当前位置:文档之家› 《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布

《概率论与数理统计》习题随机变量及其分布
《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布

一. 填空题

1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =9

5

, 则P(Y ≥ 1) = _________. 解. 9

4951)1(1)0(=-=≥-==X P X P 94)1(2

=

-p , 3

1=p 2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为c

c c c 162

,

85,43,21, 则c = ______. 解. 2,16321628543211==+++=

c c

c c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:

P(X ≤ a) = ________. P(X = a) = ________.

P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.

解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)

4. 设k 在(0, 5)上服从均匀分布, 则02442

=+++k kx x 有实根的概率为_____.

解. k 的分布密度为???

??=0

51

)(k f 其它50≤≤k

P{02442

=+++k kx x 有实根} = P{03216162

≥--k k } = P{k ≤-1或k ≥ 2} =5

3

515

2=?dk 5. 已知2}{,}{k

b

k Y P k a k X P =-==

=(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++

a a a a . 49

36

,194=

=++b b b b (X, Y)

P

24α 66α 251α 126α 72α

ab = 216α, 539

1=

α 6. 已知(X, Y)联合密度为???+=0)

sin(),(y x c y x ? 其它

4,0π

≤≤y x , 则c = ______, Y 的边

缘概率密度=)(y Y ?______.

解.

12,

1)sin(4/0

4

/0

+==+??c dxdy y x c ππ

所以???++=0)sin()12(),(y x y x ? 其它

4,0π

≤y x

当 4

0π≤

≤y 时

所以

?????

+-+=0

))

4cos()(cos 12()(y y y Y π? 其它40π≤≤y

7. 设平面区域D 由曲线2,1,01

e x x y x

y ====

及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =

21

21

=?

e dx x

. 所以二维随机变量(X, Y)的密度为: 下面求X 的边沿密度: 当x < 1或x > e 2时 当1 ≤ x ≤ e 2时 ?

?

===

∞+∞

-x X x dy dy y x x 10

2121),()(??, 所以4

1)2(=X ?. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则

)(1

21n X X X n

X +++=

Λ服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.

μ==??? ??∑∑==n i i n i i X E n X n E 11)(11, n

X D n

X n D n

i i

n i i 2

1

2

1)(11σ=

=??? ??∑∑==

所以 ),

(~2

n

N X σμ

9. 如果(X, Y)的联合分布用下列表格给出,

且X 与Y 相互独立, 则α = ______, β = _______.

解.

两式相除得βαβα

=++18

191

, 解得 βα2=, 92,91==αβ.

10. 设(X, Y)则 i. Z = X + Y iii. U= X 2 + Y -2的分布律_______. 解.

二. 单项选择题

1. 如下四个函数哪个是随机变量X 的分布函数

(A)???????=221

)(x F 0022≥<≤--

(C) ?????=1sin 0)(x x F 2/2/00ππ≥<≤

???+=1310

)(x x F 2

12100≥<≤

解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)(Λ===-k k e

c k X P k

λ

λ是随机变量X 的概率分布, 则λ, c 一定满足

(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)(Λ===-k k e

c k X P k

λ

λ, 所以c > 0. 而k 为偶数, 所以λ可以为负.

所以(B)是答案.

3. X ~N(1, 1), 概率密度为?(x), 则

(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ?? (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.

4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是

(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y

解. X ~???=01)(x ? 其它10≤≤x , Y ~?

??=01)(y ? 其它1

0≤≤y . 所以

(X, Y)~???=0

1

),(y x ?

其它

1,0≤≤y x .所以(A)是答案.

5. 设函数???

????=120

)(x

x F 1100>≤<≤x x x 则

(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.

(C) 离散型分布函数. (D)连续型分布函数.

解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.

6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是

(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是

解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.

7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是

(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y

(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 (D)是答案.

8. 设X 的密度函数为)(x ?, 而,)

1(1

)(2x x +=

π? 则Y = 2X 的概率密度是

(A)

)41(12y +π (B) )4(22y +π (C) )1(12

y +π (D) y arctan 1

π

解. )2

()2(}2{)()(y

F y X P y X P y Y P y F X Y =≤=≤=≤= (B)是答案.

9. 设随机变量(X, Y)的联合分布函数为???=+-0

),()(y x e y x ? 其它0,0>>y x , 则2Y

X Z +=

的分布密度是

(A) ?????=+-0

21)()(y x Z e Z ? 其它0,0>>y x (B) ?????=+-0)(2

y x Z e z ? 其它0,0>>y x

(C) ???=-04)(2z Z ze Z ? 00≤>z z (D) ?????=-0

21)(z

Z e

Z ? 00≤>z z

解. 2Y

X Z +=

是一维随机变量, 密度函数是一元函数, 排除(A), (B). 2

1210=?∞+-dz e z , 所以(D)不是答案. (C)是答案.

注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时 当z ≥ 0时 =

122220

20+--=??????-----?

?z z z x z y x e ze dx dy e e ==)()('z F z Z

Z ????-0

42z ze 00

≤>z z , (C)是答案.

10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正

确的是

(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2

解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.

11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是

(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数: 当y ≥ 2时 当0 ≤ y < 2时 当y < 0时

于是 ??

???-=-011)(y

Y e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.

三. 计算题

1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.

P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)

1.0(1

?-i , i = 1, 2, 3, 4.

当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4

)1.0(. 于是分布律为

2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.

i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.

解. 假设A i 表示第i 次取出正品(i = 1, 2, 3,

…) i. ii.

13

10

133)()()()()(1

111

1---?

?

?

??====k k k k k A P A P A P A A A p k X P ΛΛ, (k = 1, 2, …) iii. 每次抽取后总以一个正品放回

3. 随机变量X 的密度为??

?

??-=0

1)(2x c

x ? 其它1||

的概率. 解. π

ππ

?1

,2

2|arcsin 21)(11011

2

=

===-==

?

?

-∞+∞

-c c c

x c dx x

c dx x

4. 随机变量X 分布密度为

i. 2102

)(x x -???

??=π? 其它1||

???-=02)(x x x ? 其它2110≤≤<≤x x

求i., ii 的分布函数F(x).

解. i. 当x ≤ 1时 当-1< x < 1时 当x ≥ 1时

所以 ???

????++-=121arcsin 110

)(2x x x

x F ππ 1

111≥<<--≤x x x

ii. 当x < 0时

当0 ≤ x < 1时 当1 ≤ x < 2时 当2 ≤ x 时

所以 ????

?????-+-=1

122

2

0)(2

2x x x x F 221100≥<≤<≤

???? ?

?--=3200)20(exp 2401

)(2x x π?, -∞ < x < +∞ 试求: i. 测量误差的绝对值不超过30的概率;

ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.

解. 因为???? ?

?--=3200)20(exp 2401

)(2x x π?, -∞ < x < +∞, 所以X ~N(20, 402).

i. {}?

??

???<-<

-=<<-=<25.0402025.13030)30|(|X P X P X P 18944.05987.0-+== 0.4931.

(其中Φ(x)为N(0, 1)的分布函数)

ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13

=-=-

6. 设电子元件的寿命X 具有密度为

问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?

解. X 的密度???

??=0100

)(2x x ? 100100≤

3

1

100)150(150

1002

==

2

.

i. P(150小时内三只元件没有一只损坏) =2783

=

p ii. P(150小时内三只元件全部损坏) =27

1)1(3

=-p

iii. P(150小时内三只元件只有一只损坏) =9432312

13=??

? ????? ??c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布. 解. 直径D 的分布密度为???=0

1

)(d ?

其它

65≤≤d

假设

4

2

D X π=

, X 的分布函数为F(x).

当x ≤ 0时, F(x) = 0 当x > 0时

时即4

25,54π

π

<

F(x) = 0 当时即

ππ

π

925

,645≤≤≤≤

x x

=

54145

-=

?

π

π

x

dt x

当 x > 9π时

所以 ??

???

??-=1540)(πx

x F

ππππ994254

25>≤≤<

x x x 密度??

?

??==01)(')(x x F x π? 其它ππ

9425≤≤x

8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、

表2所示

表1 表2

Y 1 2 3 Y 1 2 3 P(Y|X = 0)

41 21 41 P(Y|X = 1) 21 61 3

1 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.

解. X 的分布律为

(X, Y)

所以Y 的分布律为

所以

9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量Y

X

Z =的分布密度.

解. X ~?????=091)(x X ? 其它90≤≤x , Y ~???

??=0

91)(x Y ? 其它90≤≤y

因为X, Y 相互独立, 所以(X, Y)联合密度为

(X, Y)~???

??=0

811),(y x ? 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=

当 z ≤ 0时

0)(=z F Z 当 0 < z < 1时 y = xz (z < 1)

D 1

当z ≥ 1时

z

z 21

1)992181(811-=?-?=

所以 ????

???

==2'21210

)()(z

z F z Z Z ? 1100≥<<≤z z z 10. 设(X, Y)的密度为 求: i.)21|(),|(),(=x y x y x X ???, ii. )2

1|(),|(),(=y x y x y Y ??? 解. i.

?∞

+∞

-=dy y x x X ),()(??

当x ≤ 0 或 x ≥ 1时

当0 < x < 1时

所以 ???-=0

)1(4)(3

x x X ? 其它10<

所以 ???

??---==0

)1()

1(6)(),()|(3

x y x y x y x x y X ??? 其它

1,0,0<+>>y x y x 所以 ???-==0)21(24)21

|(y y x y ? 其它

21

0<

ii.

?∞

+∞

-=dx y x y Y ),()(??

当y ≤ 0 或 y ≥ 1时

当0 < y < 1时

所以 ???-=0

)1(12)(2

y y y Y ? 其它10<

所以 ?????---==0

)1()

1(2)(),()|(2

y y x y y x y x Y ??? 其它

1,0,0<+>>y x y x

所以 ???-==0

)

21(4)21|(x y x ? 其它

21

0<

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计心得体会

概率课感想与心得体会 笛卡尔说过:“有一个颠扑不破的真理,那就是当我们不能确定什么是真的时候,我们就应该去探求什么是最最可能的。”随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。 概率起源于现实生活,应用于现实生活,如我们讨论了摸球问题,掷硬币正反面的试验,拍骰子问题等等。都是接近生活实践的概率应用实例。 同时,通过概率课还了解了概率的意义,概率是用来度量随机事件发生可能性大小的一个量,而实际结果是事件发生或不发生这两种情况中的一种。但是我们不能根据随机事件的概率来断定某次试验出现某种结果或者不出现某种结果。同时,我们还可以利用概率来判定游戏规则,譬如,在各类游戏中,如果每个人获胜的概率相等,那么游戏就是公平的,这就是说,要保证所制定的游戏规则是公平的,需要保证每个人获胜的概率相等。概率教学中的试验或游戏结果,如果不进行足够多的次数,是很难得出比较接近概率的频率的,也就是说当试验的次数很多的时候,频率就逐渐接近一个稳定的值,这个稳定的值就是概率。我们说,当进行次数很多的时候,时间发生的次数所占的总次数的比例,即频率就是概率。换句话说,就是时间发生的可能性最大。 概率不仅在生活上给了我们很大的帮助,同时也能帮我们验证某些理论知识,譬如投针问题: ()行直线相交的概率. 平的针,试求该针与任一一根长度为线,向此平面上任意投的一些平行平面上画有等距离为a L L a <

我们解如下: 平行线的距离; :针的中心到最近一条 设:X 此平行线的夹角.:针与? 上的均匀分布;, 服从区间则随机变量?? ? ?? ? 20a X []上的均匀分布;服从区间随机变量π?,0相互独立.与并且随机变量?X ()的联合密度函数为 ,所以二维随机变量?X ()??? ??≤≤≤≤=. , 02 02 其它,,π?π?a x a x f {} 针与任一直线相交设:=A , . sin 2? ?? ???<=?L X A 则所以, ()? ?????<=?sin 2L X P A P 的面积的面积 D A =.22 sin 20 a L a d L ππ??π == ?

概率论与数理统计教学大纲(48学时)

概率论与数理统计课程教学大纲(48学时) 撰写人:陈贤伟编写日期:2019 年8月 一、课程基本信息 1.课程名称:概率论与数理统计 2.课程代码: 3.学分/学时:3/48 4.开课学期:4 5.授课对象:本科生 6.课程类别:必修课 / 通识教育课 7.适用专业:软件技术 8.先修课程/后续课程:高等数学、线性代数/各专业课程 9.开课单位:公共基础课教学部 10.课程负责人: 11.审核人: 二、课程简介(包含课程性质、目的、任务和内容) 概率论与数理统计是描述“随机现象”并研究其数量规律的一门数学学科。通过本课程的教学,使学生掌握概率的定义和计算,能用随机变量概率分布及数字特征研究“随机现象”的规律,了解数理统计的基本理论与思想,并掌握常用的包括点估计、区间估计和假设检验等基本统计推断方法。该课程的系统学习,可以培养学生提高认识问题、研究问题与处理相关实际问题的能力,并为学习后继课程打下一定的基础。 本课程主要介绍随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验等。 体现在能基于随机数学及统计推断的基本理论和方法对实验现象和数据进行分析、解释,并能对工程领域内涉及到的复杂工程问题进行数学建模和分析,且通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。 三、教学内容、基本要求及学时分配 1.随机事件及其概率(8学时) 理解随机事件的概念;了解样本空间的概念;掌握事件之间的关系和运算。理解概率的定义;掌握概率的基本性质,并能应用这些性质进行概率计算。理解条件概率的概念;掌握概率的加法公式、乘法公式;了解全概率公式、贝叶斯公式;理解事件的独立性概念。掌握应用事件独立性进行简单概率计算。理解伯努利试验;掌握二项分布的应用和计算。 2.随机变量及其分布(6学时) 理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质;掌握应用概率分布计算简单事件概率的方法,掌握二项分布、泊松分布、正态分布、均匀分布和指数分布和应用,掌握求简单随机变量函数的概率分布的方法。 3.多维随机变量及其分布(7学时)

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题答案 高等教育出版社 习题解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点 数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1(ΛΛΛΛ=Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1(Λ=+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.

随机变量及其分布函数

随机变量及其分布函数 将随机事件以数量来标识,即用随机变量描述随机现象的研究方法,它是定义在样本空间上具有某种可预测性的实值函数。 分布函数则完整的表述了随机变量。 一、 随机变量与分布函数 (1) 随机变量: 取值依赖于某个随机试验的结果(样本空间),并随着试验结果不同而变化的变量,称之为随机变量。 分布函数: [1] 定义: 设X 是一个随机变量,对任意实数x ,记作 (){}F x P X x ≤=,称()F x 为随机变量X 的分 布函数,又称随机变量X 服从分布()F x ,显然,函数 ()F x 的定义域为(),-∞+∞,值域为[0,1]。 [2] 性质: ?()F x 单调非降。 ?()0F -∞=、()1F +∞=。 ?()(0)F x F x =+,即()F x 一定是右连续的。 ?对于任意两个实数a b <, {}()()P a X b F b F a <≤=- ?对于任意实数0x ,

00 0{}()()P X x F x F x ==-- ?000{}1{}1()P X x P X x F x >=-≤=- ?000{}{)lim }(x x P X x P X x x F →- =≤<=- ?000{}1{}1()P X x P X x F x ≥=-<=-- 二、 离散型随机变量与连续型随机变量 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概率()i i P X x p ==(12)i =、……称为X 的概率分布或分布律,表格表示形式如下: [2] 性质: ?0i p ≥ ? 1 1n i i p ==∑ ?分布函数()i i x x F x p ==∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有:

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.doczj.com/doc/3b17563902.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

概率论与数理统计知识点汇总(详细)

概率论与数理统计知识点汇总(详细)

————————————————————————————————作者:————————————————————————————————日期:

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

1多维随机变量及其联合分布

3.1多维随机变量及其分布 教学目标:本节讲解的是多维随机变量及其分布.通过本节的教学,要求学生正确理解多维随机变量及其分布,掌握多维随机变量及其分布的计算方法,运用定义和性质解决有关问题. 教学重点:多维随机变量及其分布的定义与性质. 教学难点:多维随机变量及其分布的证明与计算. 二维随机变量 定义1 设E 是随机试验,则由定义在E 的样板空间Ω上的随机变量X 与Y 构成的有序对),(Y X 称为二维随机变量(或二维随机向量)。 定义2 对任意实数y x ,,二元函数 },{)}(){(),(y Y x X P y Y x X P y x F ≤≤≡≤≤= 称为二维随机变量),(Y X 的分布函数,或称为随机变量X 和Y 的联合分布函数。 若把二维随机变量),(Y X 看成平面上随机点),(Y X 的坐标,则分布函数 ),(y x F 就表示随机点落在以点),(y x 为顶点的左下方的无限矩形域内的概率。 ),(),(),(),(},{111221222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤< 分布函数具有以下基本性质: (1)1),(0≤≤y x F ,且 对任意固定的y ,0),(=-∞y F , 对任意固定的x ,0),(=-∞x F , 0),(=-∞-∞F ,1),(=∞∞F 。 (2)),(y x F 分别是x 和y 的不减函数。 (3)),(),0(y x F y x F =+,),()0,(y x F y x F =+,即),(y x F 关于x 或y 均右连续。

(4)若2121,y y x x <<,则 0),(),(),(),(11122122≥+--y x F y x F y x F y x F 如果二维随机变量),(Y X 可能取的值是有限对或可列无限对,则称),(Y X 是二维离散型随机变量。),(Y X 的分布律或X 和Y 的联合分布律为 ij j i p y Y x X P ===},{, ,2,1,=j i 。 其中 ij p 满足 (1) ; 0≥ij p (2) 111 =∑∑∞=∞ =i j ij p 。 X 和Y 的联合分布律也可用表格表示: ij j j j i i i p p p y p p p y p p p y x x x X Y 2122212212111121\ X 和Y 的联合分布函数为 ∑∑≤≤= x x y y ij i j p y x F ),(。 【例1】吴书p.66.例1。 一箱子装有5件产品,其中2件正品,3件次品.每次从中取1件产品检验质量,不放回地抽取,连续抽取两次.定义随机变量X 和Y 如下: 试求),(Y X 的分布律和分布函数。 解 10X ?=? ?,第一次取到次品,第一次取到正品10Y ?=? ?,第二次取到次品 ,第二次取到正品

概率论与数理统计课程教学大纲#

《概率论与数理统计》课程教案大纲 <2002年制定 2004年修订) 课程编号: 英文名:Probability Theory and Mathematical Statistics 课程类别:学科基础课 前置课:高等数学 后置课:计量经济学、抽样调查、实验设计、贝叶斯统计、非参数估计、统计分析软件、时间序列分析、统计预测与决策、多元统计分析、风险理论 学分:5学分 课时:85课时 修读对象:统计学专业学生 主讲教师:杨益民等 选定教材:盛骤等,概率论与数理统计,北京:高等教育出版社,2001年<第三版) 课程概述: 本课程是统计学专业的学科基础课,是研究随机现象统计规律性的一门数学课程,其理论及方法与数学其它分支、相互交叉、渗透,已经成为许多自然科学学科、社会与经济科学学科、管理学科重要的理论工具。因为其具有很强的应用性,特别是随着统计应用软件的普及和完善,使其应用面几乎涵盖了自然科学和社会科学的所有领域。本课程是统计专业学生打开统计之门的一把金钥匙,也是经济类各专业研究生招生测试的重要专业基础课。本课程由概率论与数理统计两部分组成。概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对实验结果进行统计推断。包括数理统计的基本概念、参数统计、假设检验、非参数检验、方差分析和回归分析等。 教案目的: 通过本课程的学习,要求能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量<如0-1分布、二项分布、泊松

概率论与数理统计教学大纲

《概率论与数理统计》教学大纲 编写人:刘雅妹审核:全焕 一、课程性质与任务 概率论与数理统计是研究随机现象客观规律的数学学科,是高等学校本科各专业的一门重要的基础理论课。本课程的任务是使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决、处理实际不确定问题的基本技能和基本素质,它是为培养我国现代建设所需要的高质量、高素质专门人才服务的。 二、教学基本要求 本课程按要求不同,分深入理解、牢固掌握、熟练应用,其中概念、理论用“理解”、“了解”表述其要求的强弱,方法运算用“会”或“了解”一词表述。 〈一〉、随机事件与概率 ⒈理解随机实验,样本空间和随机事件的概念,掌握事件的关系与运算。 ⒉理解概率的定义,掌握概率的基本性质,能计算古典概型和几何概型的概率,能用概率的基本性质计算随机事件的概率。 3.理解条件概率的概念,掌握概率的乘法公式。

⒋理解全概率公式和贝叶斯公式,能计算较复杂随机事件的概率。 ⒌理解事件的独立性概念,能应用事件的独立性进行概率计算。 6.理解随机实验的独立性概念,掌握n重贝努里实验中有关随机事件的概率计算。 〈二〉、一维随机变量及其概率分布 ⒈理解一维随机变量及其概率分布的概念. 2.理解随机变量分布函数的概念,了解分布函数的性质,会计算与随机变量有关的事件的概率. 3.理解离散型随机变量及概率分布的概念.掌握0-1分布、二项分布、泊松分布及其它们的应用。 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、指数分布、正态分布及其它们的应用。 5.会求简单的随机变量的函数的分布。 〈三〉、二维随机变量及其分布 ⒈了解二维(多维)随机变量的概念。 ⒉了解二维随机变的联合分布函数及其性质;了解二维离散型随机变的联合概率分布及其性质;了解二维连续型随机变量的联合概率密度函数及其性质,并会用这些性质计算有关事件的概率。 3.掌握二维离散型与二维连续型随机变量的边缘分布的计算,了解条件分布及其计算。 4.理解随机变量独立性的概念,掌握运用随机变量独立性进行概率计算。

概率论与数理统计知识点汇总(免费超详细版)

概率论与数理统计知识点汇总(免费超详细版)

————————————————————————————————作者:————————————————————————————————日期:

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

相关主题
文本预览
相关文档 最新文档