当前位置:文档之家› 矩阵及其运算自测题答案 (1)

矩阵及其运算自测题答案 (1)

矩阵及其运算自测题答案 (1)
矩阵及其运算自测题答案 (1)

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

简便计算题及答案

1)125 ×(17 × 8)× 4 2)375 × 480 + 6250 × 48 3)25 × 16 ×125 4)13 × 99 5)75000 ÷ 125 ÷ 15 6)7900 ÷ 4 ÷ 25 7)150 × 40 ÷ 50 8)5600 ÷(25 × 7) 9)210 ÷ 42 × 6 10)39600 ÷ 25 11)67 × 21 +18 × 21 + 85 × 79 12)321 × 81 + 321 × 19

13)222222 × 999999 14)333333 × 333333 15)56000 ÷ (14000 ÷ 16) 16)654321 × 909090 +654321 ×90909 17)34 × 3535 -35 × 3434 18)27000 ÷ 125 19)345345 ÷ 15015 20)347 + 358 + 352 + 349 21)75 × 45 + 17 × 25 22)599996 + 49997 + 3998 + 407 + 89

23)(48 × 75 ×81)÷(24 × 25 × 27) 四年级数学简便计算题及答案: 1)125 ×(17 × 8)× 4 2)375 × 480 + 6250 × 48 = 125×8×4×17 =480×(375+625) =1000×68 =480000 =68000 3)25 × 16 ×125 4)13 × 99 =25×2×8×125 =13×(100-1) =50000 =1300-13 =1287 5)75000 ÷ 125 ÷ 15 6)7900 ÷ 4 ÷ 25 =75×1000÷125÷15 =7900÷(4×25) =75÷15×1000÷125 =79

图的矩阵表示及习题-答案讲解

177 图的矩阵表示 图是用三重组定义的,可以用图形表示。此外,还可以用矩阵表示。使用矩阵表示图,有利于用代数的方法研究图的性质,也有利于使用计算机对图进行处理。矩阵是研究图的重要工具之一。本节主要讨论无向图和有向图的邻接矩阵、有向图的可达性矩阵、无向图的连通矩阵、无向图和有向图的完全关联矩阵。 定义9.4.1 设 G =是一个简单图,V =?v 1,v 2,…,v n ? A (G )=(ij a ) n ×n 其中: 1j i v v v v a j i j i ij =???=无边或到有边到 i ,j =1,…,n 称A (G )为G 的邻接矩阵。简记为A 。 例如图9.22的邻接矩阵为: ?????? ? ? ?=011110101101 1010)(G A 又如图9.23(a)的邻接矩阵为: ?????? ? ? ?=0001101111000010 )(G A 由定义和以上两个例子容易看出邻接矩阵具有以下性质: ①邻接矩阵的元素全是0或1。这样的矩阵叫布尔矩阵。邻接矩阵是布尔矩阵。 ②无向图的邻接矩阵是对称阵,有向图的邻接矩阵不一定是对称阵。

178 ③邻接矩阵与结点在图中标定次序有关。例如图9.23(a)的邻接矩阵是A (G ),若将图9.23(a)中的接点v 1和v 2的标定次序调换,得到图9.23(b),图9.23(b)的邻接矩阵是A ′(G )。 ?????? ? ? ?='001010110001 1100)(G A 考察A (G )和A ′(G )发现,先将A (G )的第一行与第二行对调,再将第一列与第二列对调可 得到A ′(G )。称A ′(G )与A (G )是置换等价的。 一般地说,把n 阶方阵A 的某些行对调,再把相应的列做同样的对调,得到一个新的n 阶方阵A ′,则称A ′与A 是置换等价的。可以证明置换等价是n 阶布尔方阵集合上的等价关系。 虽然,对于同一个图,由于结点的标定次序不同,而得到不同的邻接矩阵,但是这些邻接矩阵是置换等价的。今后略去结点标定次序的任意性,取任意一个邻接矩阵表示该图。 ④对有向图来说,邻接矩阵A (G )的第i 行1的个数是v i 的出度, 第j 列1的个数是v j 的入度。 ⑤零图的邻接矩阵的元素全为零,叫做零矩阵。反过来,如果一个图的邻接矩阵是零矩阵,则此图一定是零图。 设G =为有向图,V =?v 1,v 2,…,v n ?,邻接矩阵为A =(a ij )n ×n 若a ij =1,由邻接矩阵的定义知,v i 到v j 有一条边,即v i 到v j 有一条长度为1的路;若a ij =0,则v i 到v j 无边,即v i 到v j 无长度为1的路。故a ij 表示从v i 到v j 长度为1的路的条数。 设A 2=AA ,A 2=(2 ij a )n ×n ,按照矩阵乘法的定义, nj in j i j i ij a a a a a a a +++= 22112 若a ik a kj =1,则a ik =1且a kj =1,v i 到v k 有边且v k 到v j 有边,从而v i 到v j 通过v k 有一条长 度为2的路;若 kj ik a a =0,则a ik =0或a kj =0,v i 到v k 无边或v k 到v j 无边,因而v i 到v j 通过 v k 无长度为2的路,k =1,…,n 。故2 ij a 表示从v i 到v j 长度为2的路的条数。 设A 3=AA 2,A 3=(3 ij a ) n ×n ,按照矩阵乘法的定义, 22222113nj in j i j i ij a a a a a a a +++= 若2kj ik a a ≠0,则ik a =1且2kj a ≠0,v i 到v k 有边且v k 到v j 有路,由于2kj a 是v k 到v j 长度为2 的路的条数,因而2kj ik a a 表示v i 到v j 通过v k 长度为3的路的条数;若2kj ik a a =0, ik a =0或2kj a =0, 则v i 到v k 无边或v k 到v j 无长度为2的路,所以v i 到v j 通过v k 无路,k =1,…,n 。故3 ij a 表示从v i 到v j 长度为3的路的条数。 …… 可以证明,这个结论对无向图也成立。因此有下列定理成立。 定理9.4.1 设A (G )是图G 的邻接矩阵,A (G )k =A (G )A (G )k-1,A (G )k 的第i 行,第j 列元素 k ij a 等于从v i 到v j 长度为k 的路的条数。其中k ii a 为v i 到自身长度为k 的回路数。 推论 设G =是n 阶简单有向图,A 是有向图G 的邻接矩阵,B k =A +A 2+…+A k ,

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

(完整版)四年级数学简便计算题及答案

四年级数学简便计算题及答案 1)125 ×(17 ×8)×4 2)375 ×480 + 6250 ×48 3)25 ×16 ×125 4)13 ×99 5)75000 ÷125 ÷15 6)7900 ÷4 ÷25 7)150 ×40 ÷50 8)5600 ÷(25 ×7)9)210 ÷42 ×6 10)39600 ÷25 11)67 ×21 +18 ×21 + 85 ×79 12)321 ×81 + 321 ×19 13)222222 ×999999 14)333333 ×333333 15)56000 ÷(14000 ÷16)16)654321 ×909090 +654321 ×90909 17)34 ×3535 -35 ×3434 18)27000 ÷125 19)345345 ÷15015 20)347 + 358 + 352 + 349 21)75 ×45 + 17 ×25 22)599996 + 49997 + 3998 + 407 + 89 23)(48 ×75 ×81)÷(24 ×25 ×27)

四年级数学简便计算题及答案: 1)125 ×(17 ×8)×4 2)375 ×480 + 6250 ×48 = 125×8×4×17 =480×(375+625) =1000×68 =480000 =68000 3)25 ×16 ×125 4)13 ×99 =25×2×8×125 =13×(100-1) =50000 =1300-13 =1287 5)75000 ÷125 ÷15 6)7900 ÷4 ÷25 =75×1000÷125÷15 =7900÷(4×25) =75÷15×1000÷125 =79 =5×8 =40 7)150 ×40 ÷50 8)5600 ÷(25 ×7)=150÷50×40 =56×100÷25÷7 =3×40 =56÷7×100÷25 =120 =32 9)210 ÷42 ×6 10)39600 ÷25 =210÷7÷6×6 =396×100÷25 =30 =396×4 =1584 11)67 ×21 +18 ×21 + 85 ×79 12)321 ×81 + 321 ×19 =21×(67+18)+85×79 =321×(81+19) =21×85+85×79 =32100 =85×(21+79) =8500 13)222222 ×999999 14)333333 ×333333 =222222×(1000000-1) =111111×999999 =222222000000-222222 =111111×(1000000-1) =222221777778 =111111000000-111111 =111110888889 15)56000 ÷(14000 ÷16)16)654321 ×909090 +654321×90909 =56000÷14000×16 =654321×999999 =4×16 =654321×(100000-1) =64 =654321000000-654321 =654320345679 17)34 ×3535 -35 ×3434 18)27000 ÷125

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

六年级数学简便计算专项练习题(附答案+计算方法汇总)

六年级数学简便计算专项练习题(附答案+计算方法汇总) 小学阶段(高年级)的简便运算,在一定程度上突破了算式原来的运算顺序,根据运算定律、性质重组运算顺序。如果学生没真正理解运算定律、性质,他只能照葫芦画瓢。在实际解题的过程当中,学生的思路不清晰,常出现这样或那样的错误。因此,培养学生思维的灵活性就显得尤为重要。 下面,为大家整理了8种简便运算的方法,希望同学们在理解的基础上灵活运用,不提倡死记硬背哟! 1.提取公因式 这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。 注意相同因数的提取。 例如: 0.92×1.41+0.92×8.59 =0.92×(1.41+8.59) 2.借来借去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。 考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。 例如: 9999+999+99+9 =9999+1+999+1+99+1+9+1-4 3.拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。 例如: 3.2×12.5×25 =8×0.4×12.5×25 =8×12.5×0.4×25 4.加法结合律 注意对加法结合律 (a+b)+c=a+(b+c) 的运用,通过改变加数的位置来获得更简便的运算。 例如: 5.76+13.67+4.24+ 6.33 =(5.76+4.24)+(13.67+6.33) 5.拆分法和乘法分配律结合 这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。 例如: 34×9.9 = 34×(10-0.1) 案例再现:57×101=? 6.利用基准数 在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。 例如: 2072+2052+2062+2042+2083

矩阵n次方的几种求法的归纳

矩阵n 次方的几种求法 1.利用定义法 () () ,,ij kj s n n m A a B b ??==则() ,ij s m C c ?=其1122...ij i j i j in nj c a b a b a b =+++ 1 n ik kj k a b ==∑称为A 与B 的乘积,记为C=AB ,则由定义可以看出矩阵A 与B 的乘积C 的第i 行第j 列的元素等于第一个矩阵A 的第i 行与第二个矩阵B 的第j 列的对应元素乘积之和,且由定义知:第一个矩阵的列数与第二个矩阵的行数要相[]1 同。 例1:已知矩阵34 125310210134A ??? ?=- ? ???,44 5 130621034510200B ??? ? ? = ? ? ??,求AB 解:设C AB ==() 34 ij c ?,其中1,2,3i =;1,2,3,4j = 由矩阵乘积的定义知: 111526533032c =?+?+?+?=121122543231c =?+?+?+?= 131321553030 c =?+?+?+?=14102051305 c =?+?+?+?= 21150623101c =-?+?+?+?= 22110224129c =-?+?+?+?= 23130125107c =-?+?+?+?= 24100021102c =-?+?+?+?= 310516334015c =?+?+?+?= 320112344222c =?+?+?+?= 330311354016c =?+?+?+?= 34001031403c =?+?+?+?= 将这些值代入矩阵C 中得:

C AB ==34 323130519721522163??? ? ? ??? 则矩阵A 的n 次方也可利用定义的方法来求解。 2.利用矩阵的分块来求解 这类方法主要是把一个大矩阵看成是由一些小矩阵组成,就如矩阵 由数组成的一样在运算中将这些小矩阵当做数一样来处理,再由矩阵乘法的定义来求解这些小矩阵的乘积所构成的矩阵。即设 () () ,,ij kj s n n m A a B b ??==把A ,B 分解成一些小矩阵: 1111l t tl A A A A A ?? ?= ? ???K M O M L ,1111 r l lr B B B B B ?? ? = ? ??? K M O M L ,其中ij A 是i j s n ?小矩阵且1,2...i t =,1,2...j l =,且12...t s s s s +++= ,12...l n n n n +++=;ij B 是j k n m ?小矩阵且1,2...j l =,1,2...k r =;且12...l n n n n +++=, 12...r m m m m +++=;令C AB ==1111r t tr C C C C ?? ? ? ??? K M O M L ,其中ij C 是i j s m ?小矩阵且1,2...i t =,1,2,...,j r =,且12...t s s s s +++=, 12...r m m m m +++=;其中1122...ij i j i j il lj C A B A B A B =+++。这里我们应注意:矩阵A 列的分法必须与矩阵B 行的分法一[]1 致。

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法 一、是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 ? 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 — 3、单元i j 在图示两种坐标系中的刚度矩阵相比:

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆矩 阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问

他们的总产出分别为多少? 三.实验过程 1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码

y=[50;150;100]; n=size(y,1); W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为 Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB 代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

小学四年级简便运算的练习题和答案

运算定律练习题 (1)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 38×25×4 42×125×8 25×17×4 (25×125)×(8×4) 49×4×5 38×125×8×3 (125×25)×4 5 ×289×2 (125×12)×8 125×(12×4) (2) 乘法交换律和结合律的变化练习 125×64 125×88 44×25 125×24 25×28 (3)加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 357+288+143 158+395+105 167+289+33 129+235+171+165 378+527+73 169+78+22 58+39+42+61 138+293+62+107 (4)乘法分配律:(a+b)×c=a×c+b×c 正用练习 (80+4)×25 (20+4)×25 (125+17)×8 25×(40+4)15×(20+3) (5)乘法分配律正用的变化练习: 36×3 25×41 39×101 125×88 201×24 (6)乘法分配律反用的练习: 34×72+34×28 35×37+65×37 85×82+85×18 25×97+25×3 76×25+25×24

(7)乘法分配律反用的变化练习: 38×29+38 75×299+75 64×199+64 35×68+68+68×64 ☆思考题:(8)其他的一些简便运算。 800÷25 6000÷125 3600÷8÷5 58×101-58 74×99 【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。 325÷25 =(325×4)÷(25×4) =1300÷100 =13 【练一练1】(1)450÷25 (2)525÷25 (3)3500÷125 (4)10000÷625 (5)49500÷900 (6)9000÷225 【经典例题二】计算25×125×4×8 【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。运用了乘法交换律和结合律。 25×125×4×8 =(25×4)×(125×8) =100×1000 =100000 【练一练2】(1)125×15×8×4 (2)25×24 (3)125×16 (4)75×16 (5)125×25×32 (6)25×5×64×125 【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43 【思路导航】利用乘法分配律来计算这两题 (1)125×34+125×66 (2)43×11+43×36+43×52+43

矩阵计算习题及答案

1、选择题 1)下列变量中 A 是合法的。 A. Char_1,i,j *y, C. X\y, a1234 D. end, 1bcd 2)下列 C 是合法的常量。 A. 3e10 B. 1e500 C. D. 10-2 3)x=uint8,则x所占的字节是 D 个。 A. 1 B. 2 C. 4 D. 8 4)已知x=0:10,则x有 B 个元素。 A. 9 B. 10 C. 11 D. 12 5)产生对角线元素全为1其余为0的2×3矩阵的命令是 C 。 A. Ones(2,3) B. Ones(3,2) C. Eye(2,3) D. Eye(3,2) 6)a= 123 456 789 ?? ? ? ? ?? ,则a(:,end)是指 C 。 A.所有元素 B. 第一行元素 C. 第三列元素 D. 第三行元素 7) a= 123 456 789 ?? ? ? ? ?? ,则运行a(:,1)=[] 命令后 C 。 变成行向量 B. a数组成2行2列 C. a数组成3行2列 D. a数组没有元素 8)a= 123 456 789 ?? ? ? ? ?? ,则运行命令 mean(a)是 B 。 A. 计算a的平均值 B. 计算a每列的平均值 C. 计算a每行的平均值数组增加一列平均值 9)已知x是一个向量,计算 ln(x)的命令是 B 。 A. ln(x) B. log(x) C. Ln(x) D. lg10(x) 10)当a=时,使用取整函数得到3,则该函数名是 C 。 B. round C. ceil D. floor 11)已知a=0:4,b=1:5,下面的运算表达式出错的是 D 。 A. a+b B. a./b C. a'*b D. a*b 12)已知a=4,b=‘4’,下面说法错误的是 C 。 A. 变量a比变量b占用的空间大 B. 变量a、b可以进行加减乘除运算 C. 变量a、b数据类型相同 D. 变量b可以用eval计算 13)已知s=‘显示“hello”’,则s 元素的个数是 A 。 A. 12 B. 9 C. 7 D. 18 14)运行字符串函数strncmp('s1','s2',2),则结果为 B 。 A. 1 B. 0 C. true D. fales 15)命令day(now)是指 C 。 A. 按日期字符串格式提取当前时间 B. 提取当前时间 C. 提取当前时间的日期 D. 按日期字符串格式提取当前日期

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

六年级数学简便计算练习题及答案

一、基础知识。(5小题,共26分。) 1.读音节,找词语朋友。(10分) táo zuì nínɡ zhònɡ wǎn lián ēn cì ()()()() zī rùn kuí wú zhēn zhì miǎn lì ()()()() xuán yá qiào bì hú lún tūn zǎo ()() 2.读一读,加点字念什么,在正确的音节下面画“_”。(4分) 镌.刻(juān juàn)抚摩.(mó mē)扁.舟(biān piān)阻挠.(náo ráo)塑.料(suò sù)挫.折(cuō cuò)归宿.(sù xiǔ)瘦削.(xiāo xuē)3.请你为“肖”字加偏旁,组成新的字填写的空格内。(4分) 陡()的悬崖胜利的()息俊()的姑娘 ()好的铅笔弥漫的()烟畅()的商品 ()遥自在的生活元()佳节 4.按要求填空,你一定行的。(4分) “巷”字用音序查字法先查音序(),再查音节()。按部首查字法先查()部,再查()画。能组成词语()。 “漫”字在字典里的意思有:①水过满,向外流;②到处都是;③不受约束,随便。 (1)我漫.不经心地一脚把马鞍踢下楼去。字意是() (2)瞧,盆子里的水漫出来了。字意是() (3)剩下一个义项可以组词为() 5.成语大比拼。(4分) 风()同()()崖()壁()()无比 和()可()()扬顿()()高()重 ( )不()席张()李() 二、积累运用。(3小题,共20分。) 1.你能用到学过的成语填一填吗?(每空1分) 人们常用来比喻知音难觅或乐曲高妙,用来赞美达芬

(1)鲁迅先生说过:“,俯首甘为孺子牛。” (2),此花开尽更无花。 (3)必寡信。这句名言告诉我们。 (4)但存,留与。 (5)大漠沙如雪,。 3.按要求写句子。(每句2分) (1)闰土回家去了。我还深深地思念着闰土。(用合适的关联词组成一句话)(2)老人叫住了我,说:“是我打扰了你吗?”(改成间接引语) (3)这山中的一切,哪个不是我的朋友?(改为陈述句) (4)月亮升起来了。(扩句) (5)小鱼在水里游来游去。(改写成拟人句) 三、口语交际。(共3分。) 随着“嫦娥一号”卫星的发射成功,作为中华少年的我们,面对祖国的飞速发展的科技,你想到了什么?想说点什么呢? 四、阅读下面短文,回答问题。(10小题,共26分。) 1.课内阅读。(阅读文段,完成练习) 嘎羧来到石碑前,选了一块平坦的草地,一对象牙就像两支铁镐,在地上挖掘起来。它已经好几天没吃东西了,又经过长途跋涉,体力不济,挖一阵就 喘息一阵。嘎羧从早晨一直挖到下午,终于挖出了一个椭圆形的浅坑。它滑下

相关主题
文本预览
相关文档 最新文档