure1).The flow momentum equations for cross-shelf u and alongshelf v velocities are: @u

@t

?

à1

r f1àf

eT

@P

@x

t

1

r f1àf

eT

@t f

xz

@z

t

@t s

xz

@z

!

tg x

sà1

eTf

1àf

!

;

e1Tand

@v

?

à1@P

t

1@t f yz

t

@t s

yz

"#

tg y

sà1

eTf

!

e2Twith r f the fluid density,s=r s/r f the sediment specific gravity and g x,g y the gravitational acceleration in the cross-shore and alongshore directions.In the momentum equations(1)and(2)the flow momentum transport is caused by both fluid and sediment stresses t xz f,t xz s.The gravitational term contains sediment concentration and allows fluid flow to be induced by sediment.The cross-shore@P/@x and alongshore@P/@y pressure gradients are given as a prescribed flow forcing of the bottom boundary layer.

[6]The sediment volume concentration f is calculated by

@f

@t

@

@z

f1àf

eTT p1àsà1

àá

g zà

n t

s c

@f

@z

t

T p

r s

@t s

zz

@z

!

:e3T

The first two terms on the right-hand-side of(3)are the settling and turbulent mixing/suspension with the particle response time T p calculated as[e.g.,Drew,1976]

T p?

r s

b D

e4

TFigure1.Definition of coordinate system used in this paper.

with b D estimated by Stoke’s law for a sphere of diameter d settling in a fluid of viscosity v and a correction for hindered settling[Richardson and Zaki,1954]:

b D?

18r f n

d2e1àfTq

:e5T

The power q depends on the particle Reynolds number and will be given later.The turbulent mixing here is calculated using gradient transport assumption((A11)in Appendix A) with v t the eddy viscosity and s c the Schmidt number.The third term on right-hand-side of(3)is the vertical gradient of sediment intergranular normal stress,which serves as an additional suspension mechanism of sediment.Models for particle migration in fluid usually adopt phenomenological equations for concentration that are similar to(3)[e.g., Philips et al.,1992]with various constitutive relations representing shear-induced particle dispersion.According to the two-phase theory,mechanisms for shear-induced particle dispersion result from spatial gradients of sediment stresses[e.g.,Jenkins and McTigue,1990;Nott and Brady, 1994],and in highly concentrated condition,sediment stresses also represent the microscopic contact forces among particles(aggregates).Compared to the turbulent stresses, the sediment stresses are important when concentration is very large(see example,constitutive equations(15)and (16)).In this paper,we focus on mobile fluid mud transport (and dilute suspension)above the concentrated aggregate network(i.e.,f

W s?r fesà1Tg z

b D

e1àfT?

esà1Td2g z

18n

e1àfTqt1e6T

2.2.Closures

[7]Numerical solutions of(1),(2)and(3)for u,v and f are obtained by further incorporating closures on turbulent Reynolds stresses,eddy viscosity and sediment stresses. 2.2.1.Carrier Fluid Turbulent Stress and

Eddy Viscosity

[8]The carrier fluid turbulence of particle-laden flow is studied extensively through laboratory experiments[e.g., Hetsroni,1989]and direct numerical simulation[e.g., Squires and Eaton,1994].Owing to the high complexity of fluid-sediment interactions at various turbulent scales,the eddy-viscosity type approach in general does not work very well in particle-laden flow.Accurate prediction of carrier fluid turbulence,its interaction with particles and subse-quent particle dispersion rely on full3D modeling to resolve fluid-sediment interaction to sufficiently small scales.Such a3D approach at present is too time consuming for the purpose of modeling coastal fluid mud processes.Hence, the eddy viscosity approach is adopted for the preliminary development of the modeling framework.

[9]The two-phase eddy viscosity formulation based on fluid turbulence kinetic energy k and its dissipation rate has been widely used in particle-laden flow[e.g.,Elghobashi and Abou-Arab,1983].Here we adopt the kà formulation for suspended-sediment transport proposed by Hsu and Liu [2004],which has been reduced from the full two-phase kà equations consistent with the present simplified two-phase formulation.The fluid shear stress t xz f,t yz f are calculated as

t f

xz

?r f ntn t

eT

@u

@z

;t f

yz

?r f ntn t

eT

@v

@z

e7Twith the eddy viscosity v t calculated by

n t?C m

k2

1àf

eT:e8T

The fluid turbulence kinetic energy k and its dissipation rate are solved by their balance equations reduced from the kà equations of Hsu and Liu[2004]by assuming local equilibrium

1àf

eT

@k

?n t

@u

2

t

@v

2

"#

t

@

nt

n t

k

@1àf

eTk

!

à1àf

eT àsà1

eTg z

n t

c

@f

à

2f sk

p L

;e9Tand

1àf

eT

@

@t

?C 1

k

n t

@u

@z

2

t

@v

@z

2

"#

t

@

@z

nt

n t

s

@1àf

eT

@z

!

àC 2

2

k

1àf

eT

tC 3

k

àsà1

eTg

n t

s c

@f

@z

à

2f sk

T ptT L

!

:e10T

The last two terms in(9)and(10)represent the effects of sediment(mostly damping)on carrier fluid turbulence due to sediment-density stratification[e.g.,Winterwerp,2001] and interaction between fluid and sediment velocity fluctuations through viscous drag[Gust,1976;Hsu et al., 2003].The reduction of turbulence due to density stratification is well-known in geophysical flow.On the other hand,the reduction of carrier fluid turbulence can still occur even in well-mixed fine-particulate flow without spatial concentration gradients[Drew,1976;Gust,1976]. Hence,the last term is proportional to concentration and depends on the magnitude of the particle response time T p and the turbulent eddy timescale T L,estimated by

T L?

1

6

k

:e11T

According to an earlier study[Hsu et al.,2003],the damping of turbulence due to viscous drag in the fluctuation field is important for relatively coarse particle(e.g.,medium to coarse sand)and the density stratification is expected to be more important for fine sediment considered here. [10]Standard values of numerical coefficients adopted from Rodi[1993]and Elghobashi and Abou-Arab[1983] are valid for dilute concentration(f<%5%):

C m?0:09;C 1?1:44;C 2?1:92;s k?1:0;

s ?1:3;C 3?1:2e12T

Squires and Eaton[1994]provided correction to the numerical coefficients under higher concentration conditions based on valuable but limited Direct Numerical Simulation (DNS)data for isotropic turbulence.These corrections become important for high sediment volume concentration. However,they are not implemented here due to limited experimental data and other uncertainties in the model and flow condition considered(e.g.,floc dynamics).

2.2.2.Sediment Stresses

[11]For fine sediment,we consider semiempirical formu-lation for sediment stress rheology based on concentrated viscous suspension.Pioneering work was first conducted by Bagnold[1954].Later,several new formulations are pro-posed based on new experimental data[e.g.,Leighton and Acrivos,1987;Philips et al.,1992;Zarraga et al.,2000] and more complete kinetic theory[e.g.,Jenkins and McTigue,1990;Nott and Brady,1994].In this paper,results are presented using sediment stress closure of Zarraga et al. [2000].Other similar closures based on concentrated vis-cous suspension[Bagnold,1954;Philips et al.,1992]have also been implemented.The predicted concentration and velocity profiles are qualitatively similar and they are not presented here.Similarly,we will study other cohesive mud rheology closures[e.g.,Toorman,1999]in the future when measured flow velocity and concentration profiles in a more well-controlled environment become available.

[12]The sediment shear stress t xz s is calculated as

t s xz ?r f n r

@u

;t s

yz

?r f n r

@v

;e13T

where v r is the relative viscosity

n r?nzefT:e14TThe relative viscosity is expected to vary with concentra-tion.It is equal to the interstitial fluid viscosity v in the dilute limit(f!0)but increases rapidly with concentra-tion.Various relations for z(f)have been proposed based on laboratory experiments[e.g.,Leighton and Acrivos,1987; Philips et al.,1992;Zarraga et al.,2000].According to Zarraga et al.[2000],z(f)is calculated as

zefT?expeà2:34fT

1àf=f0

eT3

;e15T

where f0=0.62is the maximum random packing concentration for noncohesive particles.For mud flocs considered in this paper,f0is set to be the gelling concentration[e.g.,Winterwerp and van Kesteren,2004]. The shear-induced particle pressure(normal stress)is suggested to be

t s xz ?1:89r f n

f3

1àf=f0

eT3

@u

@z

t

@v

@z

:e16T

2.3.Bottom Boundary Conditions

[13]In the present model,the bottom boundary is set at a fixed level close to the actual mobile bed.A thin,highly concentrated region between the present fixed bed level and the actual mobile bed is neglected.For coarse particles,a mobile bed module based on a consititutive stress relation for enduring contact and a failure criterion can be incorpo-rated to model this highly concentrated,fluid-solid like region[e.g.,Hsu et al.,2004].However,for fine sediment and especially fluid mud considered here,these consititutive relations must also describe appropriate consolidation pro-cesses.This highly concentrated region is neglected in this paper for simplicity.Consequently,the present model cal-culates the transport above the concentrated aggregate network with concentration below gelling concentration.

[14]A logarithmic velocity profile(law of the wall)is assumed close to the bed.The time-dependent bottom friction velocity u*and v*in the x and y directions are obtained from the model velocities at the first grid point D z above the bed[e.g.,Mellor,2002]:

u*?

k u D z;t

eTu t

ln30D z=K s

eT

!1=2

;v*?

k v D z;t

eTu t

ln30D z=K s

eT

!1=2

;e17Twith u t=

????????????????

u2*tv2*

q

the total bottom friction velocity.The roughness height K s parameterizes the thin region close to the bed not resolved by the model.Its value is specified as one of the model input parameters and is discussed in the following sections.The bottom stresses t bx=r f u*2and t by= r f v*2calculated by(17)serve as the bottom boundary conditions for the momentum equations(1)and(2). [15]In a turbulent boundary layer,the bottom boundary condition for turbulence kinetic energy k is often specified using bottom friction velocities obtained from(17)without explicitly considering the effect of sediment concentration. However,in the present model the sediment concentration affects the magnitude of flow turbulence(see equation(9)). Therefore,we adopt a no-flux boundary condition for k that is more consistent for sediment-laden turbulent boundary layer[e.g.,Hagatun and Eidsvik,1986]:

@k

@z

?0;e18TThe bottom boundary condition for turbulence dissipation rate is then calculated with a standard near-wall approximation

?

C3=4

m

k3=2

k z

;e19T

[16]A sediment flux boundary condition is adopted at the bottom boundary.The upward flux from the highly con-centrated region is approximated as a reference concentra-tion f r multiplied by the settling velocity[Harris et al., 2004].The downward flux is approximated by the conti-neous deposition concept[Sanford and Halka,1993].The reference concentration formulation of Smith and McLean [1977]is utilized here

f r?

f0g S

e20T

in which S=t b/t crà1.The total bottom stress t b=r f u t2is calculated every time step by equation(17).The critical

bottom stress t cr is site specific and resuspension coefficient g usually varies by two orders of magnitude in the literature [e.g.,Drake and Cacchione,1989].Specifically for cohesive sediment,t b and g may further depend on the depth of erosion[e.g.,Sanford and Maa,2001].Unfortu-nately,for the fluid mud problems that we shall consider next,these site specific sediment characterizations are not available.These uncertainties must be resolved for the development of a predictive model.However,in this paper we will focus on testing the new model for capturing the dynamics of lutocline and wave-supported gravity flow using field observed data.Uncertainties in t cr and g are of less concern here because the total amount of suspended mud is known from the measured data.Specifically,the critical bottom stress is set to be0.05Pa and the resuspension coefficient g is calibrated with measured concentration at the location closest to the bed.More complicated bottom boundary conditions for fine sediment that incorporate depth-of-erosion and variable critical stress [e.g.,Sanford and Maa,2001]may be utilized in the future to extend the present model toward a predictive tool.

2.4.Flow Forcing

[17]The proposed model is a time-dependent model that can be driven by arbitrary oscillatory and current forcing.The forcing implementation we adopted here is widely used for modeling wave-current boundary layer flows[e.g.,Mellor,2002]and is briefly described as follows.The flow forcing is implemented as pressure gradients in the x–and y–directions in the momentum equations(1)and(2)through lateral boundary conditions. According to the boundary layer approximation,the pressure gradients in the x–and y–directions are assumed constant across the boundary layer(i.e.,constant in the z–direction)and equal to the corresponding free-stream pressure gradients,i.e.,

@P @x ?

@P0

@x

;

@P

@y

?

@P0

@y

e21T

The free-stream pressure gradients are further related to free-stream velocity time series.The free-stream velocities above the boundary layer U(t)and V(t)are first separated into oscillatory(~U(t),~V(t))and mean(U c,V c)velocities, i.e.,

~U teT?U teTàU

c

;~V teT?V teTàV c:e22TThe oscillatory component can be used to represent a wide range of time-dependent forcing such as waves or tidal oscillations,depending on the problem of interest. [18]The free-stream pressure gradient in the x–(or y–) direction is further calculated by the acceleration of oscil-latory velocity and a constant value due to mean current:

à@P

@x

?r f

@~U teT

@t

tf c x;à

@P

@y

?r f

@~V teT

@t

tf c ye23T

in which f x c and f y c are the forcing associated with the mean current components.

[19]Evidently,f x c and f y c are zero for pure oscillatory forcing.On the other hand,when mean current forcing is considered,the precise values of f x c and f y c that will result in the desired magnitudes of mean flow rates(or mean velocities U c,V c at free-stream)are not known a priori. The relation between the given mean current forcing f x c (or f y c)and the resulting(net)flow rate is implicitly a complex function of wave-current interaction and the effects of sediment on the carrier flow,and is part of the solution of the model results.In general,an iteration procedure is required to obtain the precise values of f x c and f y c to match the desired flow rates.

3.Results

3.1.Model Calibration With Laboratory Experiments [20]Equations(1)–(3)along with the kà turbulence closure,rheology closure and boundary conditions are solved numerically to predict fine sediment transport.The present model has several coefficients.Standard values of some of these coefficients are adopted and indicated in the previous sections.The Schmidt number for sediment turbu-lent suspension s c(see equation(3))is calibrated here with laboratory data for sediment transport in steady flow.Due to the gradient transport assumption utilized in equation(A11), the Schmidt number parameterizes small-scale advection of sediment by turbulent eddies.In the present kà equation, the Schmidt number also affects the magnitude of the damping term due to sediment density stratification. [21]Coleman[1986]conducted a series of laboratory flume experiments for sediment(sand of diameter0.105mm and specific gravity2.65)transport under unidirectional (x-direction)steady current.In each test run,an artificial smooth bed is utilized for a given flow rate and sediment is added from the upstream end of the test section until the total sediment capacity is reached.One advantage of this set of experiments is that the bed is smooth and hence the uncertainties in bed roughness K s is excluded and we utilize a logarithmic law for a smooth wall to calculate bed friction velocity u*:

u t;D z

eT

u*

?

1

k

ln

9u t;D z

eTD z

n

e24T

[22]The model results are presented here for case20of Coleman[1986],the case with the highest flow rate and concentration.The numerical model is initialized with zero flow velocity and concentration.A constant pressure gradi-ent f x c is applied to drive the model and the model calculation marches in time until a steady-state solution is obtained with the calculated total flow rate matching the measured data.The power q in equation(5)due to hindered settling is taking to be3.0and is tested to be relatively insensitive to model results in the present dilute https://www.doczj.com/doc/3813901506.html,ing s c=0.5,the predicted flow velocity(solid curve in Figure 2a)and concentration(solid curve in Figure2b)agree well with the measured data.To illustrate the effect of sediment on fluid flow,the dashed curve in Figure2a represents the calculated velocity profile without sediment(but with the same flow rate).In addition,the calculated flow velocity is replotted in Figure2c according to normalized velocity defect[Winterwerp,2001]to emphasize the effect of sed-

iment on near bed flow velocity.Clearly,the present model captures the effect of sediment on carrier fluid https://www.doczj.com/doc/3813901506.html,ing s c =0.3,the calculated flow velocity agrees better with the measured data near the bed.However,the overall suspended sediment concentration is over-predicted (not shown).In the following sections,s c =0.5is used.According to numerical experiments,the modification of flow velocity by the sediment in this case is mainly due to the effect of sediment on modifying the carrier flow turbulence through the density stratification term in the k à equation,consistent with earlier findings [e.g.,Winterwerp ,2001].The effects of sediment stress in the momentum equation is of less importance here due to relatively dilute flow condition.It

is worth mentioning that the forcing f x c required to establish the desired flow rate in case 20is 6.45Pa/m (sediment-laden condition,solid curve in Figure 2a).However,to establish the same flow rate for clear fluid flow condition requires f x c =8.57Pa/m (dashed curve Figure 2a),which is about 30%more.This is the so-called ‘‘drag reduction,’’i.e.,the presence of sediment reduces the flow turbulence (mostly through density stratification in this case),enhances the mean flow field and hence less forcing is required to establish the same flow rate.

[23]Sumer et al.[1996]conducted a series of sediment transport experiments (sand of diameter d =0.13mm)in steady channel flow over a realistic sand bed with a

smooth

Figure 2.Model-data comparison with Coleman [1986](case 20).(a)Flow velocity and (b)sediment concentration with symbols represent measured data,and solid curves represent model results with s c =0.5.(c)Further plots the velocities in defect-law with additional model results using s c =0.3(dotted curve).Model results without sediment (clear fluid flow with the same flow rate)are also shown in dashed curves of both Figures 2a and 2c to emphasize the effect of sediment on fluid flow.Sand is of diameter d =0.105mm.z m is 17

cm.

Figure 3.Sediment concentration (b)calculated by the model agrees with data (symbol)measured by Sumer et al.[1996](Shields parameter 1.1).(a)Velocity profile calculated by the model.Sand is of diameter d =0.13mm.q is taken to be 3.0.

wall covering the top of the channel to avoid surface waves. In the numerical model simulation,the flow is driven by a constant pressure gradient to match the measured flow rate.

A roughness height of K s=6d,suggested by Sumer et al. [1996],is utilized in the numerical model.The model predicts the concentration profile reasonably well when compared with measured data(Figure3b).

3.2.Fluid Mud Dynamics

[24]When modeling noncohesive sediment,it is straight-forward to prescribe the(mean)diameter and density of the particle as demonstrated in section 3.1.However,one challenge in modeling cohesive sediments is that they are often transported as aggregates with their sizes and densities constantly changing.When modeling fluid mud using the present model,the primary particle is not directly calculated. Instead,we prescribe aggregate(floc)diameter d and fractal dimension n f[e.g.,Kranenburg,1994;Hill et al.,2001]. Hence,the density of the mud flocs r m is give as

r m?r ft

d0

3àn f

r sàr f

àá

e25T

where d0and r s are the diameter and density of the primary particle taken to be d0=3m m and r s/r f=2.65in this paper. Hence,commonly used fluid-mud mass concentration is calculated as c=r m f with f solved by equation(3).In the following section for fluid mud,we will also define

mud Figure4.Model results for flow velocity(left panels)and floc concentration(middle panels with d=

60m m,s=1.13,n f=2.15)driven by a tidal forcing.The predicted concentration during the initial(t1), middle(t2)and final(t3)stages approaching flood tide are similar to those observed(right panels)on the Amazon Shelf near the river mouth(circles)and open shelf(crosses)when thick fluid mud present [Kineke et al.,1996].To qualitatively compare the shape of concentration profiles,the concentration c

and vertical coordinate z are normalized by c b and h,respectively.h is set to be6m,approximately

1.2times of the maximum lutocline thickness.c b is set to be the bed concentration at the corresponding phase.U m is1.5m/s.

floc specific gravity as s =r m /r f .According to Winterwerp and van Kesteren [2004],the gelling concentration required in (15)and (20)is then given as

f 0?

r s

d 0d

àá3àn f

r m

:e26T

More detailed dynamics of floc aggregation and breakup [e.g.,Winterwerp ,1998]process (i.e.,floc diameter changes with flow condition and sediment concentration)are neglected in this paper.

[25]In the following sections for fluid mud processes,a roughness height of K s =3mm is specified in all the cases for simplicity.Numerical experiments suggest that changing the values of roughness by a factor of five does not change the model results qualitatively.A detailed quantitative model-data comparison for fluid mud is not the aim here due to too many uncertainties.For instance,the effect of reduced roughness height can be easily compensated by an enhanced resuspension coefficient g in (20)if the goal is to match the magnitude of fluid-mud concentration.However,

the shape of the concentration profile is insensitive to these uncertainties.

3.2.1.Fluid Mud Dynamics Under Tidal Forcing

[26]The model is utilized to calculate concentrated fluid-mud dynamics observed during AMASSEDS [e.g.,Nittrouer et al.,1991]and qualitatively compared with measured data near the river mouth and open shelf anchor stations [Kineke et al.,1996].The model is driven by a prescribed sinusoidal forcing with maximum tidal velocity 1.5m/s and period of 12hr to represent the tidal forcing (upper panel in Figure 4).The floc is of diameter d =60m m ,density r m =1130kg /m 3(i.e.,n f =2.15in (25)).The model calculated shape of the sediment concentration profiles resemble that observed on the Amazon shelf at similar tidal phases (Figure 4,(t1),(t2)and (t3)).Based on numerical experiments,the existence of a lutocline and fluid mud behavior is mostly determined by the density stratification term in the k à equations,consis-tent with earlier studies [e.g.,Trowbridge and Kineke ,1994;Winterwerp ,2001].

[27]Figure 5further illustrates the strong interplay be-tween time-dependent concentration (second panel)and turbulent intensity (third panel).When the tidal forcing

first

Figure 5.Time-dependent floc concentration (second panel)and turbulent intensity (third panel)under the same tidal forcing (first panel)presented in Figure 4.The lowest panel (a)–(d)shows four snapshots (timing of each snapshot is shown in the first panel)of fluid turbulent Reynolds stress (solid-black)and sediment shear stress (dashed-red).The dashed blue curve in the first panel represents 2.5B .

starts to increase from (a)to (b)(see the 1st panel),turbulence becomes stronger and the available sediment is suspended higher and the averaged concentration below the lutocline is smaller.Further increases of forcing from (b)to (c)suspends slightly more sediment from the bed (buoyancy anomaly B defined in equation (27),which represents depth-integrated concentration increases by about 4percent)which causes a collapse of turbulence (3rd panel)and highly-concentrated sediment confined below the lutocline (c)(2nd panel).Later the tidal flow becomes even stronger (d),boundary-layer turbulence increases dramatically and sediment is suspended much higher in the water column.Sediment shear stress (or equivalently a mud viscosity)is only important (as compared to Reynolds stress)when turbulence is damped by the existence of high sediment concentration ((a)and (c)in the lowest panel).Following Trowbridge and Kineke [1994],the buoyancy anomaly is defined as

B ?s à1eTg

Z

h

0f dz :e27T

The buoyancy anomaly on the one hand represents the total amount of suspended sediment in the water column.On the

other hand,the square root of B represent a velocity scale that characterizes a critical velocity for a fully turbulent suspension.In Trowbridge and Kineke [1994],the critical velocity is determined to be 2???

B p based on a simpler model than the present formulation.In Figure 5a,the blue-dashed curves represents the model results for 2.5???B p .Overall,???B p does not change much (about 10–20cm/s)as compared with tidal velocity amplitude,suggesting that the total amount of suspended sediment is more or less constant over the tidal cycle.The fluid mud is simply redistributed throughout the water column depending on the overall height of the lutocline.However,the lutocline behavior is controlled by the interplay between the flow turbulence and sediment (which damps the flow turbulence).In addition,the small settling velocity of fluid mud prevents the fluid mud to settle quickly (and consolidate)into the bed when the turbulence collapses and concentrated fluid mud remains confined near the bed.Clearly,the present model suggests that when tidal velocity increases beyond about 2.5???B p ,fully turbulent suspension occurs,which is similar to that predicted by Trowbridge and Kineke [1994].3.2.2.Wave-Supported Gravity-Driven Fluid Mud [28]Wave-supported gravity-driven fluid mud flows have been measured on several continental shelves (e.g.,see

a

Figure 6.Time-averaged model results (high concentration event burst #5[Traykovski et al.,2007])driven by (a)field measured flow velocities at 75cmab (thin-solid and dashed represent x-and y-directions).(b)Measured floc concentration (dashed)is predicted well by the model (solid curve,d =60m m ,s =1.2,n f =2.3).(c)Both model results (solid curve)and measured velocities (circles)suggest wave-supported gravity-driven mud flow in the cross-shelf direction,but not in the alongshore direction (dashed curve:model,crosses:measured).Dashed curves in Figures 6c and 6d represent measured profiles but are in fact interpolated from two discretely measured locations at 75cmab and 11cmab.The model predicts a larger maximum downslope velocity at 5cmab.No measured data are available at this location.Hence,(d)the model predicts a stronger downslope sediment flux than interpolated values from measured data at 11cmab.The dashed blue curve in Figure 6a represents 2.5B .

review by Wright et al.[2001]).Here,new data measured at the Po prodelta [Traykovski et al.,2007]are examined in light of the new model.The cross-shore slope at the Po prodelta is rather mild and is set to be a =0.002[Traykovski et al.,2007].The definition of cross-shore and alongshore coordinate system is depicted in Figure 1.The numerical model is driven by measured near-bed (75cm above the bed,75cmab)cross-shore (x)and alongshore (y)velocities (e.g.,Figure 6a).The measured velocity time series (2Hz,520sec in length)are first separated into oscillatory (wave)and mean components described in equation (22).The oscillatory components are directly used to drive the model while f x c and f y c associated with mean current forcing are applied concurrently to match the desired mean current ve-locities measured at 75cmab.Fine grid size D z =2.5mm near the bed is adopted.Hence,the numerical model resolves

both the wave phase and the wave boundary layer processes (about 10to 20cm in thickness)near the bed.

[29]For a high concentration event (burst #5),the mea-sured r.m.s.wave forcing velocity at 75cmab is 51cm/s (Figure 6a)with a relatively weak alongshore current (à5cm/s)and highly-concentrated fluid mud with near-bed concentration of about 150g/l (dashed in Figure 6b).In order to match the overall magnitude of the measured concentration,the resuspension coefficient in (20)is set to be g =0.045.Model results for time-averaged concentra-tion (averaged over the entire wave group of 520s)indicates that due to relatively weak currents and the damping effect of concentrated fluid mud on flow turbu-lence,sediment is mostly confined within the wave bound-ary layer (Figure 6b)and the lutocline is within $10cmab.More importantly,the calculated cross-shore flow

velocity

Figure 7.Time-averaged model results for burst #9of high concentration event [Traykovski et al.,2007].The floc properties used in the model are the same with that in #5.(a)Field measured flow velocities at 75cmab (r.m.s.wave forcing 52cm/s).(b)Time-averaged floc concentration (modeled:solid curve;measured:dashed curve).(c)Cross-shore velocity,and (d)cross-shore sediment flux profiles (modeled:solid curve;measured with interpolation:dashed curve).(e)Time-averaged alongshore velocity and (f)alongshore sediment flux profiles.

(Figure 6c,solid curve)shows gravity-flow characteris-tics that matches measured data at 11cmab (circle).Accord-ing to Figure 6c,the model predicts a larger maximum downslope velocity (solid curve)than the logarithmically interpolated data (dashed curve).Model results for time-averaged alongshore flow velocity shows a logarithmic profile (dashed curve)without a gravity-flow feature,which is also consistent with the measured data (crosses).Model results also suggest that the buoyancy anomaly B over the entire wave group event does not change much (not shown),suggesting that the commonly used assumption for a buoy-ancy anomaly that is constant over the individual wave period or wave timescale to parameterize wave-supported gravity flow is appropriate [e.g.,Wright et al.,2001].

[30]Figure 7presents another high concentration case (burst #9),where the magnitude of measured r.m.s.wave velocity (52cm/s)and alongshore current velocity (7cm/s)are both similar to those in burst #5.However,in this case the variation of the wave-velocity amplitude within the wave group is more uniform (Figure 7a).Measured fluid-mud concentration in this case is smaller than that in burst #5with a maximum near bed concentration of about 60g/l (Figure 7b),possibly limited by the total amount of available soft mud.Hence,a resuspension coefficient of g =0.007is used in the model.The model predicts a time-averaged concentration profile that is more uniformly distributed throughout the region below the lutocline as compared to the measured data (Figure 7b).The downslope

gravity flow is predicted well by the model (Figure 7c).Moreover,the predicted alongshore velocity profile close to the bed is almost zero (in fact,slightly negative,see Figure 7e).This feature is not directly measured in the field observations.Clearly,further measurements that resolve velocity structure in the concentrated region of fluid mud are highly desirable.

[31]One of the major factors controlling the dynamics of fluid mud is the wave energy.According to field observa-tion when the wave energy is low,a high-concentration fluid-mud event cannot persist and downslope gravity flow is not observed [e.g.,Traykovski et al.,2000,2007].Our numerical experiments also indicate that when artificially reducing the magnitude of wave forcing to 20%for high concentration burst #5(r.m.s.velocity reduced to 11cm/s),time-averaged sediment concentration within the wave boundary layer reduces significantly and the subsequent downslope gravity flow stops.This is consistent with analysis of field observations that the shelf slope is too mild for auto-suspension [e.g.,Middleton ,1993]typical of turbidity currents.

[32]The numerical model is further used to calculate a typical dilute suspension event (burst #16)observed at Po prodelta (Figure 8).The r.m.s.wave velocity measured at 75cmab is only 18cm/s (as compare to 50cm/s for the gravity flow cases)with a stronger along-shelf current of à23cm/s (red curve in Figure 8a).Both the observed concentration and model results (Figure 8b)suggest

that

Figure 8.Time-averaged model results (dilute event burst #16[Traykovski et al.,2007])driven by (a)field measured flow velocities at 75cmab (solid and dashed curves represent x-and y-directions).(b)Measured floc concentration (dots)is predicted well by the model (solid curve,d =60m m ,s =1.498,n f =2.4).(c)The predicted velocity profiles in both cross-shelf and along-shore directions are of logarithmic shape.Symbols are measured data at 75cmab.No gravity flow features are observed in the cross-shelf flow.(d)The model predicts a strong along-shelf sediment flux.

dilute sediment is suspended much higher above the wave boundary layer and a near-bed lutocline is not observed. Notice that due to the sharp changes of concentration near the bed,the acoustic instrument cannot accurately determine the mud bed and the mobile sediment.Hence,measured concentration at the lowest3cm near the bed is not reliable (dots with light color).In the cross-shelf direction(with Po shelf slope a=0.002),the model predicts a logarithmic shape of velocity profile due to weak cross-shelf current without gravity-flow features(Figure8c).For a relatively dilute suspension condition considered here at the Po prodelta,the major transport is in the along-shelf direction due to strong along-shelf currents(Figure8d).

[33]In summary,the proposed model captures the essen-tial features of wave-supported gravity-driven mud flow observed at the Po prodelta.Two major mechanisms are responsible for the dynamics of wave-supported gravity-driven mud flow.The downslope gravitational term in the momentum equations is certainly the driving force of the gravity flow.However,the effects of sediment on damping the flow turbulence must be considered otherwise sediment can not be confined within the thin lutocline to enhance the magnitude of the downslope gravitational force.

4.Concluding Remarks

[34]The model based on simplified two-phase formula-tion is able to capture at least qualitatively the dynamics of tidal-driven lutocline behavior on the Amazon shelf and wave-supported gravity-driven fluid mud transport at the Po prodelta.Model results suggest that the effect of sediment-induced stratification on damping the carrier fluid turbu-lence plays a major role on the fluid mud dynamics, consistent with earlier studies[e.g.,Trowbridge and Kineke, 1994;Winterwerp,2001].The existence of downslope gravity flow depends on the intensity of wave energy and the availability of soft mud[Traykovski et al.,2007].The present model can be driven by various wave and current forcing and predicts flow characteristics for both high and dilute concentration events that are consistent with observa-tions.However,the availability of mud from the bed is not explicitly modeled here and deserves future work.Further quantitative model-data comparison and model calibration also require more detailed measured data.Future work will focus on implementing detailed dynamics on mud-bed con-solidation and various mud rheology closures.The floc aggregate and breakup processes may be considered by incorporating additional constitutive relation for floc size [e.g.,Winterwerp,1998].The small-scale model proposed here eventually can be used to study improved parameter-izations of detailed near-bed sediment dynamics required by large-scale coastal models[Harris et al.,2004,2005]. Appendix A

[35]The two-phase equations for carrier fluid and dis-persed sediment particles provides a complete framework for particulate transport under various forcing conditions and transport mechanisms[e.g.,Gidaspow,1994;Nott and Brady,1994;Hsu et al.,2004;Pasini and Jenkins,2005]. However,typical fine sediment transport processes are of much longer timescale ranging from hours to several tidal cycles.Hence,the complete two-phase equations are sim-plified here for computational efficiency.The general two-phase equations for boundary layer sediment transport consist of continuity equations for fluid and sediment [e.g.,Hsu et al.,2004]

r f

@1à f

àá

@t

t

@1à f

àá

w f

@z

!

?0;eA1T

and

r s

@ f

@t

t

@ f w s

@z

!

?0eA2T

where z denotes the direction normal to the bed, f is the sediment volume concentration, w f, w s are the fluid and sediment velocities in z direction and r f,r s the fluid and sediment densities,respectively.In the dominant flow (x)direction,the momentum equations for fluid and sediment phases are written as

r f

@1à f

àá

u f

@t

?à1à f

àá@ P f

@x

t

@t f

zx

@z

tr f1à f

àá

g x

à f

r s

T p

u fà u s

àá

à

r s

T p

;eA3Tand

r s

@ f u s

@t

?à f

@ P f

@x

t

@t s

zx

@z

tr s f g x

t f

r s

T p

u fà u s

àá

t

r s

T p

f u f0:eA4T

Similarly,the momentum equations in the z-direction for fluid and sediment phases are

r f

@1à f

àá

w f

@t

?à1à f

àá@ P f

@z

t

@t f

zz

@z

tr f1à f

àá

g z

à f

r s

T p

w fà w s

àá

à

r s

T p

f w f0;eA5Tand

r s

@ f w s

@t

?à f

@ P f

@z

t

@t s

zz

@z

tr s f g z

t f

r s

T p

w fà w s

àá

t

r s

T p

f w f0:eA6T

In equations(A3)to(A6), P f is the fluid pressure,g x and g z are the gravitationaly acceleration in the x and z direction, t zx f and t zz f are the fluid shear and normal stresses,includ-ing viscous and turbulent components and t zx s and t zz s are the sediment intergranular stresses[e.g.,Bagnold,1954]. The terms in the second row of equations(A3)to(A6) account for interphase momentum exchange,modeled as drag force here appropriate for fine particles with T p the particle response time[e.g.,Drew,1976].

[36]Because these(ensemble)averaged flow equations are obtained via a separation of scales between mean flow (e.g.,u f)and fluctuation(u f’),the drag is expressed into a

contribution that is proportional to the mean velocity difference between fluid and sediment(first term in the second row of(A3)to(A6))and the other contribution due to the interaction between the fluid velocity fluctuation and sediment concentration(second term),i.e.,the turbulent suspension.By further incorporating closures on turbulent stress,turbulent suspension and sediment stress,the two-phase formulation has been adopted to model transport of medium to coarse sediment in wave boundary layer[e.g., Dong and Zhang,2002;Hsu et al.,2004]or aeolian transport[Pasini and Jenkins,2005].

[37]For typical fine sediment transport processes in the nature,the timescale involved are often tremendous to allow solving the full two-phase equations(A1)–(A6).Here,the full two-phase equations are further simplified(see Nott and Brady[1994]for a similar derivation).Because fine sedi-ment(diameter d%<100m m)has very small particle response time(%<0.001sec)compared with typical timescale of forcing(e.g.,waves,tides),in terms of the ensemble-averaged velocity,the sediment is expected to follow the fluid velocity closely and the fluid-sediment flow may be well described by a single mean flow velocity(i.e., one momentum equation represents the flow).Hence,we neglect the acceleration terms(left-hand-side)of the sedi-ment momentum equations for fine sediment of small T p. Substituting the reduced sediment x-momentum equation into fluid x-momentum equation(A3),we obtain:

@ u f @t ?

à1

r f1à f

àá@

P f

@x

t

1

r f1à f

àá@t f xz

@z

t

@t s

xz

@z

!

tg x

sà1

eT f

1à f

!

;

eA7T

with s=r s/r f the sediment specific gravity,g x the gravitational acceleration in the x direction and t xz f,t xz s the fluid and sediment stresses.The horizontal pressure gradient@P/@x is given as a prescribed flow forcing of the bottom boundary layer.A similar substitution of the reduced sediment z-momentum equation into the sediment con-tinuity equation(A2)gives an advection-diffusion equation for concentration f:

@ f

t@

0t

T p@t s

zzt f T p r s g

z

à

@ P f

!

?0:eA8T

Near the bed,equation(A8)can be further simplified by adopting boundary layer approximation to the first-order [e.g.,Trowbridge and Madsen,1984].The vertical(z)fluid momentum equation(A5)is thus reduced to give an explicit relation for vertical pressure gradient:

@P f @z ?r f1àf

eTg ztr s f g zeA9T

and the fluid continuity equation(A1)is readily satisfied (i.e., w f=0).Substituting(A9)into(A8),we obtain

@ f @t ?à

@

@z

f1à f

àá

T p1àsà1

àá

g zt0t

T p

r s

@t s

zz

@z

!

;eA10T

[38]When the turbulent eddy viscosity v t is adopted in

this study to calculate fluid turbulent stress(section2.2.1),

the gradient transport assumption is used to calculate

turbulent suspension:

f w f0?à

n t

s c

@ f

@z

eA11T

with s c the Schmidt number.In the following,the overbar

that represents ensemble-averaged quantity and the super-

script f for velocity and pressure are dropped for simplicity.

Substituting(A11)into(A7)and(A10),in the present1D

water column model the flow velocity u is calculated by the

momentum equation

@u

?

à1@P

t

1@t f

xzt@t

s

xz

!

tg x

sà1

eTf

!

;

eA12T

and the solution of sediment concentration f is calculated

by

@f

@t

@

@z

f1àf

eTT p1àsà1

àá

g zà

n t

s c

@f

@z

t

T p

r s

@t s

zz

@z

!

:

eA13T

[39]In summary,a simplified formulation is derived from

the two-phase flow formulation in order to provide a

middle-ground approach appropriate for fine sediment

transport.The new formulation,though looks simple,still

improves upon the conventional single-phase formulation in

several aspects that allows calculating concentrated sedi-

ment transport.Firstly,the new formulation incorporates

rheological terms in both the momentum and sediment

equations.Secondly,terms related to gravity in the original

two-phase equations are reduced to the downslope gravita-

tional term in the momentum equations allowing calculation

of gravity-driven sediment flows.Finally,the effects of

sediment on damping the flow turbulence are preserved in

the balance equations of turbulence kinetic energy and

turbulent dissipation rate(see equations(9)and(10)).

Mechanisms related to interactions between flow turbulence

and sediment are critical to the overall modeling of sedi-

ment dynamics.

[40]Acknowledgments.This research is supported by the Office of

Naval Research(N00014-05-1-0082),the National Science Foundation

(CTS-0426811)and the WHOI Penzance support for Assistant Scientist.

References

Bagnold,R.A.(1954),Experiments on a gravity-free dispersion of large

solid spheres in a Newtonian fluid under shear,Proc.R.Soc.London,Ser.

A,225,49–63.

Bhattacharya,J.P.,and L.Giosan(2003),Wave-influenced deltas:geomor-

phological implications for facies reconstruction,Sedimentology,50,

187–210.

Coleman,N.L.(1986),Effects of suspended sediment on the open-channel

velocity distribution,Water Resour.Res.,22(10),1377–1384.

Dalrymple,R.A.,and P.L.Liu(1978),Waves over soft mud beds:a two-

layer fluid mud model,J.Phys.Oceanogr.,8,1121–1131.

Dong,P.,and K.Zhang(2002),Intense near-bed sediment motions in

waves and currents,Coastal Eng.,45(2),75–87.

Drake,D.E.,and D.A.Cacchione(1989),Estimate of the suspended sediment reference concentration and resuspension coefficient from near-bottom observations on the California Shelf,Cont.Shelf Res.,9, 51–64.

Drew,D.A.(1976),Production and dissipation of energy in the turbulent flow of a particle-fluid mixture,with some results on drag reduction, J.Appl.Mech.,43,543–547.

Elghobashi,S.E.,and T.W.Abou-Arab(1983),A two-equation turbulence model for two-phase flows,Phys.Fluids,26,931–938.

Friedrichs,C.T.,and L.D.Wright(2004),Gravity-driven sediment trans-port on the continental shelf:implication for equilibrium profiles near river mouth,Coastal Eng.,51,795–811.

Geyer,W.R.,P.S.Hill,and G.C.Kineke(2004),The transport,transfor-mation and dispersal of sediment by buoyant coastal flows,Cont.Shelf Res.,24(7–8),927–949.

Gidaspow,D.(1994),Multiphase Flow and Fludization:Continuum and Kinetic Theory Descriptions With Applications,Elsevier,New York. Gust,G.(1976),Observations on turbulent-drag reduction in a dilute sus-pension of clay in sea-water,J.Fluid Mech.,75,29–47.

Hagatun,K.,and K.Eidsvik(1986),Oscillating turbulent boundary layer with suspended sediments,J.Geophys.Res.,91,13,045–13,055. Harris,C.K.,P.A.Traykovski,and R.W.Geyer(2004),Including a near-bed turbid layer in a three-dimensional sediment transport model with application to the Eel River Shelf,Northern California,in Proceedings of the Eighth Conference on Estuarine and Coastal Modeling,edited by M.Spaulding,pp.784–803,Am.Soc.of Civ.Eng.,Reston,Va. Harris,C.K.,P.A.Traykovski,and W.R.Geyer(2005),Flood dispersal and deposition by near-bed gravitational sediment flows and oceano-graphic transport:A numerical modeling study of the Eel River shelf, northern California,J.Geophys.Res.,110,C09025,doi:10.1029/ 2004JC002727.

Hetsroni,G.(1989),Particle-turbulent interaction,Int.J.Multiphase Flow, 15,735–746.

Hill,P.S.,G.V oulgaris,and J.H.Trowbridge(2001),Controls on floc size in a continental shelf bottom boundary layer,J.Geophys.Res.,106(C5), 9543–9549.

Hsu,T.-J.,and P.L.-F.Liu(2004),Toward modeling sand suspension under waves,J.Geophys.Res.,109,C06018,doi:10.1029/2003JC002240. Hsu,T.-J.,J.T.Jenkins,and P.L.-F.Liu(2003),On two-phase sediment transport:Dilute flow,J.Geophys.Res.,108(C3),3057,doi:10.1029/ 2001JC001276.

Hsu,T.-J.,J.T.Jenkins,and P.L.-F.Liu(2004),On two-phase sediment transport:sheet flow of massive particles,Proc.R.Soc.London,Ser.A, 460(2048),2223–2250.

Jenkins,J.T.,and D.F.McTigue(1990),Transport processes in concen-trated suspensions:the role of particle fluctuation,in Two-Phase Flow and Waves,edited by D.D.Joseph and D.G.Schaeffer,pp.70–79, Springer,New York.

Kineke,G.C.,R.W.Sternberg,J.H.Trowbridge,and W.R.Geyer(1996), Fluid-mud processes on the Amazon continental shelf,Cont.Shelf Res., 16(5/6),667–696.

Kranenburg,C.(1994),On the fractal structure of cohesive sediment ag-gregates,Estuarine Coastal Shelf Sci.,39,451–460.

Leighton,D.,and A.Acrivos(1987),The shear-induced migration of par-ticle in concentrated suspensions,J.Fluid Mech.,181,415–439.

Li,Y.G.,and T.M.Parchure(1998),Mudbanks of the southwest coast of India,VI:Suspended sediment profiles,J.Coastal Res.,14(4),1363–1372.

Maa,P.-Y.,and A.J.Mehta(1987),Mud erosion by waves:a laboratory study,Cont.Shelf Res.,7(11/12),1269–1284.

Mellor,G.(2002),Oscillatory bottom boundary layers,J.Phys.Oceanogr., 32(11),3075–3088.

Middleton,G.V.(1993),Sediment deposition from turbidity current,Annu. Rev.Earth Planet.Sci.,21,89–114.

Mulder,T.,and J.P.M.Syvitski(1995),Turbidity currents generated at river mouths during exceptional discharges to the world oceans,J.Geol., 103,285–299.

Nittrouer,C.A.,D.J.DeMaster,A.G.Figueiredo,and J.M.Rine(1991), AmasSeds:an interdisciplinary investigation of a complex coastal envir-onment,Oceanography,4,3–7.

Nott,P.R.,and J.F.Brady(1994),Pressure-driven flow of suspensions: simulation and theory,J.Fluid Mech.,275,157–199.Pasini,J.M.,and J.T.Jenkins(2005),Aeolian transport with collisional suspension,Philos.Trans.Soc.London,Ser.A,363(1832),1625–1646. Philips,R.J.,R.C.Armstrong,R.A.Brown,A.L.Graham,and J.R. Abbott(1992),A constitutive model for concentrated suspensions that accounts for shear-induced particle migration,Phys.Fluids,A4,30–40. Puig,P.,A.S.Ogston,B.L.Mullenbach,C.A.Nittrouer,J.D.Parsons,and R.W.Sternberg(2004),Storm-induced sediment gravity flows at the head of the Eel submarine canyon,northern California margin,J.Geo-phys.Res.,109,C03019,doi:10.1029/2003JC001918.

Richardson,J.F.,and W.N.Zaki(1954),Sedimentation and fluidization, part1,Trans.Inst.Chem.Eng.,32,35–53.

Rodi,W.(1993),Turbulence models and their application in Hydraulics—A state of the art review,Int.Assoc.of Hydraul.Eng.and Res.,Delft, Netherlands.

Ross,M.A.,and A.Mehta(1989),On the mechanics of lutoclines and fluid mud,J.Coast.Res.,Spec.Issue,5,51–61.

Sanford,L.P.,and J.P.Halka(1993),Assessing the paradigm of mutually exclusive erosion and deposition of mud,with examples from upper Chesapeake Bay,Mar.Geol.,114,37–57.

Sanford,L.P.,and J.P.-Y.Maa(2001),A unified erosion formulation for fine sediments,Mar.Geol.,179,9–23.

Sheremet,A.,and G.W.Stone(2003),Observations of nearshore wave dissipation over muddy sea beds,J.Geophys.Res.,108(C11),3357, doi:10.1029/2003JC001885.

Smith,J.D.,and S.R.McLean(1977),Spatially averaged flow over a wavy surface,J.Geophys.Res.,82,1735–1746.

Squires,K.D.,and J.K.Eaton(1994),Effect of selective modification of turbulence on two-equation models for particle-laden turbulent flows, J.Fluids Eng.,A116,778–784.

Sumer,B.M.,A.Kozakiewicz,J.Fredsoe,and R.Deigaard(1996),Velo-city and concentration profiles in sheet-flow layer of movable bed, J.Hydraul.Eng.,122,549–558.

Toorman,E.A.(1999),Sedimentation and self-weight consolidation:con-stitutive equations and numerical modelling,Geotechnique,49(6),709–726.

Traykovski,P.,W.R.Geyer,J.D.Irish,and J.F.Lynch(2000),The role of wave-induced fluid mud flows for cross-shelf transport on the Eel river continental shelf,Cont.Shelf.Res.,20,2113–2140.

Traykovski,P.,P.Wiberg,and W.R.Geyer(2007),Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf,in press. Trowbridge,J.,and O.S.Madsen(1984),Turbulent wave boundary layers: 2.Second-order theory and mass transport,J.Geophys.Res.,89,7999–8007.

Trowbridge,J.H.,and G.C.Kineke(1994),Structure and dynamics of fluid mud on the Amazon continental shelf,J.Geophys.Res.,99(C1), 865–874.

Winterwerp,J.C.(1998),A simple model for turbulence induced floccula-tion of cohesive sediments,J.Hydraul.Res.,36(3),309–326. Winterwerp,J.C.(2001),Stratification effects by cohesive and noncohe-sive sediment,J.Geophys.Res.,106(C10),22,559–22,574. Winterwerp,J.C.,and W.G.M.van Kesteren(2004),Introduction to the Physics of Cohesive Sediment in the Marine Environemnt,Elsevier,New York.

Wright,L.D.,and C.A.Nittrouer(1995),Dispersal of river sediments in coastal seas:six contrasting cases,Estuaries,18,494–508.

Wright,L.D.,C.T.Friedrichs,S.C.Kim,and M.E.Scully(2001),Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves,Mar.Geol.,175,25–45.

Zarraga,I.E.,D.A.Hill,and D.T.Leighton(2000),The characterization of the total stress of concentrated suspension of noncolloidal spheres in Newtonian fluids,J.Rheol.,44(2),185–220.

àààààààààààààààààààààà

T.-J.Hsu,Civil and Coastal Engineering,University of Florida, Gainesville,FL32611,USA.(thsu@https://www.doczj.com/doc/3813901506.html,)

G.C.Kineke,Geology and Geophysics,Boston College,Chestnut Hill, MA02467,USA.

P.A.Traykovski,Applied Ocean Physics and Engineering,Woods Hole Oceanographic Institution,Woods Hole,MA02540,USA.

船舶原理

1.什么是船舶的浮性? 船舶在各种装载情况下具有漂浮在水面上保持平衡位置的能力 2.什么是静水力曲线?其使用条件是什么?包括哪些曲线?怎样用静水力曲线查某一吃水时的排水量和浮心位置? 船舶设计单位或船厂将这些参数预先计算出并按一定比例关系绘制在同一张图中;漂心坐标曲线、排水体积曲线;当已知船舶正浮或可视为正浮状态下的吃水时,便可在静水力曲线图中查得该吃水下的船舶的排水量、漂心坐标及浮心坐标等 3.什么是漂心?有何作用?平行沉浮的条件是什么? 船舶水线面积的几何中心称为漂心;根据漂心的位置,可以计算船舶在小角度纵倾时的首尾吃水;船舶在原水线面漂心的铅垂线上少量装卸重量时,船舶会平行沉浮;(1)必须为少量装卸重物(2)装卸重物p的重心必须位于原水线面漂心的铅垂线上 4.什么是TPC?其使用条件如何?有何用途? 每厘米吃水吨数是指船在任意吃水时,船舶水线面平行下沉或上浮1cm时所引起的排水量变化的吨数;已知船舶在吃水d时的tpc数值,便可迅速地求出装卸少量重物p之后的平均吃水变化量,或根据吃水的改变量求船舶装卸重物的重量 5.什么是船舶的稳性? 船舶在使其倾斜的外力消除后能自行回到原来平衡位置的性能。 6.船舶的稳性分几类? 横稳性、纵稳性、初稳性、大倾角稳性、静稳性、动稳性、完整稳性、破损稳性 7.船舶的平衡状态有哪几种?船舶处于稳定平衡状态、随遇平衡状态、不稳定平衡状态的条件是什么? 稳定平衡、不稳定平衡、随遇平衡 当外界干扰消失后,船舶能够自行恢复到初始平衡位置,该初始平衡状态称为稳定平衡当外界干扰消失后,船舶没有自行恢复到初始平衡位置的能力,该初始平衡状态称为不稳定平衡 当外界干扰消失后,船舶依然保持在当前倾斜状态,该初始平衡状态称为随遇平衡8.什么是初稳性?其稳心特点是什么?浮心运动轨迹如何? 指船舶倾斜角度较小时的稳性;稳心原点不动;浮心是以稳心为圆心,以稳心半径为半径做圆弧运动 9.什么是稳心半径?与吃水关系如何? 船舶在小角度倾斜过程中,倾斜前、后的浮力作用线的交点,与倾斜前的浮心位置的线段长,称为横稳性半径!随吃水的增加而逐渐减少 10.什么是初稳性高度GM?有何意义?影响GM的因素有哪些?从出发港到目的港整个航行过程中有多少个GM? 重心至稳心间的距离;吃水和重心高度;许多个 11.什么是大倾角稳性?其稳心有何特点? 船舶作倾角为10°-15以上倾斜或大于甲板边缘入水角时点的稳性 12.什么是静稳性曲线?有哪些特征参数? 描述复原力臂随横倾角变化的曲线称为静稳性曲线;初稳性高度、甲板浸水角、最大静复原力臂或力矩、静稳性曲线下的面积、稳性消失角 13.什么是动稳性、静稳性? 船舶在外力矩突然作用下的稳性。船舶在外力矩逐渐作用下的稳性。 14.什么是自由液面?其对稳性有何影响?减小其影响采取的措施有哪些? 可自由流动的液面称为自由液面;使初稳性高度减少;()减小液舱宽度(2)液舱应

教师基本功训练实施方案

为了加快学校发展,全面提高教师业务素质,根据县教育局关于提高教师队伍素质的要求,现就开展教师教学基本功训练做如下实施方案。 一、指导思想与目标要求: 教师基本功是教师从事教学工作必须具备的最根本的职业技能。以提高教师岗位实际能力为目的,牢固练就扎实五项基本功:普通话、三笔字、说课评课。使每位教师都能练就一笔好字;说一口流利的普通话;独立设计一个完整的教学案例;制作一个合格的多媒体课件;上好一堂学生满意的课;写出一篇内容丰富的教学论文。要通过开展教师基本功训练的一系列活动。学校将加强领导,制定措施,层层落实,使人人参与,练有所得,练以致用,持之以恒,提高教师整体素质,为提高教学质量打好基础。 二、基本功训练的原则: 1、在训练内容上,坚持注重实际,讲求实效,从课堂教学直观行为及“三字一话”入手。 2、在训练形式上,坚持以岗位练兵为主,自学为主,业务训练为主的原则,采取集中辅导与个人自学相结合,培训学习与实践锻炼相结合,定期开展各种比赛活动,以赛促练。规划达标时限,限期进行达标。 3、在工作组织上,坚持自练、教研、比赛、展示四位一体的原则。 4、根据学校教师实际情况,分层培训,使培训更有实效性,针对性。 5、在评价验收上,坚持评比检查和教师量化管理相结合的原则。 三、教师基本功训练内容: 1、普通话方面:能熟练掌握汉语拼音,用普通话进行教学;在公众场合即席讲话,用词准确,条理清楚,节奏适宜。 2、写字方面:能正确运用粉笔、钢笔按照汉字的笔画,笔顺和间架结构,书写规范的楷书字体,并具有一定的速度。 3、教学设计、教学论文、随笔、课堂教学方面:要求教师按照课程改革标准,随平时的教学活动认真改进,达到要求。 5、说课评课方面:能设计具有可操作性、明显特征的说课稿,并结合课件进行脱稿说课,思路清晰;能应用课改理论对一堂课进行较有针对性的评价。 四、培训和评选安排: 1、培训活动全体教师都必须参与。 2、分组情况:以教研组为单位。 3、活动分三个阶段进行:

船舶原理及结构课程教学大纲

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码:NA325 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。 2

2020年研究生入学考试考纲

武汉理工大学交通学院2020年研究生入学考试大纲 2020年研究生入学考试考纲 《船舶流体力学》考试说明 一、考试目的 掌握船舶流体力学相关知识是研究船舶水动力学问题的基础。本门考试的目的是考察考生掌握船舶流体力学相关知识的水平,以保证被录取者掌握必要的基础知识,为从事相关领域的研究工作打下基础。 考试对象:2020年报考武汉理工大学交通学院船舶与海洋工程船舶性能方向学术型和专业型研究生的考生。 二、考试要点 (1)流体的基本性质和研究方法 连续介质概念;流体的基本属性;作用在流体上的力的特点和表述方法。 (2)流体静力学 作用在流体上的力;流体静压强及特性;压力体的概念,及静止流体对壁面作用力计算。 (3)流体运动学 研究流体运动的两种方法;流体流动的分类;流线、流管等基本概念。 (4)流体动力学 动量定理;伯努利方程及应用。 (5)船舶静力学 船型系数;浮性;稳性分类;移动物体和液舱内自由液面对船舶稳性的影响;初稳性高计算。 (6)船舶快速性 边界层概念;船舶阻力分类;尺度效应,及船模阻力换算为实船阻力;方尾和球鼻艏对阻力的影响;伴流和推力减额的概念;空泡现象对螺旋桨性能的影响;浅水对船舶性能的影响。 三、考试形式与试卷结构 1. 答卷方式:闭卷,笔试。 2. 答题时间:180分钟。 3. 试卷分数:总分为150分。 4. 题型:填空题(20×1分=20分);名词解释(10×3分=30分);简述题(4×10分=40分);计算题(4×15分=60分)。 四、参考书目 1. 熊鳌魁等编著,《流体力学》,科学出版社,2016。 2. 盛振邦、刘应中,《船舶原理》(上、下册)中的船舶静力学、船舶阻力、船舶推进部分,上海交通大学出版社,2003。 1

教师基本功训练计划

小学教师基本功训练计划 为了加快教育发展,全面提高教师政治业务素质,更好的实施新课程改革,全面推行素质教育,培养发展型人才,多年来我校一直注重提高教师的基本功,本学年继续有效的开展教师基本功训练工作,特制定如下训练计划: 一、指导思想与目标要求 教师基本功是教师从事教学工作必须具备的最根本的职业技能。为深入贯彻落实学校教育教学工作意见,以提高教师岗位实际能力为目的,牢固练就扎实的基本功。使每位教师都能练就一笔好字;说一口流利的普通话;独立设计一个完整的教学案例;制作一个合格的多媒体课件;上好一堂学生满意的课;写出一篇内容丰富的教学论文。要通过开展教师基本功训练的一系列活动,在全体教职工中,牢固树立“以质兴教”的教育质量年意识。同时,学校将加强领导,制定措施,层层落实,使人人参与,练有所得,练以致用,持之以恒,提高教师整体素质,为提高教学质量打好基础。 二、基本功训练的原则: 1、在训练内容上,坚持注重实际,讲求实效,从课堂教学直观行为及“三字一话一机”同时入手,进行全面培训。 2、在训练形式上,坚持以岗位练兵为主,自学为主,业务训练为主的原则,采取集中辅导与个人自学相结合,培训学习与实践锻炼相结合,定期开展各种比赛活动,以赛促练。规划达标时限,限期进行达标。 3、在工作组织上,坚持自练、教研、比赛三位一体的原则。 4、在评价验收上,坚持评比检查和教师量化管理相结合的原则。 三、教师基本功训练内容有以下三方面: 根据上级要求,结合我校实际情况,我们将利用有限时间组织教师完成以下方面的训练:1、普通话方面:能熟练掌握汉语拼音,用普通话进行教学,普通话一般应达到国家语委制定的《普通话水平测试》二级水平;在公众场合即席讲话,用词准确,条理清楚,节奏适宜。我们要求每位教师都要在校内用普通话对话。 2、写字方面:能正确运用粉笔、钢笔、毛笔按照汉字的笔画,笔顺和间架结构,书写规范的正楷体字,并具有一定的速度。要求每位教师每周书写钢笔字16开纸字帖两张,毛笔字50个,在教学板书中练习粉笔字。 3、学习现代化教育技术方面:能熟练操作电脑,制作与教学内容相符的多媒体课件,能运用多媒体进行教学。 4、教学设计、教学论文、课堂教学方面:要求教师按照课程改革标准,随平时的教学活动认真改进,达到要求。 四、教师基本功训练的保障措施及要求: 1、切实提高在职教师对基本功训练意义的认识。抓住教师基本功技能训练的关键是提高教师对这项工作重要意义的认识,要组织教师认真学习,研究讨论、统一思想,明确要求,形成共识,将教师基本功训练要求转化为自觉行动,要落实目标责任制,校长、主任分级管理,分工负责,层层发动,真正使教师基本功训练做到人人重视,成为每个人的实际行动。 2、坚持把师德教育放在训练工作的首位,教师基本功训练主要是针对教师业务素质的培训,但师德教育是搞好训练的重要前提和保证。学校要开展系统的,有针对性的师德培训活动和师德教育活动,通过加强师德建设为技能训练提供强大动力。保证基本功训练达到预期效果。 3、集中培训与自觉训练相结合,讲求实效。教师“三字一话一机”实施先集中培训后自学训练的方式,要取得实效,必须打破形式主义,依靠教师的自觉行为,因此,既要统一组织全体教师参加培训学习,又要以教师自学训练为主,人人建立各种笔记,保证落到实处。 4、建立激励机制,强化检查评比,要重视基本功训练的激励机制的建立,一是反复宣传“教

《船舶原理与结构》课程教学提纲

《船舶原理与结构》课程教学大纲 一、课程基本信息 1、课程代码: 2、课程名称(中/英文):船舶原理与结构/Principles of Naval Architecture and Structures 3、学时/学分:60/3.5 4、先修课程:《高等数学》《大学物理》《理论力学》 5、面向对象:轮机工程、交通运输工程 6、开课院(系)、教研室:船舶海洋与建筑工程学院船舶与海洋工程系 7、教材、教学参考书: 《船舶原理》,刘红编,上海交通大学出版社,2009.11。 《船舶原理》(上、下册),盛振邦、刘应中主编,上海交通大学出版社,2003、2004。 《船舶原理与结构》,陈雪深、裘泳铭、张永编,上海交通大学出版社,1990.6。 《船舶原理》,蒋维清等著,大连海事大学出版社,1998.8。 相关法规和船级社入级规范。 二、课程性质和任务 《船舶原理与结构》是轮机工程和交通运输工程专业的一门必修课。它的主要任务是通过讲课、作业和实验环节,使学生掌握船舶静力学、船舶阻力、船舶推进、船舶操纵性与耐波性和船体结构的基本概念、基本原理、基本计算方法,培养学生分析、解决问题的基本能力,为今后从事工程技术和航运管理工作,打下基础。 本课程各教学环节对人才培养目标的贡献见下表。

三、教学内容和基本要求 课程教学内容共54学时,对不同的教学内容,其要求如下。 1、船舶类型 了解民用船舶、军用舰船、高速舰船的种类、用途和特征。 2、船体几何要素 了解船舶外形和船体型线力的一般特征,掌握船体主尺度、尺度比和船型系数。 3、船舶浮性 掌握船舶的平衡条件、船舶浮态的概念;掌握船舶重量、重心位置、排水量和浮心位置的计算方法;掌握近似数值计算方法—梯形法和辛普森法。

2019年上海交通大学船舶与海洋工程考研良心经验

2019年上海交通大学船舶与海洋工程考研良心经验 我本科是武汉理工大学的,学的也是船舶与海洋工程,成绩属于中等偏上吧,也拿过两次校三等奖学金,六级第二次才考过。 由于种种原因,我到了8月份才终于下定决心考交大船海并开始准备,只有4个多月,时间比较紧迫。但只要你下定决心,什么时候开始都不算晚,也不要因为复习得不好,开始的晚了就降低学校的要求,放弃了自己的名校梦。每个人情况不一样,自己好好做决定,即使暂时难以决定,也要早点开始复习。决定是在可以在学习过程中做的,学习计划也是可以根据自己的情况更改的。所以即使不知道考哪,每天学习多久,怎样安排学习计划,那也要先开始,这样你才能更清楚学习的难度和量。万事开头难,千万不要拖。由于准备的晚怕靠个人来不及,于是在朋友推荐下我报了新祥旭专业课的一对一,个人觉得一对一比班课好,新祥旭刚好之专门做一对一比较专业,所以果断选择了新祥旭,如果有同学需要可以加卫:chentaoge123 上交船海考研学硕和专硕的科目是一样的,英语一、数学一、政治、船舶与海洋工程专业基础(801)。英语主要是背单词和刷真题,我复习的时间不多,背单词太花时间,就慢慢放弃了,就只是刷真题,真题中出现的陌生单词,都抄到笔记本上背,作文要背一下,准备一下套路,最好自己准备。英语考时感觉着超级简单,但只考了65分,还是很郁闷的。数学是重中之重,我八月份开时复习,直接上手复习全书,我觉得没有必要看课本,毕竟太基础,而且和考研重点不一样,看了课本或许也觉得很难,但是和考研不沾边。计划的是两个月复习一遍,开始刷题,然后一边复习其他的,可是计划跟不上变化,数学基础稍差,复习的较慢,我又不想为了赶进度而应付,某些地方掌握多少自己心里有数,若是只掌握个大概,也不利于后面的学习。所以自打复习开始,我就没放下过数学,期间也听一些网课,高数听张宇、武忠祥的,线代肯定是李永乐,概率论听王式安,课可以听,但最主要还是自己做题,我只听了一些强化班,感觉自己复习不好的地方听了一下。我真题到了11月中旬才开始做,实在是太晚,我8月开始复习时网上就有人说真题刷两遍了,能不慌吗,但再慌也要淡定,不要因此为了赶进度而自欺欺人,做什么事外界的声音是一回事,自己的节奏要自己把握好,不然

教师教学基本功训练与考核实施方案

教师教学基本功训练与考核实施方案 为了全面提高新课程实施水平,建立一支可持续发展的教学基本功扎实、学科素养较高的教师队伍,特制定本方案。 一、指导思想 以科学发展观为指导,以推进教育均衡发展为目标,以提高教学质量为主线,以提升教师执教能力为重点,结合教师专业成长规划,依托校本培训对全体教师进行课堂教学基本能力的专门训练,全力打造专业技能过硬、教学特色鲜明的教师队伍。 二、参训考核对象 全体在编在岗教师。 三、训练内容 中小学教师“教学基本功”主要指:教学设计、教学表达、教学测评、教学研究、学科专业技能、教学资源开发与利用等六项基本功。 四、训练原则 1.坚持面向全体与分层推进相结合的原则。 所有专任教师都要立足实际,本着提高本岗位的专业素质的目的,参加大练教学基本功活动。做到因需而练,各扬所长,分步推进。 2.坚持校本培训与个人研修相结合的原则。 坚持集中培训与自主学习相结合,自学自练和活动锻炼相结合。学校要开展形式多样的校本培训活动,对教师进行全方位、多层面的专业知识及技能培训;教师要积极主动参与培训,并充分利用时间与机会进行自我研修,苦练基本功,提高从教技艺。

3.坚持全面发展与特长发展相结合的原则。 开展基本功训练重在全面提升教师的从教素质,促进教师奠定扎实的教学基本功。在此基础上,每位教师要根据自身实际明确主攻目标,练就独特的教学特长。 4.坚持校本评价与市县考核相结合的原则。 夯实教学基本功是一个不断累积的过程。对教学基本功的达标情况要实行自我检查、校本评价、市县联动考核相结合的办法。 五、实施步骤 以三年为一个周期。具体实施步骤为: 第一阶段:宣传发动阶段 1.把训练活动纳入本地、本校发展规划和教师专业发展计划之中,并结合本地、本校的实际,健全组织,建立制度,细化责任,落实到人,逐层推进。 2.召开启动大会,向广大教师宣传、阐释在新的背景下开展教学基本功训练的必要性和重要性。认真部署训练计划,组织教师学习达标要求,统一思想,达成共识,营造“大练兵、大比武”的氛围,将达标要求自觉转化为每个人的自练行动。 3.以学科组为单位,对照达标细则,采取一人一案的办法,要求教师制定个人训练计划。 第二阶段:组织实施阶段 1.专业引领。学校要根据达标考核要求,将六项教学基本功的相关技能作为培训内容,由学校校级管理人员、市级学科带头人以上的教学骨干

船舶原理整理资料,名词解释,简答题,武汉理工大学

第一章 船体形状 三个基准面(1)中线面(xoz 面)横剖线图(2)中站面(yoz 面)总剖线图(3) 基平面 (xoy 面)半宽水线图 型线图:用来描述(绘)船体外表面的几何形状。 船体主尺度 船长 L 、船宽(型宽)B 、吃水d 、吃水差t 、 t = dF – dA 、首吃水dF 、尾吃水dA 、平均吃水dM 、dM = (dF + dA )/ 2 } 、型深 D 、干舷 F 、(F = D – d ) 主尺度比 L / B 、B / d 、D / d 、B / D 、L / D 船体的三个主要剖面:设计水线面、中纵剖面、中横剖面 1.水线面系数Cw :船舶的水线面积Aw 与船长L,型宽B 的乘积之比。 2.中横剖面系数Cm :船舶的中横剖面积Am 与型宽B 、吃水d 二者的乘积之比值。 3.方型系数Cb :船舶的排水体积V,与船长L,型宽B 、吃水d 三者的乘积之比值。 4. 棱形系数(纵向)Cp :船舶排水体积V 与中横剖面积Am 、船长L 两者的乘积之比值。 5. 垂向棱形系数 Cvp :船舶排水体积V 与水线面积Aw 、吃水d 两者的乘积之比值。 船型系数的变化区域为:∈( 0 ,1 ] 第二章 船体计算的近似积分法 梯形法则约束条件(限制条件):(1) 等间距 辛氏一法则通项公式 约束条件(限制条件):(1)等间距 (2)等份数为偶数 (纵坐标数为奇数 )2m+1 辛氏二法则 约束条件(限制条件)(1)等间距 (2)等份数为3 3m+1 梯形法:(1)公式简明、直观、易记 ;(2)分割份数较少时和曲率变化较大时误差偏大。 辛氏法:(1)公式较复杂、计算过程多; (2)分割份数较少时和曲率变化较大时误差相对较小。 第三章 浮性 船舶(浮体)的漂浮状态:(1 )正浮(2)横倾(3)纵倾(4)纵横倾 排水量:指船舶在水中所排开的同体积水的重量。 平行沉浮条件:少量装卸货物P ≤ 10 ℅D 每厘米吃水吨数: TPC = 0.01×ρ×Aw {指使船舶吃水垂向(水平)改变1厘米应在船上施加的力(或重量) }{或指使船舶吃水垂向(水平)改变1厘米时,所引起的排水量的改变量 } (1)船型系数曲线 (2)浮性曲线 (3)稳性曲线 (4)邦金曲线 静水力曲线图:表示船舶正浮状态时的浮性要素、初稳性要素和船型系数等与吃水的关系曲线的总称,它是由船舶设计部门绘制,供驾驶员使用的一种重要的船舶资料。 第四章 稳性 稳性:是指船受外力作用离开平衡位置而倾斜,当外力消失后,船能回复到原平衡位置的能力。 稳心:船舶正浮时浮力作用线与微倾后浮力作用线的交点。 稳性的分类:(1)初稳性;(2)大倾角稳性;(3)横稳性;(4)纵稳性;(5)静稳性;(6)动稳性;(7)完整稳性;(8)非完整稳性(破舱稳性) 判断浮体的平衡状态:(1)根据倾斜力矩与稳性力矩的方向来判断;(2)根据重心与稳心的 相对位置来判断 浮态、稳性、初稳心高度、倾角 B L A C w w ?=d B A C m m ?=d V C ??=B L b L A V C m p ?=d A V C w vp ?=b b p vp m w C C C C C C ==, 002n n i i y y A l y =+??=-????∑[]012142...43n n l A y y y y y -=+++++[]0123213332...338n n n l A y y y y y y y --=++++++P D ?= P f P f x = x y = y = 0 ()P P d= cm TPC q ?= m g b g b g GM = z z = z BM z = z r z -+-+-

教师“五项基本功”训练实施方案

教师“五项基本功”训练及比赛实施方案 为了全面提高教师的整体素质,促进教师专业化发展,结合我校实际,经研究决定,在全校开展以钢笔字、毛笔字、粉笔字、计算机、优质课为内容的“五项基本功”训练、比赛,现制定本实施方案。 一、指导思想 开展教师“五项基本功”训练,以国家教委《关于开展中小学教师继续教育的意见》和寺下中学教师继续教育校本培训为依据,以在职教师为对象,以提高教育、教学能力为核心,以“三字”、“一机”“一课”五项基本功训练及比赛为突破口,有计划、有组织分步开展教学基本功全员训练,大面积提高我校教师的教学技能和技巧,全面提高基础教育质量。 二、教师“五项”基本功训练领导小组 1、领导小组 组长:陈才添校长 副组长:分管教学王福来副校长 组员:陈炳照教导主任主任、教导员王仑、各学科教研组长(赵恢炳、舒进举、梅光琛) 2、领导小组成员分工: 组长:负责活动一切经费的落实 副组长:负责整个活动的开展工作。 教导主任:(赵恢炳老师病休期间)代理语文教研组业务。 教导员:协助相关负责人整理和打印资料。 教研组长:组织教师听课及评分、评课,为教研室组织的“一师一优课”录课工作做好准备。(上学期已录制的老师本期不录) 三、时间、内容及要求 ㈠训练对象及内容: 1、1975年以前出生(已满40岁)的教师只完成(三字)的练习,不做考核但必须上交作业:毛笔字500字、钢笔字1000字、粉笔字只限于课堂板书,不交作业。 2、1975年以后出生(未满40岁)的教师,五项基本功必须全部完成练习

上交练字作业及考核工作。 3、本期教师基本功训练作为业务笔记,业务笔记不再另抄写。 ㈡时间: 1、三字练习时间:2015年10月20日至11月30日 2、“一课”考核时间:2015年10月26至30日 3、青年教师“三字”比赛时间:11月24日(周二)晚上6点30分至7点30分。 4、“一机”考核时间:11月25日(周三)晚上6点30分至7点30分 ㈢训练内容及要求: 1、“三笔字”训练——即毛笔字、钢笔字、粉笔字。掌握毛笔、钢笔、粉笔的正确执笔方法和运笔要领,熟练地写出字体端正、行款整齐、美观大方的楷书毛笔字以及清晰、工整、匀称、美观的钢笔字和粉笔字;教学板书规范、扼要、工整。 2、“一课”训练——平时课堂上课必须讲普通话,有课件、电子教案。 3、“计算机”训练——掌握计算机的基本操作,制作与教学内容相符的多媒体课件,能运用多媒体进行教学。 四、主要措施 根据继续教育成人性、在职性的特点,“三字一机一课”的训练主要采取自练、自学和适当集中的方式,以教师所在办公室为主要练功场所。学校一发统一发毛笔一支、软笔纸张30张、钢笔练习纸一本,钢笔及墨汁自备,上交作业不能用其他纸张,以便于成果展示。 五、成立“三字一课一机”教练组 1、“三字”教练:负责指导和答疑。 ⑴毛笔字教练:夏久泉 ⑵钢笔字教练:张子政 ⑶粉笔字教练:王福来 2、“一课”教练:陈炳照 3、“一机”教练:王仑 六、活动安排

船舶原理题库

船舶原理试题库 第一部分船舶基础知识 (一)单项选择题 1.采用中机型船的是 A. 普通货船 C.集装箱船D.油船 2.油船设置纵向水密舱壁的目的是 A.提高纵向强度B.分隔舱室 C.提高局部强度 3. 油船结构中,应在 A.货油舱、机舱B.货油舱、炉舱 C. 货油舱、居住舱室 4.集装箱船的机舱一般设在 A. 中部B.中尾部C.尾部 5.需设置上下边舱的船是 B.客船C.油船D.液化气体船 6 B.杂货船C.散货船D.矿砂船 7 A. 散货船B.集装箱船C.液化气体船 8.在下列船舶中,哪一种船舶的货舱的双层底要求高度大 A.杂货船B.集装箱船C.客货船 9.矿砂船设置大容量压载边舱,其主要作用是 A.提高总纵强度B.提高局部强度 C.减轻摇摆程度 10 B.淡水舱C.深舱D.杂物舱 11.新型油船设置双层底的主要目的有 A.提高抗沉性B.提高强度 C.作压载舱用 12.抗沉性最差的船是 A.客船B.杂货船C散货船 13.横舱壁最少和纵舱壁最多的船分别是 B.矿砂船,集装箱船 C.油船,散货船D.客船,液化气体船 14.单甲板船有 A. 集装箱船,客货船,滚装船B.干散货船,油船,客货船 C.油船,普通货船,滚装船 15.根据《SOLASl974 A.20 B.15 D.10 16 A. 普通货船C.集装箱船D.散货船17.关于球鼻首作用的正确论述是 A. 增加船首强度

C.便于靠离码头D.建造方便 18.集装箱船通常用______表示其载重能力 A.总载重量B.满载排水量 C.总吨位 19. 油船的______ A. 杂物舱C.压载舱D.淡水舱 20 A. 集装箱船B,油船C滚装船 21.常用的两种集装箱型号和标准箱分别是 B.40ft集装箱、30ft集装箱 C.40ft集装箱、10ft集装箱 D.30ft集装箱、20ft集装箱 22.集装箱船设置双层船壳的主要原因是 A.提高抗沉性 C.作为压载舱 D. 作为货舱 23.结构简单,成本低,装卸轻杂货物作业效率高,调运过程中货物摇晃小的起货设备是 B.双联回转式 C.单个回转式D.双吊杆式 24. 具有操作与维修保养方便、劳动强度小、作业的准备和收尾工作少,并且可以遥控操 作的起货设备是 B.双联回转式 D.双吊杆式 25.加强船舶首尾端的结构,是为了提高船舶的 A.总纵强B.扭转强度 C.横向强度 26. 肋板属于 A. 纵向骨材 C.连接件D.A十B 27. 在船体结构的构件中,属于主要构件的是:Ⅰ.强横梁;Ⅱ.肋骨;Ⅲ.主肋板;Ⅳ. 甲板纵桁;Ⅴ.纵骨;Ⅵ.舷侧纵桁 A.Ⅰ,Ⅱ,Ⅲ,ⅣB.I,Ⅱ,Ⅲ,Ⅴ D.I,Ⅲ,Ⅳ, Ⅴ 28.船体受到最大总纵弯矩的部位是 A.主甲板B.船底板 D.离首或尾为1/4的船长处 29. ______则其扭转强度越差 A.船越长B.船越宽 C.船越大 30 A.便于检修机器B.增加燃料舱 D.B+C 31

考试大纲-重庆交通大学知识交流

硕士生入学复试考试《船舶原理与结构》 考试大纲 1考试性质 《船舶原理》和《船舶结构设计》均是船舶与海洋工程专业学生重要的专业基础课。它的评价标准是优秀本科毕业生能达到的水平,以保证被录取者具有较好的船舶原理和结构设计理论基础。 2考试形式与试卷结构 (1)答卷方式:闭卷,笔试 (2)答题时间:180分钟 (3)题型:计算题50%;简答题35%;名词解释15% (4)参考数目: 《船舶原理》,盛振邦、刘应中,上海交通大学出版社,2003 《船舶结构设计》,谢永和、吴剑国、李俊来,上海交通大学出版社,2011年 3考试要点 3.1 《船舶原理》 (1)浮性 浮性的一般概念;浮态种类;浮性曲线的计算与应用;邦戎曲线的计算与应用;储备浮力与载重线标志。 (2)船舶初稳性 稳性的一般概念与分类;初稳性公式的建立与应用;重物移动、

增减对稳性的影响;自由液面对稳性的影响;浮态及初稳性的计算;倾斜试验方法。 (3)船舶大倾角稳性 大倾角稳性、静稳性与动稳性的概念;静、动稳性曲线的计算及其特性;稳性的衡准;极限重心高度曲线;IMO建议的稳性衡准原则;提高稳性的措施。 (4)抗沉性 抗沉性的概念;安全限界线、渗透率、可浸长度、分舱因数的概念;可浸长度计算方法;船舶分舱制;提高抗沉性的方法。 (5)船舶阻力的基本概念与特点 船舶阻力的分类;阻力相似定律;阻力(摩擦阻力、粘压阻力、兴波阻力)产生的机理和特性。 (6)船舶阻力的确定方法 船模阻力试验方法;阻力换算方法;阻力近似计算的概念及方法;艾尔法、海军系数法等。 (7)船型对阻力的影响 船型变化及船型参数,主尺度及船型系数的影响,横剖面面积曲线形状的影响,满载水线形状的影响,首尾端形状的影响。 (8)浅水阻力特性 浅水对阻力影响的特点;浅窄航道对船舶阻力的影响。 (9)船舶推进器一般概念 推进器的种类、传送效率及推进效率;螺旋桨的几何特性。

关于开展中小学教师五项全能基本功训练活动的实施方案

聊城市教育局 关于开展中小学教师五项全能基本功训练活动的实施方案 (冠县教育局将对表现优秀的教师授予荣誉证书并享受县级优质课待遇) 为适应基础教育改革与发展对中小学教师队伍提出的新要求,奠定中小学教师专业成长的基石,市教育局决定在全市中小学教师队伍中开展以教师礼仪、硬笔书法、教师口语、教育技术和教师才艺等为主要内容的基本功训练活动。现就有关要求提出如下意见。 一、指导思想 以科学发展观重要思想和贯彻落实国家和全省教育工作会议精神为指导,以提高全市教师的教育教学能力和水平为宗旨,围绕课程改革的中心任务,加大师资队伍建设力度,努力提高教师教育教学能力、掌握和运用现代教育技术的能力以及适应课程改革的能力和教育科研能力,造就一支师德修养高、业务素质精、教学技能强、教学基本功硬、适应素质教育新发展的教师队伍。 二、目标任务 教师基本功是教师从事教育教学工作必须具备的最基本的职业技能。它包括通用于所有教师的一般基本功,也包括学科教学和教育工作的基本功。我市进行教师五项全能基本功训练活动,就是以提高教师岗位实际能力为目的,促进教师队伍整体适应新课程改革的需

要,到2013年前完成传统教育教学要求向现代教育教学需要的转变,使教师掌握基本的教师礼仪、流畅的硬笔书法、流利的教师口语表达、熟练的现代教育教学技术和一两项个人才艺,进一步锤炼中小学教师的教学功底,展示人民教师的良好形象和业务能力,为全面推进素质教育和促进教育均衡发展奠定坚实基础。 三、主要内容 五项全能基本功具体包括教师礼仪、硬笔书法、教师口语、教育技术和教师才艺等五个方面。 教师礼仪:包括清新端庄的仪容仪表礼仪、优雅礼貌的举止礼仪、文明大方的谈吐礼仪和恰当的社交礼仪; 硬笔书法:能正确运用钢笔和粉笔按照汉字的笔画、笔顺和间架结构,书写规范的楷书字体,并具有一定的速度; 教师口语:能熟练掌握汉语拼音,用普通话进行教学和交流,力求做到表达连贯、流利,语速适当;口齿清晰,语音准确,语调自然;充满自信,情感真实自然; 教育技术:能熟练操作电脑,处理表格数据,制作与教学内容相符的多媒体课件,掌握常见教学媒体、教学资源选择方法,结合学科特点运用多媒体进行教学; 教师才艺:包括朗诵、背诵、口技、双簧、相声、快书、绕口令等语言类,摄影、书法艺术、素描、水粉、水彩、国画、油画、漫画、

计算机辅助船舶制造(考试大纲)

课程名称:计算机辅助船舶制造课程代码:01234(理论) 第一部分课程性质与目标 一、课程性质与特点 《计算机辅助船体建造》是船舶与海洋工程专业的一门专业必修课程,通过本课程各章节不同教学环节的学习,帮助学生建立良好的空间概念,培养其逻辑推理和判断能力、抽象思维能力、综合分析问题和解决问题的能力,以及计算机工程应用能力。 我国社会主义现代化建设所需要的高质量专门人才服务的。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的计算机运用能力和综合运用所学知识去分析和解决问题的能力。 二、课程目标与基本要求 通过本课程学习,使学生对船舶计算机集成制造系统有较全面的了解,掌握计算机辅助船体建造的数学模型建模的思路和方法,培养计算机的应用能力,为今后进行相关领域的研究和开发工作打下良好的基础。 本课程基本要求: 1.正确理解下列基本概念: 计算机辅助制造,计算机辅助船体建造,造船计算机集成制造系统,船体型线光顺性准则,船体型线的三向光顺。 2.正确理解下列基本方法和公式: 三次样条函数,三次参数样条,三次B样条,回弹法光顺船体型线,船体构件展开计算的数学基础,测地线法展开船体外板的数值表示,数控切割的数值计算,型材数控冷弯的数值计算。 3.运用基本概念和方法解决下列问题: 分段装配胎架的型值计算,分段重量重心及起吊参数计算。 三、与本专业其他课程的关系 本课程是船舶与海洋工程专业的一门专业课,该课程应在修完本专业的基础课和专业基础课后进行学习。 先修课程:船舶原理、船体强度与结构设计、船舶建造工艺学 第二部分考核内容与考核目标 第1章计算机辅助船体建造概论 一、学习目的与要求 本章概述计算机辅助船体建造的主要体系及技术发展。通过对本章的学习,掌握计算机辅助制造的基本概念,了解计算机辅助船体建造的特点、造船计算机集成制造系统的基本含义和主要造船集成系统及其发展概况。 二、考核知识点与考核目标 (一)计算机辅助制造的基本概念(重点)(P1~P5) 识记:计算机在工业生产中的应用,计算机在产品设计中的应用,计算机在企业管理中的应用,计算机应用一体化。 理解:CIM和CIMS概念,计算机辅助制造的概念和组成 (二)造船CAM技术的特点(重点)P6~P8 识记:船舶产品和船舶生产过程的特点,造船CAM技术的特点 理解:船舶产品和船舶生产过程的特点与造船CAM技术之间的联系 应用:造船CAM技术应用范围 (三)计算机集成船舶制造系统概述(次重点)(P8~P11)

20xx年教师基本功训练方案简易版_1

The Common Structure Of The Specific Plan For Daily Work Includes The Expected Objectives, Implementation Steps, Implementation Measures, Specific Requirements And Other Items. 编订:XXXXXXXX 20XX年XX月XX日 20xx年教师基本功训练 方案简易版

20xx年教师基本功训练方案简易版 温馨提示:本方案文件应用在日常进行工作的具体计划或对某一问题制定规划,常见结构包含预期目标、实施步骤、实施措施、具体要求等项目。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 一、指导思想 随着素质教育的深入开展,提高教师的素质、建立一支高素质的教师队伍是实施素质教育的保证。为了提高教师素质,我校计划在本期继续进行教师教学基本功大训练,通过训练提高教师的各种能力,尽快适应教育的发展。 二、具体要求 1、口语表达:能熟练掌握汉语拼音,用普通话进行教学、即兴演讲,能正确清楚地表达自己的思想、做到观点明确、内容具体、用词准确、条理清楚、节奏适宜。 2、三笔字:能熟练的按照笔画、笔顺和间

架结构写好三笔字,并有一定的速度。 3、简笔画:能根据教学内容的需要,用简练的线条,快速地勾画出事物的主要特征。 4、下水文:语文教师能在规定的时间内写出一篇符合所教教材要求的、适合儿童情趣的下水文。 5、制作、使用教具:能按教学要求,正确的使用教具,能就地取材、制作简易教具。 三、具体安排 1、组织教师进一步学习全国小学教师基本功教材,每月抽出一定的时间由写字好的教师讲写字的方法,语文教研组长讲口语表达,美术教师讲简笔画、数学教研组长讲教具的制作和使用。全体教师通过听、看、练掌握各项理论知识,提高实践能力。

船舶维修技术实用手册

船舶维修技术实用手册》出版社:吉林科学技术出版社 出版日期:2005年 作者:张剑 开本:16开 册数:全四卷+1CD 定价:998.00元 详细介绍: 第一篇船舶原理与结构 第一章船舶概述 第二章船体结构与船舶管系 第三章锚设备 第四章系泊设备 第五章舵设备 第六章起重设备 第七章船舶系固设备 第八章船舶抗沉结构与堵漏 第九章船舶修理 第十章船舶人级与检验 第二篇现代船舶维修技术 第一章故障诊断与失效分析 第二章油液监控技术 第三章新材料、新工艺与新技术 第三篇船舶柴油机检修 第一章柴油机概述 第二章柴油机主要机件检修 第三章配气系统检修 第四章燃油系统检修 第五章润滑系统检修 第六章冷却系统检修 第七章柴油机操纵系统检修 第八章实际工作循环 第九章柴油机主要工作指标及其测定 第十章柴油机增压 第十一章柴油机常见故障及其应急处理

第四篇船舶电气设备检修 第一章船舶电气设备概述 第二章船舶常用电工材料 第三章船舶电工仪表及测量 第四章船舶常用低压电器及其检修 第五章船舶电机维护检修 第六章船舶电站维护检修 第七章船舶辅机电气控制装置维护检修第八章船舶内部通信及其信号装置检修第九章船舶照明系统维护检修 第五篇船舶轴舵系装置检修 第一章船舶轴系检修 第二章船舶舵系检修 第三章液压舵机检修 第四章轴舵系主要设备与要求 第五章轴舵系检测与试验 第六篇船舶辅机检修 第一章船用泵概述 第二章往复泵检修 第三章回转泵检修 第四章离心泵和旋涡泵 第五章喷射泵检修 第六章船用活塞空气压缩机检修 第七章通风机检修 第八章船舶制冷装置检修 第九章船舶空气调节装置检修 第十章船用燃油辅机锅炉和废气锅炉检修第十一章船舶油分离机检修 第十二章船舶防污染装置检修 第十三章海水淡化装置检修 第十四章操舵装置检修 第十五章锚机系缆机和起货机检修 第七篇船舶静电安全检修技术 第一章船舶静电起电机理 第二章舱内静电场计算 第三章船舶静电安全技术研究 第四章静电放电点燃估算 第五章船舶静电综合分析防治对策

(完整版)教师基本功训练实施方案

教师基本功训练实施方案 为了加快学校发展,全面提高教师业务素质,根据区教体局关于提高教师队伍素质的要求,现就开展教师教学基本功训练做如下实施方案。 一、指导思想与目标要求: 教师基本功是教师从事教学工作必须具备的最根本的职业技能。以提高教师岗位实际能力为目的,牢固练就扎实五项基本功:普通话、三笔字、说课评课。使每位教师都能练就一笔好字;说一口流利的普通话;独立设计一个完整的教学案例;制作一个合格的多媒体课件;上好一堂学生满意的课;写出一篇内容丰富的教学论文。要通过开展教师基本功训练的一系列活动。学校将加强领导,制定措施,层层落实,使人人参与,练有所得,练以致用,持之以恒,提高教师整体素质,为提高教学质量打好基础。 二、基本功训练的原则: 1、在训练内容上,坚持注重实际,讲求实效,从课堂教学直观行为及“三字一话”入手。 2、在训练形式上,坚持以岗位练兵为主,自学为主,业务训练为主的原则,采取集中辅导与个人自学相结合,培训学习与实践锻炼相结合,定期开展各种比赛活动,以赛促练。规划达标时限,限期进行达标。 3、在工作组织上,坚持自练、教研、比赛、展示四位一体的原则。 4、根据学校教师实际情况,分层培训,使培训更有实效性,针对性。 5、在评价验收上,坚持评比检查和教师量化管理相结合的原则。 三、教师基本功训练内容: 1、普通话方面:能熟练掌握汉语拼音,用普通话进行教学;在公众场合即席讲话,用词准确,条理清楚,节奏适宜。 2、写字方面:能正确运用粉笔、钢笔按照汉字的笔画,笔顺和间架结构,书写规范的楷书字体,并具有一定的速度。 3、教学设计、教学论文、随笔、课堂教学方面:要求教师按照课程改革标准,随平时的教学活动认真改进,达到要求。 5、说课评课方面:能设计具有可操作性、明显特征的说课稿,并结合课件进行脱稿说课,思路清晰;能应用课改理论对一堂课进行较有针对性的评价。

船舶原理 名词解释啊

1长宽比L/B 快速性、操纵性 宽吃水比B/d 稳性、摇荡性、快速性、操纵性 深吃水比D/d 稳性、抗沉性、船体强度 宽深比B/D 船体强度、稳性 长深比L/D 船体强度、稳性 2船长:船舶的垂线间长代表船长,即沿设计夏季载重水线,由首柱前缘至舵柱后缘或舵杆中心线的长度 3型宽:在船体最宽处,沿设计水线自一舷的肋骨外缘量至另一舷的肋骨外缘之间的水平距离 4型表面:不包括船壳板和甲板板厚度在内的船体表面 5型深:在船长中的处,由平板龙骨上缘量至上甲板边线下缘的垂直距离 6型吃水:在船长中点处由平板龙骨上缘量至夏季载重水线的垂直距离 7型线图是表示船体型表面形状的图谱,由纵剖线图、横剖线图、半宽水线图和型值表组成; 8浮性:船舶在给定载重条件下,能保持一定的浮态的性能; 9平衡条件:作用在浮体上的重力与浮力大小相等、方向相反并作用于同一铅垂线上; 10净载重量NDW:指船舶在具体航次中所能装载货物质量的最大值 11漂浮条件:满足平衡条件,且船体体积大于排水体积; 12浮心:浮心是船舶所受浮力的作用中心,也是排水体积的几何中心; 13漂心:船舶水线面积的几何中心; 14平行沉浮:船舶装卸货物前后水线面保持平行的现象; 15每厘米吃水吨数(TPC):船舶吃水d每变化1cm,排水量变化的吨数,称为TPC。 16储备浮力:满载吃水以上的船体水密容积所具有的浮力 17干舷:在船长中点处由夏季载重水线量至上甲板边线上缘的垂直距离 18船舶稳性:船舶在外力(矩)作用下偏离其初始平衡位置,当外力(矩)消失后船舶能自行恢复到初始平衡状态的能力 19静稳性曲线:稳性力臂GZ或稳性力矩Ms随横倾角?变化曲线 20动稳性曲线:稳性力矩所做的功Ws或动稳性力臂I d随横倾角?变化的曲线 21吃水差比尺:是一种少量载荷变动时核算船舶纵向浮态变化的简易图表,它表示在船上任意位置加载100t后,船舶首、尾吃水该变量的图表 22最小倾覆力矩(力臂):船舶所能承受动横倾力矩(力臂)的极限 23进水角:船舶横倾至最低非水密度开口开始进水时的横倾角 24可浸长度:船舶进水后的水线恰与限界线相切时的货仓最大许可舱长称为可浸长度 25稳性衡准数K是指船舶最小倾覆力矩(臂)与风压倾侧力矩(臂)之比 26稳性的调整方法:船内载荷的垂向移动及载荷横向对称增减 27静稳性力臂的表达式:1)基点法2)假定重心法3)初稳心点法 28船体强度:为保证船舶安全,船体结构必须具有抵抗各种内外作用力使之发生极度形变和破坏的能力 29局部强度表示方法:①均布载荷;②集中载荷;③车辆甲板载荷;④堆积载荷 30MTC为每形成1cm吃水差所需的纵倾力矩值,称为每厘米纵倾力矩 31载荷纵向移动包括配载计划编制时不同货舱货物的调整及压载水、淡水或燃油的调拨等情况 32重量增减包括中途港货物装卸、加排压载水、油水消耗和补给、破舱进水等情况 33抗沉性:是指船舶在一舱或数舱破损进水后,仍能保持一定浮性和稳性,使船舶不致沉没或延缓沉没时间,以确保人命和财产安全的性能

相关主题
文本预览
相关文档 最新文档