当前位置:文档之家› 拟动力动态伺服液压伺服加载系统

拟动力动态伺服液压伺服加载系统

拟动力动态伺服液压伺服加载系统
拟动力动态伺服液压伺服加载系统

拟动力动态伺服液压伺服加载系统

应用行业:交通

UTM动态伺服液压材料试验系统

产品关键字:测定材料流变特性,液压材料试验,UTM材料试验机

名称:UTM系列动态伺服液压材料试验系统

型号:UTM-25,UTM-100,UTM-250

厂家:澳大利亚IPC

标准:ASTM D412382,D3497,D3999,D5311;AASHTO TP31-94、TP46、TP8、TP9;NCHRP 9-19 & 9-29

用途:可完成的一系列试验包括:沥青混合料动态模量试验、间接拉伸模量试验、重复荷载永久变形(蠕变)试验、静态蠕变试验、小梁疲劳试验以及通用应力应变试验等等

详细介绍:

UTM系列动态伺服液压材料试验系统应用液压伺服阀的数字控制,提供加载波形控制。能够产生任何用户希望的加载波形,并且可以高达70Hz的正弦波形加载操作。可以提供所有常规的正弦、方波、半正弦、三角波等波形,同时还包括以512点来定义的任何波形。可完成的一系列试验包括:沥青混合料动态模量试验、间接拉伸模量试验、重复荷载永久变形(蠕变)试验、静态蠕变试验、小梁疲劳试验以及通用应力应变试验等等。为了满足不同客户所要求的不同加载量程,IPC公司可以生产最大拉压荷载为25kN,100kN,200kN甚至更大荷载的伺服液压材料试验系统。

主要特点:

●刚性加载架

●数字式伺服液压控制

●液压十字头定位

●液压十字头夹紧

●多种工具包可供选择,满足多种需要

●软件操作界面友好

●时程曲线即时显示

●可完成广泛的试验范围

加载架Loading Frame:

应用:

通过拉伸、压缩和动态加载测定材料的流变特性,适合于多种不同材料,例如:沥青混合料、混凝土、土、非结合颗粒材料、纤维和塑料等

简介:

液压设备在需要需要施加较大荷载的情况下表现更好,在位移控制方面优于气动设备,对于较软的试件,有足够的液压流充分利用液压伺服阀的动态范围。

根据不同的加载能力,有三种型号可供选择:25,100和250 kN。所有型号均很好地满足了多数高级材料的测试应用。

—最优质的材料和表面加工处理技术保证长工作寿命

—精密的机械部件保证整体的精确性

—所有型号均实现机械化横梁调节和夹紧。

提供非常全面的试验配件,包括各种传感器、夹具、压盘,弯曲夹具,另外温控箱既可以选择标准型号的也可以根据用户的需要来进行订做专门的规格,保证经济、快速满足用户的需要

主要特点:

●坚固的2柱式加载架

●双向作用伺服液压作动器

●高性能伺服阀令正弦加载频率高达70 Hz

●机械化横梁高度调节,自动液压加紧

●可调高/低液压控制

●提供适合于应用范围的夹具

●客户可根据需要选择温控箱

技术规格:

加载架型号UTM-25 UTM-100

尺寸 1850x580x600 mm (hxdxw) 2350x1275x990 mm (hxdxw)

重量 130 kg 450 kg

加载能力25 kN 100 kN/250kN

柱间距 450 mm 590 mm

竖向空间800 mm 1000 mm

作动器冲程50 mm 100 mm

液压泵 UTM-25 UTM-100

尺寸 810x400x700 mm (hxdxw) 1040x810x610 mm (hxdxw)

重量 75 kg (不含油) 120 kg (不含油)

流速 5 升/分钟20 升/分钟

高压 160 bar 210 bar

低压 2 to 160 bar (adjustable) 10 to 160 bar (adjustable)

电源208/230 V, 50 Hz; 380-415 V, 50/60 Hz, 3 ph.

2.6 kW 7.5 kW

噪声水平小于70db(2m内)小于70db(2m内)

一体化多轴控制与数据采集系统IMACS:

IPC最新的一体化多轴控制系统IMACS (Integrated Multi-Axis Control System)可为用户在动态伺服液压材料试验机控制方面,提供卓越的性能、无可比拟的控制水平以及数据采集的极大灵活性。

主要特点:

●为所有IPC试验机的提供实时电脑控制

●综合的通道采集和控制功能,速度达到5kHz

●可扩展至8个控制轴和32个采集通道

●达到20位的自适应(auto-ranging)数据采集

●标准化模拟通道输入实现任意传感器可以接入到任意通道。

●可选软件噪声过滤

通用试验软件UTS:

UTS试验软件用户界面友好,使用菜单驱动。操作方面,系统从试验中依附于试件的传感器处采集动态数据,然后在电脑上实时显示应力-应变或应力/应变-时间的曲线(取决于每一试验类型和功能模式)

主要特点

●提供全面的试验和报告功能

●实时数据图表显示

●传感器分配和管理

●适用于沥青和非结合颗粒材料的广泛应用软件

●动态传感器水平显示

●独特的传感器分配图

●软件可选传感器标定及线性化

●可配置的传感器水平显示屏

●用户自定义试验模块,简化试验步骤

●用户可选试验终止条件

●一体化设备运行监视和控制

伺服液压缸和普通液压缸的区别

两者的设计思路和用途不同。普通缸主要作往复运动,某些有定位功能;伺服缸是为控制设计的,更看重动态性能。楼上挺幽默,在液压中控制元件是阀,动力元件是泵,缸和马达属于执行元件。 懂伺服,国内像704所等伺服阀做的也还行,伺服液压的核心是控制不是液压,只是因为液压是传动功率体积比最大的方式,更符合大力带小负载(相对),提高响应的原则才选择了液压传动,其实伺服液压跟伺服电机什么的都类似,重点是在控制上。当今液压系统的核心问题是提高传动效率,节能,所以才有什么负载敏感,闭式系统的出现,而伺服系统是典型的低效率系统,以效率换动态响应,正好相反,当然伺服系统也希望效率越高越好。各位可以好好看看机械手册,液压和伺服液压明显是两大块,就是因为二者的侧重点完全不同。东西并不是看上去相似就没多大区别,就像有翅膀的不一定是天使,也可能是鸟人。 两者的设计思路和用途不同。普通缸主要作往复运动,某些有定位功能;伺服缸是为控制设计的,更看重动态性能。楼上挺幽默,在液压中控制元件是阀,动力元件是泵,缸和马达属于执行元件。 伺服缸要考虑磨擦力,在伺服系统中它影响了系统的动态响应,控制精度,稳定性等等 在伺服缸设计中要选取用低磨擦系数的密封件,而运动面要比普通的更加精密。 电液伺服控制系统工作原理 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统、电液力(或力矩)控制系统。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 电液伺服控制系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量地变化而变化,输出功率却被大幅度地放大。 液压缸的组成:基本上由缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置和排气装置五部分组成。 伺服液压缸的要求 低摩擦、无爬行、有较高的频率响应。低内外泄露。通常对其摩擦副作特殊处理。 钢筒:内摩擦面镀硬铬后抛光或精密衍磨。 活塞密封:用玻璃微珠填充的聚乙烯制的O型圈。 活塞杆密封:用丁腈橡胶制预加唇形密封圈,也有用内圆带很小圆锥度的导向套静动压密封圈。

重型车AMT液压驱动系统设计

摘要 AMT是一种经济型的自动变速器,在重型载货车上具有广阔的应用空间。目前,中国重型车辆装用的都是手动机械式变速器,并且形成了相当规模的生产能力。与AT 相比,AMT更适合中国汽车工业的现实,国内重型车采用AMT自动变速技术既可以保留原有的手动变速器生产线,又可大大节省用于重建专业生产线及设备的投资,具有重要的现实意义。 在电控机械式自动变速器设计开发中,离合器和选换档执行机构的设计及优化是AMT设计的重点和难点之一,其性能直接影响AMT系统的性能,本文以法士特 12JS200TA变速器为基础,进行AMT系统液压驱动执行机构的设计。 本文的主要工作内容如下: 1.分析了国内外重型车自动变速技术的发展,对重型车AMT的关键技术问题及操纵系统结构进行了阐述。 2.分析了AMT液压驱动系统的设计要求及结构,并针对法士特12JS200TA 12挡带同步器的手动变速器,在原有离合器和变速器操纵机构的基础上设计了新型的液压驱动自动操纵机构。 3.进行了AMT液压驱动机构的元件计算、选型及系统仿真、分析。对液压回路重要元件进行了选型并对动态响应速度进行了动态分析。 关键词:AMT;液压驱动;换挡执行机构;离合器执行机构;节气门执行器

ABSTRACT AMT is an economical automatic transmission; therefore it has extensive,application space in the heavy truck. Currently, heavy vehicles are all equipped with manual transmission, and forms production capacity on a quite scale. AMT is more suitable for automotive industry reality in china than AT. The development and production of AMT may retain previous product line of manual transmission and greatly save the investment for reconstruction of professional production line and equipment, so it has important reality meaning. During the design and development of AMT, design and optimization of selection-shift actuator is one of key and special difficulties for AMT design. The performance will have direct effect on the whole performance of AMT system. In this paper, Taking focus on a manual transmission of heavy truck, combing with science and technology research plan of Chongqing, shift actuator with hydraulic drive for AMT system is developed and designed and its performance is researched. In this paper, the main contents are showed as follows: 1.The development of automatic transmission technique for heavy truck both home and abroad is introduced. The key technique of automatic transmission for heavy truck and operation system configuration are illustrated. 2. Analysis of the AMT hydraulic drive system and structural design requirements, and file for Fast 12JS200TA 12 manual transmission with a synchronizer, the original clutch and transmission control mechanism based on the design of a new type of hydraulic-driven auto-control mechanism. 3. For the AMT calculation of the hydraulic drive mechanism of the components, selection and system simulation and analysis. Important components of the hydraulic circuit and the dynamic response of the selection of the dynamic analysis. Keywords: Atotomatic manual transmission(AMT);Hydraulic drive;Shift executing agency;Clutch executing agency;Air damper actuator

工业机械手液压驱动系统的设计

开题报告

目录 摘要............................................................................................................................................................... 4Abstract ......................................................................................................................................................... 6引言............................................................................................................................................................... 7第一章机械手设计要求分析..................................................................................................................... 7 1.1 设计目的和要求........................................................................................................................... 7 1.2.机械手简介与分析....................................................................................................................... 7第二章液压系统设计............................................................................................................................... 8 2.1. 根据工作要求确定一个工作循环周期的运动过程 ................................................................. 8 2.2 据工作循环过程确定系统工况分析图,确保工作运动中的动作连续性 ................................ 9 2.3 拟订液压系统的工作原理图........................................................................................................ 9 2.4 根据整个系统的液压元件需求选择标准的液压元件 ............................................................ 10 2.5 液压缸尺寸的确定及安全强度的校核 .................................................................................. 10第三章. 集成块的设计............................................................................................................................ 12 3.1设计分析..................................................................................................................................... 12 3.2 根据具体的要求进行设计计算............................................................................................... 13 3.3 下面为集成块的设计步骤........................................................................................................ 15 3.4 液压集成块的加工工艺.......................................................................................................... 17第四章液压集成块CAD技术............................................................................................................... 18结束语....................................................................................................................................................... 20致谢........................................................................................................................................................... 21参考文献................................................................................................................................................... 22

非对称液压缸的动态特性仿真研究_郝前华

第35卷第6期 2010年12月  广西大学学报:自然科学版J o u r n a l o f G u a n g x i U n i v e r s i t y :N a t S c i E d V o l .35N o .6D e c .2010 收稿日期:2010-07-22;修订日期:2010-08-29 基金项目:国家863项目资助课题(2003A A 430200) 通讯联系人:何清华(1946-),男,湖南岳阳人,中南大学教授,博士生导师;E -m a i l :h q h @m a i l .c s u .e d u .c n 。 文章编号:1001-7445(2010)06-0984-05非对称液压缸的动态特性仿真研究 郝前华1,何清华1,2,贺继林1,2,廖力达1,舒敏飞1 (1.中南大学机电工程学院,湖南长沙410083; 2.湖南山河智能机械股份有限公司,湖南长沙410100) 摘要:根据液流的连续性原理,通过对非对称液压缸进行受力分析,研究非对称液压缸的动态特性。在此基础 上,提出非对称液压缸的数学模型,得到了液压缸阻尼比、固有频率间的关系。根据其数学模型,运用M A T -L A B 软件对挖掘机铲斗液压缸动态特性进行仿真,得到了非对称液压缸的速度响应曲线和大腔的压力曲线, 直观地揭示了其动态特性。通过对影响铲斗液压缸动态特性的主要因素的分析,提出了加快其速度响应和改 善其运动平稳性的实用措施,指出降低铲斗液压缸的超调量与提高铲斗液压缸的响应速度存在矛盾,需要针 对具体情况协调考虑。 关键词:动态特性;非对称液压缸;仿真 中图分类号:T H 137 文献标识码:A S i m u l a t i o ns t u d y o nd y n a m i c c h a r a c t e r i s t i c s o f a s y m m e t r i c a l h y d r a u l i c c y l i n d e r H A OQ i a n -h u a 1,H EQ i n g -h u a 1,2,H EJ i -l i n 1,2,L I A OL i -d a 1,S H UM i n -f e i 1 (1.S c h o o l o f M e c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g ,C e n t r a l S o u t hU n i v e r s i t y ,C h a n g s h a 410083,C h i n a ; 2.H u n a nS u n w a r dI n t e l l i g e n t M a c h i n e r y C o .L t d .,C h a n g s h a 410100,C h i n a )A b s t r a c t :O nt h eb a s i s o f c o n t i n u i t y p r i n c i p l eo f f l u i d s ,d y n a m i cc h a r a c t e r i s t i c s o f a s y m m e t r i c a l h y d r a u l i c c y l i n d e r a r e i n v e s t i g a t e db y m e a n s o f f o r c e e q u i l i b r i u m a n a l y s i s .B a s e d o nt h e p r o p o s e d m a t h e m a t i c a l m o d e l o f t h e c y l i n d e r ,r e l a t i o n s h i pb e t w e e nd a m p i n gr a t i o a n dn a t u r a l f r e q u e n c y i s o b t a i n e d a s w e l l a s t h e s i m u l a t i o nr e s u l t s o f d y n a m i cc h a r a c t e r i s t i c s o f h y d r a u l i cc y l i n d e r o f t h e b u c k e t o f a n e x c a v a t o r i n M A T L A B .T h e v e l o c i t y r e s p o n s e c u r v e a n d p r e s s c u r v e o f t h e l a r g e c h a m - b e r r e v e a l t h e d y n a m i c c h a r a c t e r i s t i c s v i s u a l l y .M e a s u r e s t oi n c r e a s e t h e v e l o c i t y r e s p o n s e a n dt o i m p r o v e t h e m o t i o n s t a b i l i t y o f t h e b u c k e t c y l i n d e r a r e p r o p o s e d b a s e d o n t h e a n a l y s i s o f t h e m a i n f a c t o r s i n f l u e n c i n gd y n a m i cc h a r a c t e r i s t i c s .T h ec o n t r a d i c t i o nb e t w e e nd e c r e a s i n go v e r s h o o t a n d i n c r e a s i n g r e s p o n s e s p e e d o f t h e c y l i n d e r n e e d s t o b e r e s o l v e d b y c o n s i d e r a t i o n s t o s p e c i f i c c i r c u m - s t a n c e s . K e y w o r d s :d y n a m i c c h a r a c t e r i s t i c s ;a s y m m e t r i c a l h y d r a u l i c c y l i n d e r ;s i m u l a t i o n 非对称液压缸具有结构紧凑、工作可靠及生产成本低等优点,因而广泛应用于车辆、工程机械、矿山机械等的液压系统中。非对称液压缸作为液压系统的主要执行元件,其动态特性是评价液压系统性能 的一个重要指标[1-3]。非对称液压缸在输入流量或负载发生变化时,输出压力会发生变化,活塞就会出

液压伺服系统(DOC)

液压伺服系统 液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 一、液压伺服系统的基本组成 液压伺服系统无论多么复杂,都是由一些基本元件组成的。如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。 (1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。外界能源可以是机械的、电气的、液压的或它们的组合形式。 (2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。它具有放大、比较等几种功能,如滑阀等。 (3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。 (4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。 (5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。 二、液压伺服系统的分类 液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。 电液伺服系统 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。 如图是一个典型的电液位置伺服控制系统。图中反馈电位器与指令电位器接成桥式电路。反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。 电液伺服系统中常用的位置检测元件有自整角机、旋转变压器、感应同步器和差动变压器等。伺服放大器为伺服阀提供所需要的驱动电流。电液伺服阀的作用是将小功率的电信号转换为阀的运动,以控制流向液压动力机构的流量和压力。因此,电液伺服阀既是电液转换元件又是功率放大元件,它的性能对系统的特性影响很大,是电液伺服系统中的关键元件。液压动力机构由液压控制元件、执行机构和控制对象组成。液压控制元件常采用液压控制阀或伺服变量泵。常用的液压执行机构有液压缸和液压马达。液压动力机构的动态特性在很大程度上决定了电液伺服系统的性能。 为改善系统性能,电液伺服系统常采用串联滞后校正来提高低频增益,降低系统的稳态误差。此外,采用加速度或压力负反馈校正则是提高阻尼性能而又不降低效率的有效办法。

液压伺服系统工作原理

液压伺服系统工作原理 1.1 液压伺服系统工作原理 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值x i。对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移x p。当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服 阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。 图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。 液压伺服系统的组成 液压伺服系统的组成 由上面举例可见,液压伺服系统是由以下一些基本元件组成;

液压传动系统的设计和计算word文档

10 液压传动系统的设计和计算 本章提要:本章介绍设计液压传动系统的基本步骤和方法,对于一般的液压系统,在设计过程中应遵循以下几个步骤:①明确设计要求,进行工况分析;②拟定液压系统原理图;③计算和选择液压元件;④发热及系统压力损失的验算;⑤绘制工作图,编写技术文件。上述工作大部分情况下要穿插、交叉进行,对于比较复杂的系统,需经过多次反复才能最后确定;在设计简单系统时,有些步骤可以合并或省略。通过本章学习,要求对液压系统设计的内容、步骤、方法有一个基本的了解。 教学内容: 本章介绍了液压传动系统设计的内容、基本步骤和方法。 教学重点: 1.液压元件的计算和选择; 2.液压系统技术性能的验算。 教学难点: 1.泵和阀以及辅件的计算和选择; 2.液压系统技术性能的验算。 教学方法: 课堂教学为主,充分利用网络课程中的多媒体素材来表示设计的步骤及方法。 教学要求: 初步掌握液压传动系统设计的内容、基本步骤和方法。

10.1 液压传动系统的设计步骤 液压传动系统的设计是整机设计的一部分,它除了应符合主机动作循环和静、动态性能等方面的要求外,还应当满足结构简单,工作安全可靠,效率高,经济性好,使用维护方便等条件。液压系统的设计,根据系统的繁简、借鉴的资料多少和设计人员经验的不同,在做法上有所差异。各部分的设计有时还要交替进行,甚至要经过多次反复才能完成。下面对液压系统的设计步骤予以介绍。 10.1.1 明确设计要求、工作环境,进行工况分析 10.1.1.1 明确设计要求及工作环境 液压系统的动作和性能要求主要有:运动方式、行程、速度范围、负载条件、运动平稳性、精度、工作循环和动作周期、同步或联锁等。就工作环境而言,有环境温度、湿度、尘埃、防火要求及安装空间的大小等。要使所设计的系统不仅能满足一般的性能要求,还应具有较高的可靠性、良好的空间布局及造型。 10.1.1.2 执行元件的工况分析 对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的变化规律,通常是求出一个工作循环内各阶段的速度和负载值。必要时还应作出速度、负载随时间或位移变化的曲线图。下面以液压缸为例,液压马达可作类似处理。 就液压缸而言,承受的负载主要由六部分组成,即工作负载,导向摩擦负载,惯性负载,重力负载,密封负载和背压负载,现简述如下。 (1)工作负载w F 不同的机器有不同的工作负载,对于起重设备来说,为起吊重物的重量;对液压机来说,压制工件的轴向变形力为工作负载。工作负载与液压缸运动方向相反时为正值,方向相同时为负值。工作负载既可以为定值,也可以为变量,其大小及性质要根据具体情况加以分析。

卧式钻床动力滑台液压传动系统设计

XXXX校名 课程设计说明书 学生姓名:学号: 学院: 专业: 题目:卧式钻床动力滑台液压传动系统设计 指导教师:职称: 职称: 20**年12月5日

目录 1.负载分析 (2) 2.绘制液压工况(负载速度)图 (3) 3.初步确定液压缸的参数 (3) 3.1.初选液压缸的工作压力: (3) 3.2.计算液压缸尺寸: (4) 3.3.计算液压缸在工作循环中各阶段的压力、流量及功率: (4) 3.4.绘制液压缸工况图 (5) 4.拟定液压系 (5) 4.1.选择液压回路 (5) 4.2.液压系统的组合 (5) 5.液压元件的计算和选择 (7) 5.1.确定液压泵的容量及驱动电机的功率: (7) 5.2.液压泵的流量 (7) 5.3.选择电动机 (7) 5.4.元件选择 (8) 5.5.确定管道尺寸 (8) 5.6.确定油箱容积: (8) 6.管路系统压力损失验算 (9) 6.1.判断油流状态 (9) 6.2.沿程压力损失 (9) 6.3.局部压力损失 (10) 7.液压系统的发热与温升验算 (11) 7.1.液压泵的输入功率 (11) 7.2.有效功率 (11) 7.3.系统发热功率 (11) 7.4.散热面积 (11) 7.5.油液温升 (11) 8.参考文献: (12)

1. 负载分析 1.切削力: Ft=16000N 2.导轨摩擦阻力 静摩擦力: fs F =W f S =0.2 ?20000 = 4000N 动摩擦力:fd F = W f d =0.1?20000 = 2000N 3.惯性阻力 (1)动力滑台快进惯性阻力m F ,动力滑台启动加速、反向启动加速和快退减速制动的加速度相等,s m v /15.0=?,s t 20.0=? N t v g w F m 153020.015 .08.920000=?=??= (2)动力滑台快进惯性阻力' m F ,动力滑台由于转换到制动是减速,取s m v /1074-?=?, s t 20.0=? N t v g w F m 14.720 .01078.9200004' =??=??=- 液压缸各动作阶段负载列表如下: 工况 计算公式 液压缸负载F (N ) 液压缸推力 (m F F η =) 启动 F= W f S 5000 5556 加速 F =W f d + m F 6326 7029 快进 F=W f d 2500 2778 工进 F=t F +W f d 18000 20000 制动 F =W f d — ' m F 2483 2759 快退 F=W f d 2500 2778 制动 F =W f d — m F —1326 —1473

数控液压伺服系统设计原理与应用

现代制造技术与装备 2007第2期总第177期 国内在液压的精密控制领域,采用传统的电液伺服控制系统,由于其结构复杂,传动环节多,不能由电脉冲信号直接控制。对于现代液压伺服控制需考虑:①环境和任务复杂,普遍存在较大程度的参数变化和外负载干扰;②非线性的影响,特别是阀控动力机构流量非线性的影响;③有高的频宽要求及静动态精度的要求,须优化系统的性能;④微机控制与数字化及离散化带来的问题;⑤如何通过“软件伺服”达到简化系统及部件的结构。[1] 因此发达国家已应用数字控制———即数控液压伺服系统来取代电液伺服控制系统,经过几年的努力,设计并研制成功自己的数控液压伺服系统,超越传统的电液伺服控制系统,大大提高控制精度。本文仅就该系统作简要介绍。 1数控液压伺服系统的组成 系统由数控装置、数控伺服阀、数控液压缺或液马达、液压泵站四大部分组成。系统框图如图1所示: 1.1数控装置:包括控制器,驱动器和步进电机。 之所以要采用步进电机,是由于计算机技术的飞速 发展,使步进电机的性能在快速性和可靠性方面能够满足数控液压系统的要求,而其价格低廉,又由于 数控液压系统结构的改进,所需步进电机功率较小,不需采用宽调速伺服电机等大功率伺服电机系统,就能大大降低成本。 1.2液压缸、液马达和液压泵站是液压行业的老 产品,只要按数控液压伺服系统的要求选取精度较高的即可应用。 1.3伺服控制元件是液压伺服系统中最重要、最 基本的组成部分,它起着信号转换、功率放大及反馈等控制作用[2]。所以整个数控液压伺服系统的关键部件就是数控伺服阀,它必需将电脉冲控制的步进电机的角位移精确地转换为液压缸的直线位移(或液马达的角位移)也可以说,只要有了合格的数控伺服阀,就能获得不同的数控液压伺服系统。 数控液压伺服系统设计原理与应用 孙如军 (德州学院机电工程系,德州253023) 摘 要:为了提高液压系统控制精度,一改传统的电液伺服控制,应用数字控制———即数控液压伺服 系统。充分利用计算机技术的飞速发展,采用PLC控制步进电机,不仅能够满足数控液压系统的快速性和可靠性要求,而且大大降低成本。 关键词:润滑保养 地下铲运机 设备管理 ThePrincipleofDesignandUseofNumericalControlHydraulicServoSystem SUNRujun (DepartmentofMechanicalandElectronicalEngineering,DezhouUniversity,Dezhou253023) Abstract:Inordertoincreasethehydraulicsystemcontrolprecision,wechangethetraditionalelectro-hy-draulicservo-control,theapplicationnumeralcontrolstabsisthenumericalcontrolhydraulicservo.Withtherapiddevelopmentofcomputertechnology,weusethePLCforcontrollingsteppingmotor,notonlycansatisfytherapidityandthereliabilityofthenumericalcontrolhydraulicsystem,butalsogreatlyreducesthecost. Keywords:numericalcontrolinstallment,numericalcontrolservobrake,numericalcontrolhydraulicpressureservocylinder 图1 数控液压伺服系统的组成 62

双叉式液压升降台液压驱动方案的设计

双叉式液压升降台液压驱动方案的设计 3 赵英俊,史晓敏 (浙江海洋学院机电工程学院,浙江舟山 316004) 摘 要:随着舟山临港物流业的快速发展,30t 以上集装箱的吞吐量增速较快,传统集装箱起吊装备体积大,购置成本 高,移动速度慢,严重影响集装箱的出入库和循环使用速度。为了解决以上问题,设计一种新型双叉式液压升降台,该升降台具有移动速度快、起重载荷大、购置成本较低的特点,该设计方案经实践检验是可行的。 关键词:双叉式升降台;液压系统;方案设计;临港物流 中图分类号:U653.921 文献标识码:A 文章编号:1006-4414(2010)02-0062-03 D esi gn of hydrauli c syste m for double fork hydrauli c li fti n g t able Zhao Ying -jun,Shi Xiao -m in (School of electro m echanical engineering of Zhejiang ocean university,Zhoushan Zhejiang 316004,China ) Abstract:W ith the rap id devel opment of harbor cargo trans port in Zhoushan city,cargo p r ocessing ability of greater -than 30t container was rap idly increasing,in -outwarehouse and mobile s peed of container was largely affected because of large volu me of conventi onal lifting equi pment,and sl ow travel rate of its .To s olve p revi ous p r oble m s,a ne w double f ork hydraulic lifting table is designed,which travel rate of this equi pment is quicker and fact ory acquisiti on costs is l ower,thr ough p ractical verif 2ying,this p r oject design is feasible . Key words:double f ork lifting table;hydraulic syste m;p r oject design;harbor cargo trans port 1 前 言 随着舟山临港物流业的快速发展,30t 以上集装 箱的吞吐量增速较快,传统集装箱起吊装备体积大,购置成本高,移动速度慢,严重影响集装箱的出入库和循环使用速度,为了解决以上问题,设计一种新型双叉式液压升降台,该升降台具有移动速度快、起重载荷大、购置成本低的特点。 双叉式液压升降台由两部分组成:液压驱动单元和机械传动单元,如图1所示。液压驱动单元的作用是将液压能转化为机械能,通过液压元件控制调节液体压力与流量,最后由液压泵站控制提供液压能。机械传动单元由叉架、底框架、台面框架、下限位支撑架、维修支撑架、地脚支架、导轨架等组成,它的作用是将液压泵站提供液压能,通过液压油缸顶升叉架机构,实现升降台面的升降 。 图1 液压双叉式升降台 2 升降台液压驱动方案的设计 2.1 设计要求 液压驱动系统设计是液压升降台总体的重要组成部分,设计时必须满足液压升降台使用功能所需的全部技术要求,而且静动态性能好,效率高,安全可靠,结构简单,经济性好,使用维护方便。为此,要明确与液压驱动系统有关的液压升降台参数的确定原则,要与升降台的总体设计综合考虑做到机、电、液相 互配合,保证液压升降台总体的性能最好[1] 。 根据液压升降台的使用工况,其液压驱动系统必须解决好以下问题。 (1)保证动作平稳,升降台上载重量变化很大,且机械传动零件加工、安装的误差以及台面的偏载,都将导致液压马达负载变化较大,液压系统必须要克服负载变化对速度产生的影响,确保机构无冲击地平稳运行[2] 。 (2)由于采用两台液压马达分别驱动四个液压缸,因此,液压系统必须保证设备具有较高的同步控制精度。 (3)工作载荷及架体自重在运动速度变化时引起的惯性冲击问题。 (4)下降过程反向负载引起失重现象,必须加以控 制,尤其是如此大型的设备,一旦失控极其危险[3] 。2.2 主要技术参数及要求 台面升降速度:3m /m in;叉架升起最大高度:2.83m;叉架降低最小高度:0.81m;总行程:2.02m;升 ? 26??机械研究与应用? 3收稿日期:2010-02-23 作者简介:赵英俊(1987-),男,浙江杭州人,研究方向:液压系统设计。

机电一体化液压伺服系统设计

机电一体化液压伺服系统 设计 Newly compiled on November 23, 2020

液压伺服系统设计 专业:机电一体化技术 年级: 学生姓名: 指导教师: 摘要 机电一体化是以机械技术和电子技术为主题,多门技术学科相互渗透、相互结合的产物;是正在发展和逐渐完善的一门新兴的边缘学科。机电一体化使机械工业的技术结构、产品结构、功能与构成、生产方式及管理体系发生了巨大变化使工业生产由“机械电气化”迈入了以“机电一体化”为特征的发展阶段。 本设计中提到的微机数控机床是利用单板或单片微机对机床运动轨迹进行数控及对机床辅助功能动作进行程序控制的一种自动化机械加工设备。采用微机数控机床进行机械加工的最大优点是能够有效地提高中、小批零件的加工生产率保证加工质量。此外,由于微型计算机具有价格低、体积小、性能可靠和使用灵活等特点微机数控机床的一次性投资比全功能数控机床节省得多,且又便于一般工人掌握操作和维修。因此将专用机床设计成微机数控机床已成为机床设计的发展方向之一。本设计中用到的步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件具有快速起动和停止的特点。其驱动速度和指令脉冲能严格同步;具有较高的重复定位精度并能实现正反转和平滑速度调节。它的运行速度和步距不受电源电压波动及负载的影响,因而被广泛应用于数模转换、速度控制和位置控制系统。 目录

4 4 4 6 0

第1章总体方案设计 总体分析 本次设计实现的是一两座标步进电机驱动运动工作台控制系统的设计。设计采用单片机对系统进行控制,单片机的包括键盘与显示的控制、与PC机的串口通讯、以及电机输入输入输出信号的控制。电机的输入信号包含报警监测,在机床边缘运用一个接近开关即可实现此目的。 方案框图 单片机作为控制的核心:一方面对机床的运动方向和位移量进行控制,另外还将与键盘对应的位移信息显示在LED上,并实现与PC机的通信。 第2章单元模块设计 键盘与显示模块 随着电子及计算机技术的飞速发展,涌现出了许多的智能型芯片,INTEL、ATMEL、MICROCHIP、MOTOROLA和PHILPS等公司都推出了一系列满足不同行业多种需求的单片机芯片,CPU的价格也从90年代初的成百元降至如今最便宜的芯片只有数元,而一些功能单一的外围接口芯片,越来越多地被功能强大、灵活方便的智能型芯片所代替。我们使用ATMEL公司生产的89C2051设计出了键盘LED显示模块,功能上比传统的键盘显示接口芯片82C79强,而成本仅有后者的1/3。AT89C2051简介,AT89C2051属于MCS51家族,它同大家熟悉的8031单片机相比,I/O口减少到15个,其它配置和性能不减,指令完全兼容,片内具有2K字节的FLASH存贮器,电擦写编

相关主题
文本预览
相关文档 最新文档