当前位置:文档之家› 电动遥控飞机教案

电动遥控飞机教案

电动遥控飞机教案
电动遥控飞机教案

遥控飞机活动教案

辅导教师:____________________________

领航者电动遥控飞机

(教案)

课题电动遥控飞机模型飞机课时2课时

教学目标知识目标了解遥控模型飞机的工作原理,能独立制作一

架电动遥控模型飞机

情感目标启发学生运用所学知识勇于实践

技能目标培养动手能力和创造能力

材料一套电动遥控模型飞机材料

教学内容电动遥控飞机是由电池充电带动电机运转来提供能量飞行的一种模型。今天我们要制作出一架电动遥控模型飞机。

学生结合套材中的图纸和教材内容,组装飞机模型

(具体过程见教材)

试飞

竞赛。

反思这款模型装配相对简单,重要的是图纸的阅读及遥控操作的熟练掌握程度

一、模型飞机介绍

本次训练选用领航者电动遥控飞机,该模型飞机结构、性能简单介绍如下:

(一)机翼上单翼凹凸翼型,具有良好的横侧安定性和滑翔性能。

(二)机头舱内安置遥控接收机、伺服舵机、电源和动力机,机头后上方是高

架机翼翼台。模型重心远远低于机翼位置,增加模型的横侧安定性。接收天线和尾舵操纵线,均从尾杆中穿引到机身后端。

(三)起落架2mm直径弹簧钢丝弯制,两个橡塑轮胎小轮,可在地面滑跑起飞。(四)遥控系统分别控制电机调速和左右尾舵。操纵方向杆时,左右尾舵一上一下反向偏转,双舵提供转弯力矩,使模型具有良好、灵敏的方向操纵性,可以实

现小半径转弯。多模式的操纵功能设计,既使初学者能够安全练习飞行,又使

飞行高手能够尽兴,拓宽了一架飞机的适飞范围。领航者电动遥控模型飞机优良的设计和飞行性能,把它作为我们遥控模型飞机入门训练的首选机种,是非常合适的。

二、基本飞行原理

(一)飞机的升力飞机的升力来自空气动力,是作用于机翼的空气动力在垂

直于飞行速度方向的分力(平行于飞行速度方向的分力为阻力),向上为正。机

翼和空气发生相对运动时,气流对机翼上下表面产生大小不等的压强,上下翼面的压强差形成了托举机翼以及飞机的升力。

机翼上下表面产生压强差的条件有两个:一是翼型,即机翼横剖面的形状;

二是飞行迎角,即机翼相对迎面气流的夹角。迎角是以连接翼型的前缘、后缘两点的翼弦和相对气流速度方向的夹角来度量的。

(二)飞机的操纵对尾翼舵面的操纵的实质,是改变了尾翼的翼型和迎角,使尾翼的升力大小、方向发生变化,导致尾翼对飞机重心的各向力矩(方向

力矩、俯仰力矩)发生变化,从而达到改变飞机飞行姿态的目的。

三、飞机的操纵技法

(一)发射机的握持方法

大拇指指肚轻轻按摇杆顶端,手指自然弯曲,避免关节僵直、指尖上跷。两手其余四指托在发射机两侧下面。左手食指或中指指肚按在调速滑钮上。

(二)摇杆动作

方向杆用右手拇指操纵,要用拇指指根关节左右转动方式进行摇杆操纵。注意,不要把拇指横放,用推拉的方式操纵方向杆。升降杆用左手拇指操纵,用左

手拇指前后推拉的动作操纵摇杆。摇杆的幅度,应该符合飞行动作的需要,该大则大、该小则小。摇杆的速率,不要太快、太急,应稍微缓慢、从容一些。用力不要太大,应该自然柔和。只有这样,才能作出恰倒好处的、精确的操纵,有效防止粗暴的

操纵动作,充分发挥设备的优越性。

摇杆操纵手法技巧的形成和掌握,必须经过反复练习。为了加快这一进程,

除了多飞多练之外,还应多进行地面模拟操纵练习。一是进行单纯的指法练习,

掌握两手拇指的正确发力方法和摇杆动作;二是在头脑中假想飞行情景,两手进行相应的摇杆操纵。

摇杆操纵动作的术语名称主要有以下一些:打左舵、右舵、推杆、拉杆、

杆量增加、加点杆、杆量减小、回点杆、稳杆、松杆、回中、打反舵、开机、加

速、减速、关车等等。应该熟悉以上术语名称,以便在训练时能正确理解和执行

教练的提示指令。

(三)操纵的提前量

电动遥控飞机,属于动力滑翔机类型,飞行速度低,对操纵的反应较慢,有明显的滞后现象。所以在进行操纵的时机上,要有必要的提前量。提前量的时值长短,对于不同的模型、不同的飞行速度、不同的风力风向都有所不同,应该在

训练试飞中,不断摸索、了解和掌握。

四、飞行操纵的训练阶段

遥控飞行操纵技能的训练,大致要经历三个阶段:

1、体验性飞行练习,教练手把手带飞教学。

飞行训练时,教练、学员同时扶杆。在这个阶段,也有个渐进发展过程。刚

开始时,教练主动操纵,学员被动跟随,体验操纵方法。第二步,学员主动操纵练习,教练保护性扶杆,必要时帮助操纵。第三步,随着学员对操纵技术的熟悉

掌握进程,教练逐步放手,主要以口头提示方式进行指导帮助

2、有保护的自主练习。

学员自主飞行练习,但教练必须陪伴在旁,进行监护指导,在飞机出现危急情况时,在起飞和着陆时,进行必要操纵帮助。

3、单飞自主练习。

当学员操纵技能形成,有能力独立完成飞行全过程时,可以进行完全独立的单飞训练。

自己设计制作模型飞机的体会

尽管学飞以来一直在飞成品机(ARF),但是,我自己要设计制作一架模型飞机的愿望一直在心里涌动。几经周折后,我成功地将自己亲手设计制造的一架航模送上了蓝天。我的愿望得到了厚重的实现,那种喜悦满足的心情是难以用语言来表达的。 下面我就讲讲我的设计制作过程,希望能对想动手做航模的朋友有所帮助。不对之处,还望大家共同交流提高。 按照现成的图纸制作一架模型飞机,不是一件太难的事。但是,如果根据您的需要自己设计制作一架飞机,恐怕就具有一定的挑战性了。当您要下手设计制作时,会遇到很多需要解决的问题。如:为什么要选用这个翼型、翼展和翼弦是怎么确定的、机身长度应该是多少、尾翼的面积需要多大、各部件的位置应该放在哪里等等。好在现在的由有关书籍较多,只要认真学习归纳,就能找到答案。根据我所学的知识,我是这样设计制造我的“菜鸟1号”的。 第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些,所以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度

飞机操控系统

飞机操纵系统发展历程和典型飞机操纵系统分析 学生: 学号: 摘要 本文简要的叙述了飞机操纵系统的发展,主要阐述了几个典型飞机操纵系统的产生和具体结构。早期的简单机械系统即可达到飞行的要求,但随着飞机速度和机动性要求的不断提高,飞机操纵系统的性能也不断完善。飞机操纵系统经历了简单机械系统、控制增稳系统、电传操纵系统和光传操纵系统这几个阶段。最后飞机操作系统的每一次改变都是航空发展史上的伟大进步。 关键词:机械操纵系统、控制增稳系统、电传操纵系统、光传操纵系统 Aircraft control system development process and typical aircraft control system analysis Student: Liu He Student ID: 11031182 Abstract This article briefly describes the development of aircraft control systems, mainly on the production and the specific structure of several typical aircraft control systems. Early flight can be achieved by a simple mechanical system, but with the constant increase in air speed and maneuverability, performance aircraft control systems are constantly

航模飞机设计基础知识

第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就

飞机操纵系统

飞机操纵系统(卷名:航空航天) aircraft control system 传递操纵指令、驱动舵面和其他机构以控制飞机飞行姿态的系统。根据操纵指令的来源,可分为人工操纵系统(由主操纵系统和辅助操纵系统组成)和自动控制系统。 主操纵系统用于控制飞机飞行轨迹和姿态,由升降舵(或全动平尾)、副翼和方向舵的操纵机构组成(图1)。主操纵系统应使驾驶员有位移和力的变化感觉,这是它与辅助操纵系统的主要差别。辅助操纵系统包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等。它们的操纵只是靠选择相应开关位置,通过电信号接通电动机或液压作动筒来完成。自动控制系统的操纵指令来自系统的传感器,能对外界的扰动自动作出反应,以保持规定的飞行状态,改善飞机飞行品质。常用的自动控制系统有自动驾驶仪、各种增稳系统、自动着陆系统和主动控制系统。自动控制系统的工作与驾驶员的操纵是各自独立、互不妨碍的。飞机主操纵系统经历了由简单初级到复杂完善的发展过程。先后出现了机械式操纵、可逆、不可逆助力操纵和电传操纵,并在电传操纵基础上发展了主动控制技术。 简单机械操纵系统驾驶员通过机械传动装置直接偏转舵面。舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。这种系统(图1 )由两部分组成:①位于驾驶舱内的中央操纵机构;②构成中央操纵机构和舵面之间机械联系的传动装置。中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。驾驶员前推或后拉驾驶杆可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或向右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或向右侧滚转。脚蹬连结着方向舵,驾驶员蹬左脚时,方向舵向左偏转,机头向左偏;反之,机头向右偏。对于各类飞机,中央操纵机构的尺寸、操纵行程和操纵力均有标准规定。通常在被操纵舵面(升降舵、副翼和方向舵)上,用气动补偿措施减少气动铰链力矩,把操纵力控制在规定范围内。机械传动装置直接带动舵面,有软式和硬式两种基本型式。软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和硬式可以混合使用。 简单机械式操纵系统广泛用在亚音速飞机上。在大型高速飞机上,舵面上的气动铰链力矩很大,虽然用气动补偿的方法可以减小力矩,但很难在高低速范围内达到同样效果。40年代末出现了液压助力系统,舵面由液压助力器驱动,驾驶员通过中央操纵机构、机械传动装置控制助力器的伺服活门,间接地使舵面偏转。它同时通过杠杆系统把舵面一部分气动载荷传给中央操纵机构,使驾驶员获得操纵力的感觉,构成所谓“机械反馈”,这就是可逆助力操纵系统。 不可逆助力操纵系统可逆助力操纵系统虽可解决杆力过大的问题,但在超音速飞机上还会出现所谓杆力反向变化的问题。由于杆力反向变化,会使驾驶员产生错觉而无法正确驾驶飞机。为此,须把可逆助力操纵系统中的机械反馈取消,即舵面气动载荷全部由液压助力器承受。为了使驾驶员获得操纵力感觉,在系统中增加了人工载荷机构(通常是弹簧的)以及其他改善操纵特性的装置,形成不可逆助力操纵系统(图2)。 在高空超音速飞行时,由于空气密度减小,飞机容易发生频率很高的俯仰和横侧振荡,驾驶员来不及作出反应。为了克服振荡,在超音速飞机上普遍安装自动增稳装置,如俯仰阻尼器和方向阻尼器等。 电传操纵系统在不可逆助力操纵系统中,存在着间隙、摩擦、弹性变形等影响,难以解决微弱信号的传递问题。又由于普遍采用增稳装置,机械联杆装置越来越复杂,重量增加。自动控制和微电子技术的发展,为取消机械传动装置创造了条件,可用电信号综合传感器信号和驾驶员的操纵指令,对飞机进行有

飞机模型制作

一、设计篇: 现代F3A运动讲求姿态控制精准,动作细腻柔和,飞行速度均匀稳定。其大部分动作基本在一个面内完成,运动轨迹基本由规则的几何图形组成,包括大量的滚转、倒飞、侧飞和垂直飞行动作,努力达到和更好地完成这些飞行动作是设计工作的基本方向。 3A特技机的气动外形是基于FAI比赛需要而设计的,随不同时代技术进步以及飞行动作发展而不断进化。由早期的大翼展(翼展大于机身长度)过渡到现在的长机身(翼展与机身长度基本相同,或机身长度略大于翼展),由较小的机身侧投影面积发展为较大的投影面积等无不体现着这些变化。据此,对各种姿态下飞行稳定和平衡的追求,作为整体思路贯穿在本架飞机的设计之中--长的尾力臂可以使姿态控制更加柔和,适中的主翼根梢比提供了均衡的横侧稳定性,大的尾舵面弥补了长尾臂带来的操纵迟缓,以完成礼帽等直角空中动作,高而窄的机身使飞机有着较大的侧投影面积,尽量以较小的倾角完成侧飞动作 由于此模型为小型F3A特技机,我不希望其飞行速度过快,不然就缺少了一种稳定感。同时为了使之在做俯冲或垂直下降动作时也尽量保持匀速稳定飞行,在设计过程中增大和利用了形状阻力。比如,使用成熟的NACA0014作为主翼翼型以提高相对小雷诺数机翼模型飞行时的稳定性和抗失速性;适当降低了一些翼载荷--约50g/dm2,以求降低整机的惯性力矩,用以弥补使用NACA0014这类翼型造成的直角动作的相对迟缓;尾翼均使用带翼型的NACA0009。垂直尾翼的设计,尝试了2007年克里斯托弗的参赛机型Osmose的特点,加大了方向舵的后缘厚度,以期达到更好的直线性。垂直安定面采用标准翼身融合的设计,增加了其下部靠近机身纵轴的前缘厚度,然后过渡到较薄的翼尖。这样即可增大整架飞机的纵轴上尾部阻力,同时尽量保持各向气动布局均匀,使飞行更加稳定。 大致确定各项基本参数: 1. 外形尺寸:1.2m x 1.2m 2. 重量:1.2kg 3. 翼载荷:约50g/dm2 4. 主翼面积:约26dm2 5. 水平尾翼面积:6.5dm2

飞机操纵系统发展史

飞机飞行操纵系统大作业 飞机飞行操纵系统发展史 班级: 100321 学号: 100311xx 姓名: 王尼玛 专业: 自动化 指导老师: 于黎明 二零一三年六月二十一日

飞机飞行操纵系统发展史 【摘要】 本文主要论述了的飞机飞行操纵系统的发展史,对飞机机械操纵、增稳操纵、控制增稳操纵、电传操纵、光传操纵做了详细的描述,并对未来飞机的操纵系统进行了展望。 关键词:飞机飞行操纵系统;机械操纵系统;增稳操纵系统;控制增稳操纵系统;电传操纵系统;光传操纵系统

目录 【摘要】 (1) 目录 (2) 第一章飞机操纵系统的发展历程 (3) 第二章机械操纵系统 (3) 第三章增稳操纵系统 (4) 第四章控制增稳操纵系统 (4) 第五章电传操纵系统 (4) 第六章光传操纵系统 (5) 第七章飞机操纵系统的发展趋势 (5) 参考文献 (6)

第一章飞机操纵系统的发展历程 最初的飞机操纵系统是由简单的钢索、滑轮、连杆和曲柄等机械部件组成,即我们所说的机械传动操纵系统。飞行员通过直接操纵机械传动系统来控制飞机的操纵舵面,实现对飞机姿态和飞行轨迹的控制,此时可不考虑系统本身的动特性,只需对摩擦,间隙和系统的弹性形变加以限制,便可获得满意的系统性能。随着飞机设计的发展和飞机速度的不断提高,即使使用看气动力补偿,飞行员的体力还不能适应作用于操纵舵面上的空气动力载荷,这时便产生了液压助力器,此系统实际上仍是一个除飞行员外开环的机液伺服系统。伴随着飞行包线的进一步扩大,飞机的稳定性与可操纵性之间的矛盾更加突出,相继出现了增稳操纵系统和控制增稳操纵系统,这时的系统已在局部使用了电传操纵技术,但操纵系统仍以机械通道为主控通道。为实现最佳气动布局的飞机设计,在电传操纵余度技术逐渐趋于成熟的条件下,操纵系统的机械通道有被电传通道完全取代的趋势,这便产生了现在以被广泛使用的电传操纵系统。但电传操纵系统难以克服自身易受干扰的缺陷,为了改善电传操纵系统的性能,克服自身的缺陷,在电传操纵系统内采用了新的信号传导材料——光纤。光纤作为信号传导材料与电传操纵系统相比,在抗电磁干扰、减轻重量、提高可靠性等方面有明显的优势。运用新的信号传导材料与电传操纵系统相结合所产生的操纵系统,这便是光传操纵系统的雏形。光传操纵系统对提高飞机的稳定性和满足日益提升的飞行性能产生了深远的影响。 第二章机械操纵系统 驾驶员通过机械传动装置直接偏转舵面。舵面上的气动铰链力矩通过机械联系使驾驶员获得力和位移的感觉。这种系统由两部分组成:①位于驾驶舱内的中央操纵机构;②构成中央操纵机构和舵面之间机械联系的传动装置。中央操纵机构由驾驶杆(或驾驶盘)和脚蹬组成。驾驶员前推或后拉驾驶杆可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或向右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或向右侧滚转。脚蹬连结着方向舵,驾驶员蹬左脚时,方向舵向左偏转,机头向左偏;反之,机头向右偏。对于各类飞机,中央操纵机构的尺寸、操纵行程和操纵力均有标准规定。通常在被操纵舵面(升降舵、副翼和方向舵)上,用气动补偿措施减少气动铰链力矩,把操纵力控制在规定范围内。机械传动装置直接带动舵面,有软式和硬式两种基本型式。软式传动装置由钢索和滑轮组成,特点是重量轻,容易绕过障碍,但是弹性变形和摩擦力较大。硬式传动装置由传动拉杆和摇臂组成,优点是刚度大,操纵灵活。软式和硬式可以混合使用。简单机械式操纵系统广泛用在亚音速飞机上。在大型高速飞机上,舵面上的气动铰链力矩很大,虽然用气动补偿的方法可以减小力矩,但很难在高低速范围内达到同样效果。40年代末出现了液压助力系统,舵面由液压助力器驱动,驾驶员通过中央操纵机构、机械传动装置控制助力器的伺服活门,间接地使舵面偏转。它同时通过杠杆系统把舵面一部分气动载荷传给中央操纵机构,使驾驶员

遥控飞机模型的制作

遥控飞机模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

一款制作简单的纸飞机模型

款制作简单的纸飞机模型 手掷模型飞机是制作较简单的无动力模型飞机,它靠人用手向前上方掷出。在模型掷出后的一段时间里,模型在空气中较快移动产生了升力使模型向空中飞去。当遇到向上的气流时,它会飞得更远一些。 小制作准备 手掷模型飞机套材、快干胶、笔、锉、刀、铅丝 科技小制作过程

相关知识 ●纸飞机 纸飞机是一种用纸做成的玩具飞机。它可能是航空类折纸手工中的最常见形式,航空类折纸手工属于折纸手工的一个分支。 由于它是最容易掌握的一种折纸类型,所以深受初学者乃至高手的喜爱。最简单的纸飞机折叠方法只需要六步就可以完成。现在,“纸飞机”这个词也包括那些用纸板做成的飞机。 用纸制作玩具被认为起源于2000年前的中国,那时放风筝是一种流行的娱乐项目,虽然这些可以被看做是现代纸飞机起源的证据,但是没有人能提供准确的证据指出这项发明到底起源于哪里。随着时间的推移,纸飞机速度、浮力和外形的设计已经有了较大的改进。 已经有很多人宣称自己做出了世界上最好的纸飞机。模型DC—03(DC--03纸飞机模型)就是其中之一。Dc--03拥有巨大的滑翔翼,和一个可能在所有纸飞机里独一无二的尾翼。可惜的是没有一个国际性的纸飞机联盟或者协会对这是否是世界最好的飞机进行官方认定。 对于DC--03模型的尾翼,吉尼斯世界纪录保持者肯·布莱克布恩不同意在纸飞机的尾部加尾翼的做法。他在自己的网站解释纸飞机的空气动力学时提到尾翼是不必要的。他以实际的B--2幽灵飞翼轰炸机

为例,提到沿着机翼的配重使重心更向前,因此飞机也就更平稳。很多人认为轻的纸飞机比重的纸飞机飞得更远,但是肯·布莱克布恩认为这是不正确的。他打破20年前的纸飞机记录就是基于他的信念:最好的飞机拥有短的机翼和重心位于掷飞机的人掷出飞机的那个点上,同时长机翼和更轻的重量能让纸飞机更远的飞行。但是在掷出阶段不能给予更多的力量。 很多年来,许多人试图突破手掷飞机在空中的最长停留时间这一极限。肯·布莱克布恩保持这一吉尼斯世界纪录长达l3年时问(1983年一l996年)。1998年lo月8日他创造了室内纸飞机飞行记录.他的纸飞机在空中保持了27.6秒。吉尼斯官方和国际新闻网见证并报导了这项记录。肯·布莱克布恩在这次冲击记录的尝试中使用的纸飞机被归属到滑翔(无引擎飞机)类当中。美国著名的纸飞机设计者托尼·弗莱特1985年创下飞行距离世界纪录——l93英尺(58.82米)。到目前为止,依然没有人打破它。这个距离比莱特兄弟首次飞行的距离还要长。

飞机操纵系统方式

飞机操纵系统方式 飞机操纵系统方式 -简单机械操纵系统- 机械操纵系统,由钢索的软式操纵,发展为拉杆的硬式操纵。驾驶杆及脚蹬的动作经过钢索或拉杆的传递直接带动舵面运动。驾驶 员在操纵过程中必须克服舵面上所承受的气动力。 -助力操纵系统- 随着飞机尺寸、质量及飞行速度的不断增加,舵面铰链力矩的增大,驾驶员难以直接通过钢索或拉杆来操纵舵面。20世纪40年代 末出现了液压助力器,将其安装在操纵系统中,作为一种辅助装置 来增大施加在舵面上的作用力,以发挥飞机的全部机动能力。这就 是飞机的助力操纵系统。 不可逆助力操纵系统 -全助力操纵系统- 当超音速飞机出现后,飞机超音速飞行时需要相当大的操纵力矩才能满足飞机的机动操纵要求。此外,由于尾翼上出现了超音速区,升降舵操纵效率大为降低,而不得不采用全动平尾。全动平尾铰链 力矩大,而且数值的变化范围较宽,非线性特性影响严重,驾驶员 无法直接承受舵面上的铰链力矩。在这个时候,出现了全助力操纵 系统。 全助力操纵系统中,切断了舵面与驾驶杆的直接联系,驾驶员的'操纵指令直接控制助力器上的分油活门,从而通过助力器改变舵面 的偏转并承受舵面的铰链力矩。此时,驾驶杆上所承受的杆力仅用 于克服传动机构中的摩擦力,驾驶员无法从杆力的大小来感受飞机

飞行状态的变化。因此,在系统中增加了人感装置,通过弹簧、缓 冲器及配重等构成的系统,来提供驾驶杆上所受的人工感力。 -增稳系统- 从20世纪50年代中期以来,随着飞机向高空高速方向发展,飞行包线不断延长,飞机的气动外形很难既满足低空、低速的要求, 又满足高空、高速的要求,常会出现飞机在高空、高速飞行时稳定 性增加而阻尼不足,但在低速飞行时稳定性又不够的现象。为了提 高飞机的稳定性和改善飞机的阻尼特性,第一次将人工操纵系统与 自动控制结合起来,将增稳系统引入到人工操纵系统中,从而形成 了具有稳定功能的全助力系统。 在这个系统中,增稳系统和驾驶杆是相互独立的,增稳系统并不影响驾驶员的操纵。由于舵面既受驾驶杆机械传动指令控制,又受 增稳系统产生的指令控制,为了操纵安全起见,增稳系统对舵面的 操纵权限受到限制,一般仅为舵面全权限的3%~6%。 -控制增稳系统- 增稳系统在增大飞机的阻尼和改善稳定性的同时,在一定程度上降低了飞机操纵反应的灵敏性,从而使飞机的操纵性变坏。为了克 服这个缺点,在增稳系统的基础上,进一步发展成为控制增稳系统。它与增稳系统的主要区别在于:在控制增稳系统中,将驾驶员操纵 驾驶杆的指令信号变换为电信号,经过一定处理后,引入到增稳系 统中。控制增稳系统较好地解决了稳定新与操纵性之间的矛盾,驾 驶员还可通过该系统直接控制舵面,因此控制增稳系统的权限可以 增大到全权限的30%以上。 -电传操纵系统- 传统的机械操纵系统以及带增稳或控制增稳的机械操纵系统都存在一些缺点:在大型飞机上操纵系统越来越笨重,尺寸也大;不可避 免地存在一些非线性,如摩擦力和传动间隙等,造成操纵迟滞和系 统自振;机械操纵系统直接固定在机体上,易传递飞机的弹性振动, 引起驾驶杆偏移,有时造成人机诱发振荡等;由于控制增稳系统权限 有限,无法解决现在高性能飞机操纵与稳定中的许多问题。

手掷飞机模型的制作和试飞教学案例精品

手掷飞机模型的制作和试飞》案例 一、学情分析 学生喜欢飞机,但由于学生初中没有《通用技术》这样动手能力的课,更没有科学和技术作铺垫。多数学生的动手能力不强,他们只知道剪、拼、粘等简单组装。《手掷飞机模型的制作和试飞》是本课的主题。教学内容是让学生动手设计制作和试飞比赛自己的拼粘好的小飞机,在试飞比赛中,增强学生自信心和友谊第一,比赛第二的理念,也激发了学生的挑战欲。 在动手操作中去发现原有事物的不足、去改进它、发展学生的创新精和实践能力,当学生拿着自己的小飞机进行试飞尝试时,就有几个学生飞的还可以,多数学生不成功,这样需要学生在实践中去调试、添加、削减、不断总结,并加以改进,并让学生对比观察飞行好的,远的与飞行近的、不直的飞机的各部分有什么不同,找到自己的不足,然后加以修改调试,在进行比赛。总之,给每个学生发展的空间,找到自己的问题,敢于挑战,让他们自主参与,亲身体验并积极实践,是本课程的指导理念。 二、教学设计 教学目标 知识与能力: 1.初步了解手掷模型飞机的构造和飞行原理。 2、进一步会看流程图。 3、初步知道副翼、尾翼的作用。 过程与方法: 1、学习正确运用砂皮板打磨加工零部件的技能。 2、在制作手掷小模型飞机的过程中, 掌握副翼、方向舵、升降舵的调整方法。 3、初步掌握手掷直线小模型飞机比赛规则。 情感态度价值观: 培养学生做事认真踏实的态度,和对飞机的爱,发展学生的创新精神和动手实践能力。※教学重点: 飞机制作和调试。 ※教学难点: 机头制作和调试 ※教学准备: 模型飞机一架,手掷小模型飞机1 套, 胶, 美工刀,砂皮板,剪刀。 ※教学过程 (一)情景导入 师出示:手掷小模型飞机

怎样设计一架航模飞机

怎样设计一架航模飞机集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

怎样设计一架航模飞机 按照现成的图纸制作一架模型飞机,不是一件太难的事。但是,如果根据您的需要自己设计制作一架飞机,恐怕就具有一定的挑战性了。当您要下手设计制作时,会遇到很多需要解决的问题。如:为什么要选用这个翼型、翼展和翼弦是怎么确定的、机身长度应该是多少、尾翼的面积需要多大、各部件的位置应该放在哪里等等。好在现在的由有关书籍较多,只要认真学习归纳,就能找到答案。 第一步,整体设计。 1。确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是XXXXX翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些,所以我选的厚度是12%的翼型。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。 机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不

小学生简易航空模型的制作

简易航空模型的制作 从人类诞生以来,一直都有一个梦,梦想着能像鸟儿一样飞翔。人类为此伤透了脑筋:为什么鸟儿有翅膀就能飞上天空,人类却不能。为此,我们的祖先制作出了种类繁多的风筝、竹晴蜒、孔明灯和木鸟模型。它们在飞机发明的过程中起了重要的作用。经过一代又一代人的努力。人类终于梦想成真了。 1903年,美国莱特兄弟(哥哥威尔伯,弟弟奥维尔)利用汽油发动机制造的“飞行者”号在美国基蒂霍克成功进行了历史上第一次机械动力飞行,12秒钟飞行了36米。此后在第一次世界大战中,飞机的性能得到迅速改善。1927年,美国飞行员林白曾驾驶“圣路易精神号(Spirit of Saint Louis)”成功飞越纽约和巴黎之间的大西洋,连续飞行5809公里,飞行时间为33小时50分钟。 但是,我国在航空同工业发达的国家相比,还有不少差距。开展航空模型小制作活动,可以使学生了解我国航空发展的历史和现状,激发学生从小立志献身于祖国的航空事业,为四化建设作出贡献。 航空模型的制作需要运用许多的科学知识,通过模型的制作,可以启发学生运用所学知识勇于实践,培养动手能力和创造能力。 初级橡筋动力模型飞机 初级橡筋动力模型飞机是一个比较典型的传统普及项目。通过制作、放飞初级橡筋动力模型飞机,可以对带有动力的自由飞项目有一个初步了解,为进一步学习制作复杂的模型飞机打下一个扎实的基础,是在初级模型滑翔机的基础上学习的延伸。下面让我们来做一架初级橡筋动力模型飞机. 第一节飞机的制作 一、材料工具: 一套初级橡筋动力模型飞机材料。砂纸板、壁纸刀、尖嘴钳、铅笔、尺子、透明胶带、双面胶带、模型快干胶(白乳胶、502胶水均可)。 二、制作过程: 1、制作机翼: 将吹塑纸按图示尺寸裁出左右机翼

模型飞机制作方法及具体步骤整理版

怎样制作遥控飞机 基本的就是由一个高频发射器(发射器又包括高频震荡电路,载波电路,高频放大电路和发射电路,发射天线)和一个高频接收器(高频接收包括高频接收天线,然后放大,然后把这个信号传送到一个处理控制器,控制器发出指令使机械装置做相应的动作,然后--------)和一些受控制的(能和接收器相互良好配合的)机械装置,具体的话那是有很多的,这涉及很多门学科的电子学的数电模电,物理的空气动力学,还有关于机械的专业知识 0 购买发动机和设备。(花去经费的70%) 1 备齐工具。 2 了解模型内构(与真飞机相似,但简化好多)。 3 备齐和了解材料(花去经费10-20%)。 4 制图,是用autocad设计和输出。 5 制作和调试。 6 找玩过遥控模型带试飞,因为那天可能会兴奋的手打抖。 步骤: 要分为几个部分: 1:遥控器部分.2.无线电发射接收部分.3控制电路部分.4.飞机的机械部分. 对最后一个部分不熟,不过应该有买的吧.那个飞机的模型, 可以买一个,拿回来在它的基础上改装. 遥控器,如果的功能不多,可以用2262\2272这一对编码\解码芯片.至于无线电,有卖那种做好的发 射\接收模块的,那个东西,自己做很麻烦,有时候又起不了振,不如就买个现成的。把上面的东西连好后,就可以从2272输出信号了,用这个信号控制步进电机之类的,当然需要自己连个电路了.自己设计,不难. 机械技术:其实非常简单,首先是材料得选定,要求是必须轻,而且有一定得强度,现在在小模 型方面应用最多得是纳米材料,看上去有点像泡沫塑料,但是强度较大。其次就是机械,简单得模型需要两个马达,装在飞机机翼上,马达只需要控制转速就可以了。当两个马达都高速旋转时,带动螺旋桨使飞机升空。当转速较低或者停止时,飞机下降。当两侧马达转速不平衡时,飞机朝转速低得马达方向倾斜旋转,只要把马达得控制电路做好就ok。只能简单的告诉,飞机航模有分橡筋动力,内燃机动力,微型涡轮喷气式动力,电动动力.一架飞机航模由机身,机翼,尾翼,接受器,舵机,轮子.机身,机翼,记住机身是机翼的70%-80%的长度.如果是初学者, 推荐用电动的既撞不烂,又便宜,又简单.时间有限 航模制作 整套测试设备(万用表,测速器等)。 各种小零件(这就要靠平时的收集的)。 1模型飞机的组成 模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。 1、机翼———是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧安定。 2、尾翼———包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。 3、机身———将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。 4、起落架———供模型飞机起飞、着陆和停放的装置。前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。 5、发动机———它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

小型飞机模型制作详解

《小型飞机模型制作详解》 超详版 一.无线遥控设备 众所周知,飞机模型没有无线遥控设备就失去了其真正意义,可以说无线遥控设备就是飞机模型的心脏。下面是无线遥控设备的详解 何谓[比例式遥控器]: 所谓的比例式遥控装置,就是当操纵者以不同的速度或幅度拨动发射机的操纵杆,遥控系统的接收机接收到信号,相应的控制舵机或变速器做相同速度或幅度的运动的遥控装置。换言之,模型的动作完全与发射机操纵杆的动作成比例,这不同于过去的开关式的遥控装置,受动物会随着操纵者的小幅度操纵而做小幅度的动作,基本上模型通过比例式遥控装置真实的反应操纵者的所想所做。这正是[比例式遥控器]的优点。 遥控器的分类:为了操纵不同类别的遥控模型,遥控器也分为许多种类。通常,以它的频道(Channel)数目作为区分方法。像模型车和模型船,多采用2频道遥控装置控制转向系统和油门(节油阀)系统;用于控制模型飞机和直升飞机的遥控器装置,通常采用2-4频道以上,甚至有的还采用10频道的遥控器。另一种区分方法是以使用的特性,也就是根据特有附加功能进行分类。 此外。根据不同的无线电波频率又可以分为(AM)和(FM),前者着重于简单方便,后者着重于稳定可靠。最顶级的遥控装置则采用技术最先进的(PCM-Pulse Code Modulation)脉冲编码调制或称(数码)方式。用于模型飞机及直升飞机波段频率MHz 71 40.710 73 40.730 75 40.750 77 40.770 79 40.790 81 40.810 83 40.830 85 40.850 17 72.130 18 72.150 19 72.170 20 72.190 21 72.210 50 72.790 51 72.810 52 72.830 53 72.850 54 72.870 用于模型车船艇和帆船波段频率MHz 01 26.975 02 26.995 03 27.025 04 27.045 05 27.075 06 27.095 07 27.125 08 27.145 09 27.175 10 27.195 11 27.225 12 27.245 61 40.610 63 40.630 65 40.650 67 40.670 69 40.690 注意使用频率! 众所周知,遥控装置的发射机与接收机之间是通过无线电波沟通的,为了愉快地享受遥控模型的乐趣,对所用的无线电波实行管制是致为重要的,右表所示是为国际及美国政府规定合法的无线电波使用频率。无论您使用怎样高级的遥控装置,或采用各种各样的发讯方式,使用的频率范围是不能变化的。所以,必须注意在同一场合玩遥控模型的朋友不可同时使用相同的频率的遥控装置,否则便会互相干扰使遥控模型失去控制,甚至产生重大事故!! 无线电遥控器的分类和组成要了解无线电遥控就必须首先知道什么是无线电遥控,无线电遥控就是利用电磁波在远距离上,按照人们的意志实现对物体对象的无线操纵和控制,这种无线控制的方式就叫做无线电遥控。无线电遥控遥控技术的诞生,起源于无线电通讯技术,最初的构想是无线电电报技术的建立,真空电子管的发明使得无限电技术的应用和普及很快应用在民用和军用等各个领域。在第一次世界大战时,无线电遥控应用较多的

技术体验活动案例飞机模型的设计与制作

飞机模型的设计与制作 设计项目: 设计一个简易的飞机模型 设计起源: 飞机模型的设计与制作是在《模型的设计和制作》这个章节让学生动手实践的一个设计与制作活动,学生对于飞机并不陌生,对于飞机的设计和制作也热情高涨。通过这个活动可以让学生能够根据设计方案和已有的条件选择加工的工艺,并能正确、安全的操作,根据设计方案制作一个简单产品的模型和原型,制作成功后,能对产品的外观进行润色,同样,实际教学过程中,我们教师也可以根据需要把此活动放在结构的稳定性与强度这个部分来开展活动,飞机模型在设计和制作的过程中要考虑飞机结构的稳定和结构的强度,在选材,在加工的过程中都应该注意,飞机模型也是一个整体系统,我们可以把它作为教具,在教材的系统与设计这个部分使用,飞机系统是由哪些子系统的组成的,很好的阐述系统与子系统的概念、以及之间的相互关系等。 飞机模型的设计要求: 1.具有一定的稳定性和强度,飞机不容易变形,支架不容易松动;各个部件之间的连接牢 固 2.能够在地面上滑动 3.外形美观,比例恰当,构思新颖,制作简便 设计准备: 1.合适的制作材料和连接材料,制作材料如长木头,三合板,废旧汽车轮子,薄铝片,圆 珠笔等,连接材料如粗铁丝,小铁钉,乳胶,细铁丝等; 2.必备工具,如卷尺,剪刀,老虎钳,锉,锤,木工锯,刀,三角尺,木工笔等 根据设计要求制定合理的设计方案 设计分析: 飞机模型的结构设计主要分成三个部分,即机身,机翼和尾翼 对于机身部分主要是有滑动轮和机舱主体部分构成。滑动轮在飞机系统中起滑行滚动,同时,也是飞机的支撑系统,支撑整个机体,对于飞机的稳定平衡起了重要的作用。滑动系统在设计的过程采用废旧的玩具汽车车轮组成,前面两个轮,后面一个轮,构成三角形,能够稳定的支撑整个机体部分,滑动轮用粗铁丝和薄铝片,前轮部分用薄铝片将铁丝固定在木质机舱,粗铁丝弯折后和机轮连接,结构稳定。后轮采用薄铝片,做成可以放滑动轮胎的滚槽,将薄铝片与木质机舱连接,再将轮胎和滚槽连接,滑动系统部分制作完成。机身的机舱部分是整个飞机的一个主体部分,是机身,机翼和尾翼之间的一个连接的系统。将长条的木块,加工成飞机机舱的雏形。尾翼机身采用插接的方式,机翼部分,是用钉子固定在机身上,为了使机身形象,美观,设计制作过程中,机头部分处理是应该注意比例恰当,机身的窗外采用圆珠笔绘制出来,飞机尾巴的处理合理,同样比例要做到协调。

模型飞机的基本制作过程

模型飞机的基本制作规则 第一步,整体设计 1、确定翼型 我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。 实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。 机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。 矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。 2、确定机翼的面积 模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5- 6之间。 3、确定副翼的面积 机翼的尺寸确定后,就该算出副翼的面积了。副翼面积应占机翼面积的20%左右,其长度应为机翼的30-80%之间。 4、确定机翼安装角 以飞机拉力轴线为基准, 机翼的翼弦线与拉力轴线的夹角就是机翼安装角。机翼安装角应在正0 -3度之间。机翼设计安装角的目的,是为了为使飞机在低速下有较高的升力。设计时要不要安装角,主要看飞机的翼型和翼载荷。有的翼型有安装角才能产生升力,如双凸对称翼。但是,大部分不用安装角就能产生升力。翼载荷较大的飞机,为了保证飞机在起飞着陆和慢速度飞行时有较大的升力,需要设计安装角。任何事物都是一分为二的,设计有安装角的飞机,飞行阻力大,会消耗一部分发动机功率。安装角超过6度以上的,更要小心,在慢速爬升和转弯的的情况下,很容易进入失速。

UG飞机模型设计

飞机模型设计 一.主体设计 1.新建文件夹,在文件新建【模板】中选择【模型】,新文件名中输入“aeronef”,点击 确定。 2.在【曲线】工具栏里单击【圆弧/圆】绘制直径28的圆。 3.在【编辑曲线】工具条中单击【分割曲线】,根据提示将上一步绘制的圆4等分,最后 点击确定,退出【分割曲线】。 4.单击【草绘】,以默认平面作为草绘平面,绘制如图1-1所示草绘轮廓。 图1-1 5.在键盘上按Ctrl+Q,退出草绘返回建模界面。 6.选择YC-XC平面作为草绘平面,绘制如图 1.2所示草绘轮廓。 图1.2 7.按Ctrl+Q,返回建模模式。

8 选择【已扫掠】按钮,弹出【已扫掠】,按照如图1-3所示方法选择曲线,完成扫掠曲线。 图1-3 9.选择上步创建的扫掠曲面,创建镜像曲面,之后选择【缝合】按钮结果如图1-4所示 图1-4 10. 选择【曲线】中【圆弧/圆】按钮,绘制直径29的圆,退出草绘,选择拉伸此曲线注 意选择拉伸片体。结果如图1-5所示。 图1-5 11.缝合拉伸片体和前面创建的片体。

12 点击草绘按钮,选择YC-ZC按钮绘制如图1-6所示草绘轮廓 图1-6 13.退出草绘,选择上一步创建的曲线,选择拉伸按钮,双向拉伸,结果如图1.7 图1.7 14.通过一系列操作绘制如图1-8所示曲线

图1-8 15.拾取片体的边界曲线,选择【网络曲格】对话框,创建曲面,之后选择YC-ZC平面做镜像平面,结果如图1-9 图1-9 16.选择XC-YC平面作为草绘平面,绘制如图1-10所示的草绘轮廓 图1-10 17.退出草绘平面,选择【修建的片体】按钮,先选择主曲面,然后再选择上一步创建的曲线,在【投影沿着】下拉菜单上选择【ZC正轴】,单击确定修建的片体,如图1-11。

模型飞机的制作工艺

第六章模型飞机的制作工艺 模型飞机的制作工艺,归纳起来就是量具,工具的使用和各种材料的加工组合。 一量具 直尺,三角尺、丁字尺、钢板尺、钢卷尺、直尺,这些测量长度和画线作图的工具,大家应该比熟悉。 二工具 (一)手工工具 各种道具、木刨、锯、锉刀钻磨石台虎钳手虎钳钢丝钳尖嘴钳锤子剪刀螺丝刀各种扳手丝攻板牙 C型夹砂纸砂纸板手摇钻等等。 (二)电动工具 手电钻砂轮机电烙铁电吹风电烤箱等等。使用电动工具要注意:1 使用前仔细阅读说明 书,严格按照规定使用。2 注意安全用电,使用后一定要及时切断电源。 (三)机床 车铣刨磨钻床,是机械加工设备,模型飞机上很多金属零件都需要这些设备加工。 三材料 (一)木材 制作模型飞机常用的木材有:轻木、桐木、松木、云杉、桦木、椴木、层板。 (1)轻木(Balsa),产于南美洲热带雨林区,我国云南海南曾引种,但质量不如原产地的。轻木材质松软,纹理均匀,不易变形,密度很小,在0.06 ——0.36 克/立方 厘米之间,易加工,是制作模型飞机的好材料。可用来制作受力不大的零部件,如翼肋水 平尾翼垂直尾翼翼尖。 (2)桐木,即泡桐。在我县有大量分布。密度在0.2——0.4 克/立方厘米,木纹直,相对强度大,变形小,易加工,是我国特有的制作模型飞机的优质材料。常用于制 作机翼前缘、后缘、辅梁、翼肋、机身蒙板、等等。 (3)松木,密度 0.4——0.7克/立方厘米之间,纹理均匀不易变形,有一定弹性,易加工。松木材料主要用于飞机上的受力件。如:机翼主梁、机身纵梁、发动机 架。 (4)桦木,木材黄白色,材质坚硬,纹理均匀紧密,密度较大,0.7克/立方厘米左右,常用于螺旋桨,发动机架等受力较大的部件。 (5)层板。用桦木单板或者椴木单板和酚醛胶膜纸压制而成的胶合板。有耐水,强度大,不易变形等优点。有0.5——3毫米厚不同规格。密度为0.8克/立方厘米。 常用于翼根部翼肋、机身隔框、加强片等需要高强度的地方。 下表是各种常用木材的力学性能数据。在制作模型飞机时,要根据各部件受力的不同,合理地选用不同的木材,以最大可能地保证结构强度,降低重量。 各种木材的力学性能

相关主题
文本预览
相关文档 最新文档