当前位置:文档之家› 第九章 拉普拉斯变换教案

第九章 拉普拉斯变换教案

第九章  拉普拉斯变换教案
第九章  拉普拉斯变换教案

(项目)

10.1 行列式的概念课时 2

授课地点东阶1——2

授课

时间

20XX年4月23日,第11周,第5~6节

教学目标方法手段教学目标:1、了解二、三阶行列式的定义及其相关概念,掌握利用对角线法则计算简单行列式的方法。会用行列式法求解二、三元一次线性方程组。

2、理解余子式、代数余子式的概念,能求行列式中任意元素的余子式和代数余子式。

3、理解n阶行列式的定义、掌握几种特殊行列式,能利用行列式的定义计算行列式的数值。

4、培养学生计算能力、抽象概括、类比的能力核学习方法。

教学方法:课堂讲授、讨论与习题练习相结合。

教学手段:多媒体、板书演示。

重点难点重点:行列式的概念余子式和代数余子式的概念行列式的计算难点:行列式的概念利用行列式的定义计算行列式值

教学过程与内容

(一)引入(行列式的起源)

1、二、三阶行列式的定义及计算法:

考虑二元一次线性方程组

1111221

2112222

a x a x b

a x a x b

+=

?

?

+=

?

(1)

利用消元法,当

11221221

a a a a

-≠时,得到上述方程组的解为

122122112121

12

1122122111221221

,

b a a b a b a b

x x

a a a a a a a a

--

==

--

。(2)

可以看出:方程组解的分子分母均是两个数的乘积减去另两个数的乘积.但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源。

(二)新课讲授

定义1我们称4个数组成的符号

1112

11222122

2122

a a

a a a a

a a

=-为二阶行列式。

其中的数(,1,2)

ij

a i j=称为该行列式的第i行、第j列元素。(横排称为行列式的行, 竖排列称为行列式的列)。为了便于记忆,我们用下述对角线法则来记二阶行列式:

这里的实线是主对角线,记正号,虚线是次对角线,记负号;而且在形式上,只是在原行列式的右边重新加上了第一列和第二列,且顺序不变。

三阶行列式的特点:1、共有6项,三项正,三项负;2、 每项由三个元素相乘,每个元素取自不同行,不同列;如果把每一项元素的行标按1、2、3依次排列,则每一项元素的列标排列分别为123, 231, 312以及321, 213, 132, 恰好是1、2、3这三个数的所有可能的排列,即有3!=6种排法。

设有三元一次线性方程组

111122133121122223323113223333

a x a x a x

b a x a x a x b a x a x a x b ++=??

++=??++=? (1)

记11

121321

2223313233a a a D a a a a a a =,11213122223332

33b a a D b a a b a a =,111132212

23313

33

a b a D a b a a b a =,11

121

321

22231

32

3

a a

b D a a b a a b =,则当0D ≠时,可以证明方程(1)的唯一解为:

312123,,D D D

x x x D D D

=

==。 练习2 :利用三阶行列式的定义,解三元一次方程组

123123123

2330

46132x x x x x x x x x --=??

++=??-+=? 解 系数行列式233

1

4

631

1

D --=-,按照对角线法则得 ,

?

??30

nn

a

主要特征是:主对角线以外的元素全为零.

n n nn

a

主对角线下方..的元素全为零. 12

0n n nn

a a a

主对角线上方..

的元素全为零. 12

00n n nn

a a a 列

定12

n n nn a a a 3332

22

00

a a a a

==

12

n n n n nn

a a a ,1212n

n

nn

a a a 。行列式与它的转置行列式的值相等,即T

D D =。

这个性质说明了:行列式中行与列的地位是等同的.因而,凡是对行成立的性质,

12

n jn jn n n nn

k a a a a 提出公因子k 可记作2 如果行列式的某一行(列)的元素都是零,则该行列式的值为零。如果行列式的某两行(列)的对应元素成比例,则该行列式的值为零。1

2

in in

n n nn

a a a a a '+1

2

1

n n in n n n a a a a 12

1

n n

in n n n a a a a ',则12D D D =+

行列式某一行(列)的各元素的倍(k 为常数),加到另一行(列)的

第二章_Laplace变换(答案)

积分变换练习题 第二章 Laplace 变换 ________系_______专业 班级 姓名______ ____学号_______ §1 Laplace 变换的概念 §2 Laplace 变换的性质 一、选择题 1.设()(1)t f t e u t -=-,则[()]f t =L [ ] (A )(1)1s e s --- (B )(1)1s e s -++ (C )1s e s -- (D )1 s e s -+ 11[(1)][()];1[(1)](1)s s t s u t e u t se e u t s e --+??-== ? ? ?-= ?+?? 由延迟性质可得,再由位移性质可得,L L L 2.设2sinh ()t f t t = ,则[()]f t =L [ ] (A )1ln 1s s -+ (B )1ln 1s s +- (C )12ln 1s s -+ (D )1 2ln 1 s s +- 见课本P84 二、填空题 1.设2()(2)f t t u t =-,则[]()f t =L 。 22''222321[(2)][()];1442[(1)]s s s s u t e u t se s s t u t se s e -??-== ? ?++ ???-== ? ????? 由延迟性质可得,再由象函数的微分性质P83(2.7)可得,L L L 2.设2()t f t t e =,则[]()f t =L 。 (1)00'' 231[](Re()1);112[]1(1)t t st s t t e e e dt e dt s s t e s s +∞+∞---??===> ?- ? ???== ? ?--??? ???再由象函数的微分性质P83(2.7)可得,L L 三、解答题 1.求下列函数的Laplace 变换: (1)302()12404t f t t t ≤

傅里叶变换和拉普拉斯变换的性质应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的使用,可以 使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积 分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属 于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变 换。分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成 分,也能够利用成分合成信号。可以当做信号的成分的波形有很多,例 如锯齿波,正弦波,方波等等。傅立叶变换是利用正弦波来作为信号的拉普拉斯变换最早由法国数学家天文学家 成分。Pierre Simon Laplace (拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他 的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理 论》之中。即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉 斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理 学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛 (1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少方 法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理论 的严格化的兴趣。之后才创立了现代算子理论。算子理论最初的理论依 据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也 是得益于算理理论的更进一步发展。这篇文章就是针对傅里叶变换和拉 普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论,并 且分析傅里叶变换和拉普拉斯变换的区别与联系。 1.2预备知识 定理1.2.1(傅里叶积分定理)

电路设计中拉普拉斯变换的应用

电路设计中拉普拉斯变换的应用 拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有引数实数t(t≥ 0)的函数转换为一个引数为复数s的函数。拉氏变换英文名为Laplace Transform,为法国著名数学家拉普拉斯 (Laplace,Pierre-Simon,marquisde)创立。主要运用于现代控制领域,和傅氏变换并称为控制理论中的两大变换。 拉氏变换里的S是复变函数里最为基础的一个符号,数学题做了这么多,考分也不低,但如果在多年的电路设计中用不上的话,岂不是对不起宝贵的青春了。 要用好拉氏变换,先了解S的物理含义和其用途。信号分析有时域分析、频域分析两种,时域是指时间变化时,信号的幅值和相位随时间变化的关系;频域则是指频率变化时,信号的幅值和相位随时间变化的关系;而S则是连接时域与频域分析的一座桥梁。 在电路中,用到的阻性用R表示;用到的感性特性和容性特性,分别用SL和1/SC表示,然后将其看成一个纯粹的电阻,只不过其阻值为SL(电感)和1/SC(电容); 其他特性(如开关特性)则均可通过画出等效电路的方式,将一个复杂的特性分解成一系列阻性、感性、容性相结合的方式。并将其中的感性和容性分别用SL和1/SC表示。

然后,就可以用初中学过的电阻串、并联阻抗计算的方式来进行分压、分流的计算,这当然很简单了。计算完后,最后一定会成一个如下四种之一的函数: Vo=Vi(s)-------------------(1) Io=Vi(s)--------------------(2) Vo=Ii(s)--------------------(3) Io=Ii(s) --------------------(4) 下一步,如果是做时域分析,则将S=d/dt代入上述1-4其中之一的式子中,随后做微分方程的求解,则可求出其增益对时间的变化式 G(t); 而如果做的是频域分析,则将S=jw代入上述1-4其中之一的式子中,随后做复变函数方程的求解,则可求出其增益对时间的变化式 G (w)、和相位对频率的变化式 θ(w); 至于求出来时域和频域的特性之后,您再想把数据用于什么用途,那就不是我能关心得了的了。 下面举一简单例子说明。

电路十拉普拉斯变换

第十三章 拉普拉斯变换 13.1 基本概念 13.1.1拉普拉斯变换的定义 一个定义在[)∞,0区间的函数()t f ,它的拉普拉斯变换式()S F 定义为 ()()dt e t f s F st -∞ ?- =0 式中ωσj s +=为复数,()S F 称为()t f 的象函数,()t f 称为()S F 的原函数。式中积分下限取 -=0t ,把上述定义式作如下变形: ()()()()dt e t f dt e t f dt e t f s F st st st -∞ + --∞ ? ? ? + = = + - - 0000 可见,对拉普拉斯变换的定义,已自动计及-=0t 时()t f 可能包含的冲激。 13.1.2 拉普拉斯变换的基本性质 设()[]()s F t f L 11= ()[]()s F t f L 22=,则有下表中性质。 表13-1拉普拉斯变换的基本性质 13.1.3 拉普拉斯反变换 对于简单的象函数可在拉氏变换表中查出它的原函数,表中没有的可按反变换基本公式求出,即

()()[]()ds e s F j s F L t f st j c j c ?∞+∞--= =π211,但此式涉及到计算一个复变函数的积分,一般比较复杂。电路响应的象函数通常可表示为两个实系数的s 的多项式之比,即s 的一个有理分式 ()()()n n n m m m b s b s b a s a s a s D s N s F ++++++= =-- 110110 式中m 和n 为正整数,且m n ≥。 若m n =时,先将其化简成真分式,然后用部分分式展开,将复杂变换式分解为许多简单变换式之和,然后分别查表即可求得原函数。 1.()0=s D 具有n 个单实根时 ()i i n i p s K s F -=∑ =1 式中:()()i p s i i s F p s K =-=| 则 ()()[]t p n i i i e K s F L t f ∑=-==1 1 2.()0=s D 具有重根时 设()0=s D 除了m 个重根外,其它均为单根,共有n 个根。 ()()()() i i n m n i m m m p s K p s K p s K p s K s F -+ -+ +-+ -= ∑ -=-111 112 111 式中:()()()[] i p s m q q q s F p s ds d q K =--?--=|!111 1 11 则 ()()[]()()t p n m n i i t p m m m i e K e K t m K t m K s F L t f ∑-=---+?? ????++-+-==111121111 !2!1 3.()0=s D 具有共轭根时 若()0=s D 有复数根,一定是一对共轭根。设有n 个单根,其中两个为一对共轭根,ωαj p +=1, ωαj p -=2。 ()i i n i p s K p s K p s K s F -+-+-=∑ =322 11 21,K K 为一对共轭复数,设1|11θj e K K =,1|12θj e K K -=,

拉普拉斯变换在自动控制领域中的应用

复变函数的发展史及laplace变换在自控领域中的应用 摘要:复变函数经历了150多年的发展历程,在不断发展和更新的过程中愈来愈完善并不断向各个领域延伸,特别是在自动控制领域的作用愈来愈重要。复变函数中的Laplace变换是近一世纪来迅速发展起来的一种有效的数学方法。借助于Laplace变换可把微积分的运算转化复平面的代数运算,因此,可利用它解常微分方程、偏微分方程、积分方程及差分方程,简化了求解过程,是解线性系统的重要工具,。通过在自动控制理论中建立系统的动态数学模型,根据拉普拉斯变换及其反变换的定义式,求解得到系统的动态过程,从而阐明其计算具有快速、简洁和方便的特点,在现代自控理论中得到广泛的应用。 关键词:复变函数拉普拉斯变换原函数象函数传递函数 Abstract : Complex function has experienced 150 years of development,and it became be more perfect and constantly to the various fields in the process of developing and updating, especially it palys a more and more important role in the field of automatic https://www.doczj.com/doc/3b361926.html,place transform is nearly a century to rapidly develop an effective mathematical method. Using Laplace transform can turn calculus operations in the plane of the transformation of complex arithmetic, therefore, can use it to solution of differential equation, partial differential equations and integral equations and difference equation, simplified the solving process, is an important tool for solving linear system, in the modern theory of automatic widely applied. These contents in relevant tutorial or monographs, already common occurance. This paper will give out Laplace transform another new applications, namely using Laplace transform calculating generalized integrals, thus obtains the calculation kind of generalized integrals of new methods. Keywords: Complex function ,Laplace transform, Primary function,image function,Transform function

拉普拉斯变换基本应用.docx

拉普拉斯变换的应用 一?拉普拉斯变换的应用 拉普拉斯变换在许多领域中都有着重要的作用,在工程学上应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(S域)上来表示;在线性系统,控制自动化上都有广泛的应用。在计算机图像处理方面,拉普拉斯变换在MatIab上的拉普拉斯算子在图像处理上有很强的应用性,例如:在图像的边缘检测、对图像进行拉普拉斯锐化、对图像进行滤波等。 二?拉普拉斯变换在图像处理方面的应用 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。⑵ 希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分害IJ、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮 度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等, 同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法等。经典的边缘检测算法是对原始图像中像素的某小领域米构造边缘检测算子,常用的边缘检测算子有RObertS算子、Sobel算子、LaPlaCian算子、Canny算子等。 三?应!步骤 用拉普拉斯变换进行数字图像处理,需要借用计算机上的MatIab软件去进行程序编码和运行来实现。下边是应用步骤:

拉普拉斯变换在电路中的应用

拉普拉斯变换在电路中的应用 10071051朱海云 应用拉普拉斯变换求解线性电路的方法称为运算法。运算法的思想是:首先找出电压、电流的像函数表示式,而后找出R、L、C单个元件的电压电流关系的像函数表示式,以及基尔霍夫定律的像函数表示式,得到用像函数和运算阻抗表示的运算电路图,列出复频域的代数方程,最后求解出电路变量的象函数形式,通过拉普拉斯反变换,得到所求电路变量的时域形式。显然运算法与相量法的基本思想类似,因此,用相量法分析计算正弦稳态电路的那些方法和定理在形式上均可用于运算法。 1.电路定律的运算形式 基尔霍夫定律的时域表示: 把时间函数变换为对应的象函数: 得基尔霍夫定律的运算形式: 2.电路元件的运算形式 根据元件电压、电流的时域关系,可以 推导出各元件电压电流关系的运算形式。 图1(a) 1)电阻R的运算形式

图1(a)所示电阻元件的电压电流关系为: u =Ri ,两边取拉普拉斯变换,得电阻元件VCR 的运算形式: 或 根据上式得电阻R 的运算电路如图(b )所示。 图1(b ) 2)电感L 的运算形式 图2(a)所示电感元件的电压电 流关系为 两边取拉普拉斯变换并根据 拉氏变换的微分性质,得电感元件VCR 的运算形式: 或 根据上式得电感L 的运算电路如图(b)和图(c) 所示。图中 表示附加电压源的电压,表示附加电流源的电流。 式中 图2(a ) 图2(b ) 图2(c )

分别称为电感的运算阻抗和运算导纳。 3)电容C的运算形式 图3(a)所示电容元件的电压电流关系为: 两边取拉普拉斯变换并根据拉氏变换的微分性质,得电容元件VCR的运算形式: 或 根据上式得电容C的运算电路如图(b)和图(c)所示。 图中表示附加电流源的电 流,表示附加电压源的电压。 式中分别为电容的运算阻抗和运算导纳。 图3(a) 图3(b) 图3(c) 4)耦合电感的运算形式 图4(a)所示耦合电感的电压电流关系为: 图4(a)

拉普拉斯变换

拉普拉斯变换 Prepared on 22 November 2020

§13拉普拉斯变换 重点:1.拉普拉斯反变换部分分式展开 2.基尔霍夫定律的运算形式、运算阻抗和运算导纳、运算电路 3.应用拉普拉斯变换分析线性电路的方法和步骤 难点: 1.拉普拉斯反变换的部分分式展开法 2.电路分析方法及定理在拉普拉斯变换中的应用 本章与其它章节的联系: 是后续各章的基础,是前几章基于变换思想的延续。 预习知识: 积分变换 §13-1拉普拉斯变换的定义 1.拉普拉斯变换法 拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t)与复变函数F(s)联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。 2.拉普拉斯变换的定义 一个定义在[0,+∞)区间的函数f(t),它的拉普拉斯变换式F(s)定义为 式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。 由F(s)到f(t)的变换称为拉普拉斯反变换,它定义为 式中c为正的有限常数。 注意: 1)定义中拉氏变换的积分从t=0-开始,即: 它计及t=0-至0+,f(t)包含的冲激和电路动态变量的初始值,从而为电路的计算带来方便。 2)象函数F(s)一般用大写字母表示,如I(s),U(s),原函数f(t)用小写字母表示,如 i(t),u(t)。 3)象函数F(s)存在的条件: 3.典型函数的拉氏变换 1)单位阶跃函数的象函数

拉普拉斯变换基本应用

拉普拉斯变换的应用 一·拉普拉斯变换的应用 拉普拉斯变换在许多领域中都有着重要的作用,在工程学上应用拉普 拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。在计算机图像处理方面,拉普拉斯变换在Matlab上的拉普拉斯算子在图像处理上有很强的应用性,例如:在图像的边缘检测、对图像进行拉普拉斯锐化、对图像进行滤波等。 二·拉普拉斯变换在图像处理方面的应用 计算机进行图像处理一般有两个目的: (1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法等。经典的边缘检测算法是对原始图像中像素的某小领域米构造边缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Laplacian算子、Canny算子等。 三·应用步骤 用拉普拉斯变换进行数字图像处理,需要借用计算机上的Matlab软件去进行程序编码和运行来实现。下边是应用步骤:

典型信号的拉普拉斯变换和拉普拉斯逆变换

成绩评定表

课程设计任务书

目录 1.Matlab介绍.............. 错误!未定义书签。 2.利用Matlab实现信号的复频域分析—拉普拉斯变化和拉普拉斯逆变换的设计 (5) 2.1.拉普拉斯变换曲面图的绘制 (5) 2.2.拉普拉斯变化编程设计及实现 (7) 2.3.拉普拉斯逆变化编程设计及实现 (8) 3.总结 (14) 4.参考文献 (15)

1.Matlab介绍 MATLAB语言是当今国际上在科学界和教育界中最具影响力、也最具活力的软件;它起源于矩阵运算,现已发展成一种高度集成的计算机语言;它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、丰富的交互式仿真集成环境,以及与其他程序和语言便捷接口的功能。 经过多年的开发运用和改进,MATLAB已成为国内外高校在科学计算、自动控制及其他领域的高级研究工具。典型的用途包括以下几个方面: 1)数学计算; 2)新算法研究开发; 3)建模、仿真及样机开发; 4)数据分析、探索及可视化; 5)科技与工程的图形功能; 6)友好图形界面的应用程序开发。 1.1Matlab入门 Matlab7.0介绍 Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。 在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。 MATLAB7.0提供了丰富的库函数(称为M文件),既有常用的基本库函数,又有种类齐全、功能丰富多样的的专用工具箱Toolbox函数。函数即是预先编制好的子程序。在编制程序时,这些库函数都可以被直接调用。无疑,这会大大提高编程效率。MATLAB7.0的基本数据编程单元是不需要指定维数的复数矩阵,所以在MATLAB环境下,数组的操作都如数的操作一样简单方便。而且,MATLAB7.0界面友好,用户使用方便。首先,MATLAB具有友好的用户

拉普拉斯变换

第十三章 拉普拉斯变换 —学习过渡过程的复频域分析方法 本章内容: 1.复习拉氏变换及拉氏变换的性质 ( 列写微分方程→求时域响应 2.拉氏变换的部分分式展开 列代数方程 → 求复频域响应 3.拉氏变换的运算电路 →积分变换→求时域响应) 4.拉氏变换的线性电路的分析 本章重点: 1.拉氏变换的部分分式展开 2.拉氏变换的运算电路 本章重点:应用运算电路求电路的频率响应 §13-1 拉普拉斯变换的定义 对于一个多个动态元件的电路,用直接求解微分方程的方法比较困难,麻烦;故通过积分变换法,把已知的时域函数(时间域)变换为频域(s 域)函数,从而将时域的微分方程化为频域函数的代数方程。求出频域函数后,再作变换,返回时域,即可求出响应。 积分变换的方法有:拉普拉斯变换和傅里叶变换,拉普拉斯变换应用广,故采用。 一、拉普拉斯变换(拉氏变换) 如果函数f(t)在t ≥0时有定义,且?∞ --0)(dt e t f st 为有限值(收敛)则,f(t)的拉氏变换为: ? ∞ -- = 0)()(dt e t f S st F 式中:ωσj S +=为复数变量,称复频率,单位为HZ ; F (S )是f(t)的象函数(F (S )象函数) f(t)是 F (S )的原函数(f(t)是原函数)。 二、拉普拉斯反变换(拉氏反变换) ? ∞ +∞ -= j c j c st dt e S F j )(21πf(t) 三、举例 例13-1求以下函数的象函数 (1) 单位阶跃函数(2)单位冲激函数(3)指数函数。 解:(1)单位阶跃函数 (2) 单位冲激函数

(3)指数函数。 §13-2 拉普拉斯变换的性质 一、线性(组合)性质 设F1(S)、F2(S)是f1(t)和f2(t)的象函数,A1A2是两个任意实数则有: 二、微分性质 设F(S)是f(t)的象函数,则有 三、积分性 设F(S)是f(t)的象函数,则有 四、延迟性质 设F(S)是f(t)的象函数,则有 应用拉普拉斯变换可求出原函数和象函数的对应关系,得出294页表,那么, 如何利用表中函数对应的关系,由象函数求原函数呢,我们复习部分分式法。 §13-3 拉普拉斯反变换的部分分式展开 在用拉普拉斯变换求解线性电路的时域响应时,需要将频域响应的拉氏变换式子反变换为时间函数,如果象函数较简单,则可查表求原函数;如较复杂,则要分解为简单的、能从表中查到的项,再利用查表求原函数。 电路响应的象函数可表示为两个实系数的s多项式之比(有理分式)为:

拉普拉斯变换基本应用

. 拉普拉斯变换的应用一·拉普拉斯变换的应用在工程学上应用拉普拉拉 普拉斯变换在许多领域中都有着重要的作用,使问题得以解决。可以将微分方程化为代数方程,斯变换解常变量齐次微分方程,转换为复频拉普拉斯变换的重大意义在于:将一个信号从时域上,在工程学上,域)上来表示;在线性系统,控 制自动化上都有广泛的应用。在计算机图域(s上的拉普拉斯算子在图像处理上有很强的像处理方面,拉普拉斯变换在Matlab应用性,例如:在图像的边缘检 测、对图像进行拉普拉斯锐化、对图像进行滤波等。 二·拉普拉斯变换在图像处理方面的应用 计算机进行图像处理一般有两个目的: (1)产生更适合人观察和识别的图像。(2)希 望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。早期的经典算法有边缘算子法、曲面拟合法、 . . 模版匹配法等。经典的边缘检测算法是对原始图像中像素的某小领域米构造边 缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Laplacian算子、Canny算子等。 三·应用步骤 用拉普拉斯变换进行数字图像处理,需要借用计算机上的Matlab软件去进行程 序编码和运行来实现。下边是应用步骤:

拉普拉斯变换在求解微分方程中的应用

目录 拉普拉斯变换在求解微分方程中的应用 物理系0801班学生岳艳林 指导老师韩新华 摘要:拉普拉斯变换在求解微分方程中有非常重要的作用,本文首先介绍拉普拉斯变换的定义及性质; 其次给出拉普拉斯变换求解微分方程的一般步骤;然后重点举例拉普拉斯变换在求解常微分方程(初值问题与边 函数的常微分方程、常微分方程组、拉普拉斯变换在求解微分方程值问题、常系数与变系数常微分方程、含 特解中的应用、拉普拉斯变换在求解高阶微分方程的推广)与典型偏微分方程(齐次与非齐次偏微分方程、有界 与无界问题)中的应用举例;最后综合比较、归纳总结拉普拉斯变换在求解微分方程中的优势以及局限性。 关键词:拉普拉斯变换;拉普拉斯逆变换;常微分方程;偏微分方程;特解

引言 傅里叶变换和拉普拉斯变换是常用的积分变换,但对函数进行傅里叶变换时必须满足狄里希利和在+∞<<∞-t 内绝对可积,但是在物理、无线电技术等实际应用中,许多以时间t 为自变量的函数通常在0t <时不需要考虑或者没有意义,像这样的函数不能取傅里叶变换。为避免上述两个缺点,将函数进行适当改造,便产生了拉普拉斯变换[1]。 1 拉普拉斯变换以及性质 拉普拉斯变换的定义 设函数()f t 当0t ≥时有定义,而且积分 ()st f t e dt +∞ -? (s 是一个复参量)在s 的某一区域内收 敛,则此积分所确定的函数可写为0 ()()st F s f t e dt +∞ -= ? .我们称上式为函数()f t 的Laplace 变换 式.记为()[()]F s L f t =,()F s 称为()f t 的Laplace 变换(或称为象函数). 若()F s 是()f t 的Laplace 变换,则称()f t 为()F s 的Laplace 逆变换(或称为象原函数),记为1()[()]f t L F s -=[2]. Laplace 变换的存在定理 若函数()f t 满足下列条件: 1?在0t ≥的任一有限区间上分段连续; 2?当t →+∞时,()f t 的增长速度不超过某一指数函数,亦即存在常数0M >及0c ≥,使得c ()0f t Me t ≤≤<+∞t,成立(满足此条件的函数,称它的增大是不超过指数级的,c 为它的增长指数). 则()f t 的Laplace 变换0 ()st F f t e dt +∞ -?(s )=在半平面Re()s c >上一定存在,右端的积分在1Re()s c c ≥>的半平面内,()F s 为解析函数[2]. 拉普拉斯变换的性质 ⑴线性性质 若αβ,是常数,11[()]()L f t F s =, 22[()]()L f t F s =, 则有1212[()()][(t)]+[()]L f t f t L f L f t αβαβ+=, 1111212[()()][(s)]+[()]L F s F s L F L F s αβαβ---+=. ⑵微分性质 若[()]()L f t F s =,则有'[()]()(0)L f t sF s f =-. 高阶推广 若[()]()L f t F s =,则有2'[()]()(0)(0)L f t s F s sf f ''=--.

第4章拉普拉斯变换

第四章 连续信号与系统的S 域分析 1、如下方程和非零起始条件表示的连续时间因果LTI 系统, ()()t f dt df t y dt dy dt y d 52452 2+=++ 已知输入()()t e t f t ε3-=时,试求(1)系统的零状态响应;(2)判断系统的稳定性 解:(1) 方程两边取拉氏变换; ()()()() 4 5524 55 22 2+++=?+++= ?=s s s s F s s s s F s H s Y ()()() t e e e t y s s s s s s s s Y t t t zs z ε?? ? ??--=+- +-+=+++?+= ---422121214 2122111459221 (2) 对于因果连续系统,()s H 的全部极点位于s 平面的左半平面, ()t h 才是衰减信号,由此可以得出,在复频域有界输出的充要条件是系统函数()s H 的全部极点位于s 平面的左半平面,若系统函数的极点是虚轴上的单阶共轭极点。则系统临界稳定,若系统函数的极点在右半平面,则系统不稳定,如下图。 该题中,()1 1 4145522+++=+++=s s s s s s H ,其极点分别为4,121-=-=s s ,都在左半平面,所以 系统稳定。 2、如下方程和非零起始条件表示的连续时间因果LTI 系统 ()()()()?? ???==+=++--30,20223'22y y t f dt df t y dt dy t d y d

已知输入()()t e t f t ε3-=时,试用拉普拉斯变换的方法求系统的零状态响应()t y zs 和零输入响应 ()t y zi , 0≥t 以及系统的全响应()0,≥t t y 。 解:方程两边取拉氏变换 ()()()()()()[]()() ()()()()()() ()()()() ()()() t e e e t y t e e t y s s s s s s Y t e e e t y s s s s s s s s Y s s s s s s s s Y s s F s F s y y sy s Y s s t t t t t zi zi t t t zs ZS εεε?? ? ??+--=+-=+++-=+++=??? ??-+-=+-++++-=+?+++=++++++?+++=+= +=---+++-----------213225 751 7 25239232132 5 1 2 123325312312223632312312;3112030'023********* 22

傅里叶变换拉普拉斯变换的物理解释及区别教学教材

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。 傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波,可以合成任何你所需要的信号。

拉普拉斯变换及在线性系统的应用

本科生毕业论文 拉普拉斯变换及在线性系统的应用 院系数学与统计学院 专业数学与应用数学 班级 2007级本科3班 学号 0501070310 学生姓名 联系方式 指导教师职称讲师助教 2011年 4月

独创性声明 本人郑重声明:所呈交的毕业论文是本人在指导老师指导下取得的研究成果.除了文中特别加以注释和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果.与本研究成果相关的所有人所做出的任何贡献均已在论文中作了明确的说明并表示了谢意. 签名: 年月日 授权声明 本人完全了解许昌学院有关保留、使用本科生毕业论文的规定,即:有权保留并向国家有关部门或机构送交毕业论文的复印件和磁盘,允许毕业论文被查阅和借阅.本人授权许昌学院可以将毕业论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编论文. 本人论文中有原创性数据需要保密的部分为(无) 签名: 年月日 指导教师签名: 年月日

本文由拉普拉斯变换的一些基础知识入手,介绍了拉普拉斯变换的概念,定理.归纳总结了它的一些性质及关于各性质的证明和用法.重点讨论了如何用拉普拉斯变换解常系数线性微分方程(组),总结出象原函数的几种求解方法,以及不同的方法适合使用的情况等.另外还简单介绍了拉普拉斯变换在工程学中的一些线性系统的应用,其中包括在动态电路系统和电力系统的应用. 关键词:拉普拉斯变换;常系数微分方程;线性系统 ABSTRACT This paper is about the basic knowledge of the Laplace Transform. It contains the concept of Laplace Transform, theorems,summarizes some of its properties and the nature of the proof and usage.It discusses hou to use the Laplace Transform to solve Linear Differential Equations (group). And it sums up a variety of solutions of the original function, what’s more,the different methods are used in different situations. And it also introduces the Laplace transform of some linear systems engineering applications, including dynamic circuit system and electrical system. Keywords: Laplace transform; Constant coefficient differential equations; Linear system

拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换 拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。我们经常应用拉普拉斯变换进行电路的复频域分析。本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。 第一节 拉普拉斯变换 在代数中,直接计算 是很复杂的,而引用对数后,可先把上式变换为 然后通过查常用对数表和反对数表,就可算得原来要求的数N 。 这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。 一、拉氏变换的基本概念 定义12.1 设函数()f t 当0t ≥时有定义,若广义积分0 ()pt f t e dt +∞ -? 在P 的某一区域内收敛,则 此积分就确定了一个参量为P 的函数,记作()F P ,即 dt e t f P F pt ? ∞ +-= )()( (12.1) 称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。函数()F P 称为()f t 的拉氏变 换(Laplace) (或称为()f t 的象函数)。函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数),记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。 关于拉氏变换的定义,在这里做两点说明: (1)在定义中,只要求()f t 在0t ≥时有定义。为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。 (2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。 (3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。 例12.1 求斜坡函数()f t at = (0t ≥,a 为常数)的拉氏变换。 解:00 00 []()[]pt pt pt pt a a a L at ate dt td e e e dt p p p +∞ +∞+∞---+∞-= =-=-+? ?? 二、单位脉冲函数及其拉氏变换 在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电 流为零的电路中,某一瞬时(设为0t =)进入一单位电量的脉冲,现要确定电路上的电流()i t ,以()Q t 表示上述电路中的电量,则 由于电流强度是电量对时间的变化率,即 t t Q t t Q dt t dQ t i t ???) ()(lim )()(0-+== →,

拉普拉斯变换的实际应用

拉普拉斯变换的实际应用 在工程学上的应用 应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用。 拉氏变换在微分方程(组)初值问题中的应用 1.1 利用拉氏变换解常系数线性微分方程的初值问题 例1 求初值问题Y”一2y +2y=e~,y(O)=0,Y (0)=1. 例2求解初值问题 用拉氏变换求常系数线性微分方程(组),是把关于Y(t)的微分方程(组) 转化成关于象函数l,(s)的代数方程,从而容易确定l,(s).从象函数l,(s)求其拉氏逆变换即得原函数 Y(t).由于在求解过程中同时利用了初值条件,因此用拉氏变换求得的解是初值问题的解.如果把初值视为任意常数,则用拉氏变换求得的解就是通解. 2 利用拉氏变换求积分方程 用拉氏变换求解相关问题既方便又简洁. 答案补充:应用拉普拉斯变换分析RLC电路,不需要确定积分常数 拉普拉斯变换的数值逆在偏微分方程中的应用ut(t,x)-∫0^t(t-s)^-1/2uxx(s,x)ds=f(t,x)的数值解。该方法选择适当的n可以达到相当高的精度。 用拉氏变换引入网络函数的概念,网络函数是分析电路正弦稳态响应的工具,最后,希望以系统的方式将电路的时域特性与频域特性联系起来,拉氏变换加深对电路功能的理解。答案补充拉氏反变换:有理真分式、有理假分式、部分分式展开法、具有独立实根的有理真分式的拉氏反变换、具有共轭复根的有理真分式的拉氏反变换、具有实重根的有理真分式的拉氏反变换、具有多重复根的有理真分式的拉氏反变换、假分式的拉氏反变换(整理为一个多项式和有理真分式之和,然后分别求其拉氏反变换)、F(s)的零点极点、初值定理和终值定理、初值定理终值定理的应用。 s域电路分析 拉氏变换用于电路分析具有两个特点:第一,拉氏变换将线性常系数微分方程转化为容易处理的线性多项式方程,第二,拉氏变换将电流和电压变量的初始值自动引入到多项式方程中,这样在变换处理过程中,初始条件就成为变换的一部分。 s称为复频率、复频域分析方法(又称运算法)、动态元件的初始储能问题、s域欧姆定律V=ZL、拉氏变换的线性特性决定了线性电路理论在s域同样适用、这些线性电路理论包括:KCL、KVL、节点电压法、网孔电流法、戴维南等效、诺顿等效、叠加定理等。答案补充我自己的经历,就只有在信息系统里,用到,主要是求初值问题,积分问题

相关主题
文本预览
相关文档 最新文档