当前位置:文档之家› 线性系统理论 仿真作业(倒立摆模型)

线性系统理论 仿真作业(倒立摆模型)

线性系统理论 仿真作业(倒立摆模型)
线性系统理论 仿真作业(倒立摆模型)

线性系统理论课后设计报告

一、题目

倒立摆模型如下:x

Ax Bu y Cx =+=

01000000.490500.51000,,0001000100020.60101A B C ????????-??????===????????????-????

当(0)0.1,(0)=0,(0)=0,z(0)=0θθ

=z 1、 求系统输出响应

2、 要求输出在6s 内达到稳定,如何处理?

二、解答

1、系统输出响应

根据题中状态方程,取状态变量:1=, 2=z, 3,4=x x x x θθ=z ,根据题中给出的倒

立摆模型,我们可以在matlab 中建立空间状态模型并得出零输入状态响应输出,matlab 代码如下:

仿真结果如下:

注:蓝色曲线代表z(t),绿色曲线代表θ(t)

由上图可知,从图中可以看到,系统输出响应曲线发散,输出不稳定。

2、要求输出在6s内达到稳定,如何处理?

第一步:由于系统输出响应发散,所以该系统中有特征根中在极平面右半平面,一般都需要进行极点配置。所以首先我们需要判断系统是否完全可控。

代码如下:

结果n=4,即秩为4,系统是完全可控的,可以使用线性状态反馈法配置零极点。

第二步:极点配置,即选取期望极点并进行极点配置校正,本例中将阻尼比设

置为0.707时可以去期望极点为:P=(-2-2j,-2+2j,-10-j,-10+j);根据期望极点可以在matlab中计算出增益矩阵K,具体代码如下:

得出增益矩阵K为:

第三步:将状态反馈极点配置后的闭环系统在matlab中建立描述模型,并将

输出响应表示成曲线,代码如下:

校正后的仿真曲线如下:

其中蓝色曲线为z(t),绿色为θ(t),在2.8s时系统即可进入稳定状态,完全满足6s内稳定的性能指标。

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

线性系统理论大作业小组报告-汽车机器人建模

审定成绩: 重庆邮电大学 硕士研究生课程设计报告 (《线性系统理论》) 设计题目:汽车机器人建模 学院名称:自动化学院 学生姓名: 专业:控制科学与工程 仪器科学与技术 班级:自动化1班、2班 指导教师:蔡林沁 填表时间:2017年12月

重庆邮电大学

摘要 汽车被广泛的应用于城市交通中,它的方便、快速、高效给人们带来了很大便利,这大大改变了人们的生活. 研制出一种结构简单、控制有效、行驶安全的城市用无人智能驾驶车辆,将驾驶员解放出来,是大大降低交通事故的有效方法之一,应用现代控制理论设计出很多控制算法,对汽车进行控制是非常必要的,本文以汽车机器人为研究对象,对其进行建模和仿真,研究了其模型的能控能观性、稳定性,并通过极点配置和状态观测器对其进行控制,达到了一定的性能要求。这些研究为以后研究汽车的自动驾驶和路径导航,打下了一定的基础。 关键字:建模、能控性、能观性、稳定性、极点配置、状态观测器

目录 第一章绪论 (1) 第一节概述 (1) 第二节任务分工 (2) 第二章系统建模 (2) 2 系统建模 (2) 2.1运动学模型 (2) 2.2自然坐标系下模型 (4) 2.3具体数学模型 (6) 第三章系统分析 (7) 3.1 能控性 (7) 3.1.1 能控性判据 (7) 3.1.2 能控性的判定 (8) 3.2 能观性 (10) 3.2.1 能观性判据 (10) 3.2.2 能观测性的判定 (12) 3.3 稳定性 (13) 3.3.1 稳定性判据 (13) 3.3.2 稳定性的判定 (14) 第四章极点配置 (15) 4.1 极点配置概念 (15) 4.2 极点配置算法 (15) 4.3 极点的配置 (16) 4.4 极点配置后的阶跃响应 (17) 第五章状态观测器 (18) 5.1概念 (19) 5.2带有观测器的状态反馈 (20) 5.3代码实现 (21) 5.4 极点配置和状态观测器比较 (23)

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

最优化方法课程设计实验报告_倒立摆

倒立摆控制系统控制器设计实验报告

成员:陈乾睿 2220150423 郑文 2220150493 学院:自动化 倒立摆控制系统控制器设计实验 一、实验目的和要求 1、目的 (1)通过本设计实验,加强对经典控制方法(LQR控制器、PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力. (3)熟悉MATLAB语言以及在控制系统设计中的应用。 2、要求 (1)完成倒立摆控制系统的开环系统仿真、控制器的设计与仿真以及实际运行结果 (2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。程序

清单文件。 二、实验内容 倒立摆控制系统是一个典型的非线性系统,其执行机构具有很多非线性,包括:死区、电机和带轮的传动非线性等。 本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在倒立摆控制实验平台上实际验证。 算法要求:使用LQR以外的其它控制算法。 三、倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的应用开发前景。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性,不确定性,耦合性,开环不稳定性,约束限制。 经过相关论文和文献的查询,我们决定采用模糊控制的方法进行倒立摆的控制。

线性系统理论大作业

目录 题目一 (2) (一)状态反馈加积分器校正的输出反馈系统设计 (2) (1)建立被控对象的状态空间模型,并判断系统性质 (2) (2)状态反馈增益矩阵和积分增益常数的设计 (4) (3)全维观测器设计 (6) (4)如何在闭环调速系统中增加限流环节 (8) (二)二次型最优全状态反馈控制和按负载扰动前馈补偿的复合控制系统设计 (8) (1)线性二次型最优全状态反馈设计 (8) (2)降维观测器设计 (13) 题目二 (15) (1)判断系统是否存在最优控制律 (15) (2)非零给定点的最优控制设计和仿真分析 (16) (3)权矩阵的各权值对动态性能影响分析 (17)

题目一 (一)状态反馈加积分器校正的输出反馈系统设计 (1)建立被控对象的状态空间模型,并判断系统性质 1)画出与题目对应的模拟结构图,如图1所示: 图1原始系统结构图 取状态变量为1x =n ,2x =d I ,3x =d u ,控制输入u=c u 1222212333375375111 T L e la la la s s s C x x T GD GD C x x x x RT T RT K x x u T T ?=-???=--+???=-+?? 将已知参数代人并设输出y=n=1x ,得被控对象的状态空间表达式为 L x Ax Bu ET y Cx =++= 其中,2 37500039.768011=-3.696-17.85727.05600-588.2351 00 T e la la la s C GD C A RT T RT T ???? ? ???????=- -?????? ??????-??? ? ,

一级倒立摆地Simulink仿真

单级倒立摆稳定控制 直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。 图1 直线一级倒立摆系统 图2 控制系统结构 假设小车质量M =0.5kg ,匀质摆杆质量m=0.2kg ,摆杆长度2l =0.6m ,x (t )为小车的水平位移,θ为摆杆的角位移,2 /8.9s m g =。控制的目标是通过外力u (t)使得摆直立向上(即0)(=t θ)。该系统的非线性模型为: u ml x m M ml mgl x ml ml J +=++=++22)sin ()()cos (sin )cos ()(θθθθθθθ ,其中231ml J =。 解: 一、 非线性模型线性化及建立状态空间模型 因为在工作点附近(0,0==θ θ )对系统进行线性化,所以 可以做如下线性化处理:32 sin ,cos 13!2!θθθθθ≈-≈-

当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’^2≈0; 因此模型线性化后如下: (J+ml^2)θ’’+mlx ’’=mgl θ (a) ml θ’’+(M+m) x ’’=u (b) 其中23 1ml J = 取系统的状态变量为,,,,4321θθ ====x x x x x x 输出T x y ][θ=包括小车位移和摆杆的角位移. 即X=????????????4321x x x x =????? ???????''θθx x Y=??????θx =??????31x x 由线性化后运动方程组得 X1’=x ’=x2 x2’=x ’’=m m M mg 3)(43-+-x3+m m M 3)(44-+u X3’ =θ’=x4 x4’=θ’’=ml l m M g m M 3)(4)(3-++x3+ml l m M 3)(43-+-u 故空间状态方程如下: X ’=????????????'4'3'2'1x x x x =????????????????? ?-++-+-03)(4)(300100003)(4300 0010ml l m M g m M m m M mg ????????????4321x x x x + ???????? ??????????-+--+ml l m M m m M 3)(4303)(440 u

倒立摆实验报告

倒立摆实验报告 机自82 组员:李宗泽 李航 刘凯 付荣

倒立摆与自动控制原理实验 一.实验目的: 1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容. 2.运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆 3.学习运用模糊控制理论控制倒立摆系统 4.学习MATLAB工具软件在控制工程中的应用 5.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。 二. 实验设备 计算机及等相关软件 固高倒立摆系统的软件 固高一级直线倒立摆系统,包括运动卡和倒立摆实物 倒立摆相关安装工具 三.倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种

技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。 倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性2) 不确定性3) 耦合性4) 开环不稳定性5) 约束限制 倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、LQR控制、模糊PID控制、纯模糊控制 四.直线一级倒立摆的物理模型: 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励

哈工大一阶倒立摆

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系): 专业:自动化班号: 任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)错误!未找到引用源。的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1) 控制系统设计课程设计报告 (1) 一.实验设备简介 (3) 二.直线一阶倒立摆数学模型的推导 (6) 2.1概述 (6) 2.2数学模型的建立 (7) 2.3一阶倒立摆的状态空间模型: (9) 2.4实际参数代入: (10) 三.定量、定性分析系统的性能 (11) 3.1 对系统的稳定性进行分析 (11) 3.2 对系统的稳定性进行分析: (12) 四. 实际系统的传递函数与状态方程 (13) 五. 系统阶跃响应分析 (14) 六.一阶倒立摆PID控制器设计 (15) 6.1 PID控制分析 (15) 6.2 PID控制参数设定及MATLAB仿真 (17) 6.3 PID控制实验 (18) 七.状态空间极点配置控制器设计 (19) 7.1 状态空间分析 (20) 7.2 极点配置及MA TLAB仿真 (21) 7.3 利用爱克曼公式计算 (21) 八.课程设计心得与体会 (22) 一.实验设备简介 倒立摆控制系统:Inverted Pendulum System (IPS) 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

线性系统大作业1

研 究 生 课 程 论 文 (2014-2015学年第一学期) 线性系统的基本特性 研究生:

线性系统理论的研究对象为线性系统。线性系统是最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中研究最为充分、发展最为成熟和应用最为广泛的一个分支。线性系统理论中的很多概念和方法,对于研究系统控制理论的其他分支,如非线性系统理论、最优控制理论、自适应控制理论、鲁棒控制理论、随机控制理论等,同样也是不可缺少的基础。 线性系统的一个基本特征是其模型方程具有线性属性即满足叠加原理。叠加原理是指,若表系统的数学描述为L ,则对任意两个输入变量u 1和u 2以及任意两个非零有限常数c 1和c 2必成立关系式: 11221122()()()L c u c u c L u c L u +=+ 对于线性系统,通常还可进一步细分为线性时不变系统(linear time-invariant systems)和线性时变系统(linear time-varying systems)两类。 线性时不变系统也称为线性定常系统或线性常系数系统。其特点是,描述系统动态过程的线性微分方程或差分方程中,每个系数都是不随时间变化的函数。从实际的观点而言,线性时不变系统也是实际系统的一种理想化模型,实质上是对实际系统经过近似化和工程化处理后所导出的一类理想化系统。但是,由于线性时不变系统在研究上的简便性和基础性,并且为数很多的实际系统都可以在一定范围内足够精确地用线性时不变系统来代表,因此自然地成为线性系统理论中的主要研究对象。 线性时变系统也称为线性变系数系统。其特点是,表征系统动态过程的线性微分方程或差分方程中,至少包含一个卷数为随时间变化的函数。在视实世界中,由于系统外部和内部的原因,参数的变化是不可避免的,因此严格地说几乎所有系统都属于时变系统的范畴。但是,从研究的角度,只要参数随时间

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

倒立摆实验报告

目录 一、倒立摆系统介绍 (2) 1.1倒立摆系统简介 (2) 1.2 倒立摆组成及其原理 (2) 1.3 倒立摆特性 (3) 二、一级倒立摆 (3) 2.1一级倒立摆建模 (3) 2.2 一级倒立摆控制方法 (11) 2.2.1 单输入—单输出控制方法 (11) 超前滞后控制方法 2.2.2 单输入—多输出控制方法 (22) 双PID控制方法 2.2.3 多输入—多输出控制方法 (30) 极点配置法 二次线性最优控制法 三、二级倒立摆 (36) 3.1二级倒立摆建模 (36) 3.2 二级倒立摆控制方法 (46) 3.2.1 二次线性最优控制法 (46) 3.2.2 基于融合技术的模糊控制法 (48) 四、总结 (60) 五、参考文献 (63)

一、倒立摆系统介绍 1.1倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 1.2倒立摆组成及其原理 倒立摆的组成包括计算机、运动控制卡、伺服系统、倒立摆本体和光电码盘、反馈测量元件等几大部分,组成一个闭环系统。对于直线型倒立摆,可以根据伺服电机自带的码盘反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到;各个摆杆的角度由光电码盘测得并直接反馈到控制卡,速度信号可以通过差分方法得到。计算机从运动控制卡中实时读取数据,确定控制策略(电机的输出力矩),并发送给运动控制卡。运动控制卡经过DSP 内部的控制算法实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

线性系统理论

Linear Systems Theory: A Structural Decomposition Approach 线性系统理论: 结构分解法 Ben M. Chen (陈本美) 新加坡国立大学 Zongli Lin(林宗利) 美国弗吉尼亚大学 Yacov Shamash (雅科夫 司马诩) 美国纽约州立大学石溪分校

此书献给我们的家人 前两位作者谨以这中译版献给他们的母校 厦门大学

目录 绪论 1 导论和预览 1.1 背景 1.2 各章预览 1.3 符号和术语 2 数学基础 2.1 导论 2.2 矢量空间和子空间 2.3 矩阵代数和特性 2.3.1 行列式、逆和求导 2.3.2 秩、特征值和约当型 2.3.3 特殊矩阵 2.3.4 奇异值分解 2.4 范数 2.4.1 矢量范数 2.4.2矩阵范数 2.4.3 连续时间信号范数 2.4.4 离散时间信号范数 2.4.5 连续时间系统范数 2.4.6 离散时间系统范数 3 线性系统理论复习 3.1 导论 3.2 动态响应 3.3 系统稳定性 3.4 可控性和可观性 3.5 系统可逆性 3.6 常态秩、有限零点和无限零点3.7 几何子空间 3.8 状态反馈和输出馈入的特性3.9 练习

4 无驱动和/或无检测系统的分解 4.1 导论 4.2 自治系统 4.3 无驱动系统 4.4 无检测系统 4.5 练习 5. 正则系统的分解 5.1 导论 5.2 SISO系统 5.3 严格正则系统 5.4 非严格正则系统 5.5 结构化分解特性的证明 5.6 系统矩阵的Kronecker型和Smith型5.7 离散时间系统 5.8 练习 6 奇异系统的分解 6.1 导论 6.2 SISO奇异系统 6.3 MIMO描述系统 6.4 定理6.3.1的证明和性质 6.5 离散时间奇异系统 6.6 练习 7 双线性变换的结构化映射 7.1 导论 7.2 连续到离散时间系统的映射 7.3 离散时间到连续时间系统的映射7.4 定理7.2.1的证明 7.5 练习 8 系统因子分解 8.1 导论 8.2 严格正则系统 8.3 非严格正则系统 8.4 离散时间系统 8.5 练习 9 通过选择传感器/执行器实现的结构配置9.1 导论 9.2 同时有限和无限零点结构配置 9.2.1 SISO系统 9.2.2 MIMO系统

倒立摆仿真报告

计算机控制系统课题报告 1.倒立摆基本背景: 倒立摆,Inverted Pendulum ,是典型的多变量、高阶次,非线性、强耦合、自然不稳定系统。倒立摆系统的稳定控制是控制理论中的典型问题,在倒立摆的控制过程中能有效反映控制理论中的许多关键问题,如非线性问题、鲁棒性问题、随动问题、镇定、跟踪问题等。因此倒立摆系统作为控制理论教学与科研中典型的物理模型,常被用来检验新的控制理论和算法的正确性及其在实际应用中的有效性。从 20 世纪 60 年代开始,各国的专家学者对倒立摆系统进行了不懈的研究和探索。 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自由连接(即无电动机或其他驱动设备)。由中国的大连理工大学李洪兴教授领导的“模糊系统与模糊信息研究中心”暨复杂系统智能控制实验室采用变论域自适应模糊控制成功地实现了四级倒立摆。因此,中国是世界上第一个成功完成四级倒立摆实验的国家。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 2.倒立摆模型分析 倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力F平行

于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 我们的分析对象是一阶倒立摆。很多国内实验都说可以合理的假设空气阻力为0,但查阅了更多的文献和真正仿真做出模型并在网络上开源的一些实验后,我认为这是不正确的。空气阻力或许可以忽略,但是对于运动过程中的所有阻碍都忽略那就太为理想。也就是说,我们需要自己假设一个阻碍模型,即收到的所有阻力等效成一个包含速度,位姿等的广义函数。当然,我们的时间精力和所学知识都还有限,却也不想太过简单。我选取了一个阻力和速度成正比的函数关系,来在以后的建模和仿真过程中来模拟倒立摆所受的一切阻碍。 3.1 倒立摆物理建模:基于经典牛顿力学 受力分析如上图。 那我们在本实验中定义如下变量: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度(0.3 m)

2021年倒立摆实验报告(根轨迹)

*欧阳光明*创编 2021.03.07

I 摆杆惯量0.0034 kg*m*m g 重力加速度9.8 kg.m/s (2)直线一级倒立摆根轨迹校正控制原理 基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置。 常见的校正器有超前校正、滞后校正以及超前滞后校正等。 2. 实验方法 (1)直线倒立摆建模、仿真与分析 利用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型;依照根轨迹设计的步骤得到系统的控制器,利用MA TLAB Simulink中的工具进行仿真分析。 (3)直线一级倒立摆根轨迹校正控制 利用MATLAB Simulink来实现根轨迹校正控制参数设定和仿真,并利用该参数来设定只限一级倒立摆的根轨迹校正控制器值,分析和仿真倒立摆的运行情况。 3. 实验装置 直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。 图1 一级倒立摆实验硬件结构图 对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。计算机从I/O设备中实时读取数据,确定控制策略(实际上是电

线性系统理论历年考题

说明: 姚老师是从07还是08年教这门课的,之前的考题有多少参考价值不敢保证,也只能供大家参考了,重点的复习还是以课件为主,把平时讲的课件内容复习好了,考试不会有问题(来自上届的经验)。 祝大家考试顺利! (这个文档内部交流用,并感谢董俊青和兰天同学,若有不足请大家见谅。) 2008级综合大题 []4001021100101 1 2x x u y x ???? ????=-+????????-????= 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定; 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵2 14161 24,() 2.0 0M B AB A B rank M ?? ?? ??==-=???????? 系统不完全可控,不能任意配置极点。

2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1 1 401200 1P -?? ??=-?????? ,求得120331 1066 00 1P ?? ????? ?=-????????? ? 进行变换[] 1 1 20831112,0,2 2 26000 1 A PAP B PB c cP --? ? ?? ???? ????=-====???? ??????????? ? 所以系统不可简约实现为[]08112022x x u y x ?????=+???????????=? 3. 1 2(1)(1)2(1)()()(4)(2)(1) (4)(2) s s s G s c sI A B s s s s s --+-=-= = -++-+ 4. det()(4)(2)(1)sI A s s s -=-++, 系统有一极点4,位于复平面的右部,故不是渐近稳定。 1 2(1)()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11 228,12T k k k k A Bk k +???? =+=??? ??? ?? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程* 2 ()(2)(3)56f s s s s s =++=++

自动化实验-倒立摆实验-附仿真结果图复习课程

一、直线一级倒立摆的仿真 (一)直线一级倒立摆的数学建模 对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。下面我们采用其中的牛顿-欧拉方法和拉格朗日方法分别建立直线型一级倒立摆系统的数学模型。 图2 直线一级倒立摆模型 φ摆杆与垂直向上方向的夹角; θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。 图3 小车及摆杆受力分析 分析小车水平方向所受的合力,可以得到以下方程: 由摆杆水平方向的受力进行分析可以得到下面等式:

把这个等式代入式1中,就得到系统的第一个运动方程: 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程: 力矩平衡方程如下: 注意:此方程中力矩的方向,由于θ=π+φ,cosφ= ?cosθ,sinφ= ?sinθ,故等式前面有负号。 合并这两个方程,约去P 和N,得到第二个运动方程: 设θ=π+φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ<<1,则可以进行近似处理: 。 用u 来代表被控对象的输入力F,线性化后两个运动方程如下: 对式9进行拉普拉斯变换,得到 注意:推导传递函数时假设初始条件为0。 由于输出为角度φ,求解方程组的第一个方程,可以得到:

或 如果令v = x,则有: 把上式代入方程组的第二个方程,得到: 整理后得到传递函数: 其中 设系统状态空间方程为: 方程组对解代数方程,得到解如下: 整理后得到系统状态空间方程:

一级倒立摆控制系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 二、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 三、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图 一阶倒立摆控制系统示意图如图所示: 分析工作原理,可以得出一阶倒立摆系统原理方框图:

一阶倒立摆控制系统动态结构图 下面的工作是根据结构框图,分析和解决各个环节的传递函数! 1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 sin cos ..........(1)y x J F l F l θθθ=- 2 22 2(sin ) (2) (cos ) (3) x y d F m x l d t d F mg m l d t θθ=+=-

倒立摆实验报告根轨迹

专业实验报告

(2)直线一级倒立摆根轨迹校正控制原理 基于根轨迹法校正的基本思想是:假设系统的动态性能指标可由靠近虚轴的一对共轭闭环主导极点来表征,因此,可把对系统提出的时域性能指标的要求转化为一对期望闭环主导极点。确定这对闭环主导极点的位置后,首先根据绘制根轨迹的相角条件判断一下它们是否位于校正前系统的根轨迹上。如果这对闭环主导极点正好落在校正前系统的根轨迹上,则无需校正,只需调整系统的根轨迹增益即可;否则,可在系统中串联一个超前校正装置。 常见的校正器有超前校正、滞后校正以及超前滞后校正等。 2. 实验方法 (1)直线倒立摆建模、仿真与分析 利用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型;依照根轨迹设计的步骤得到系统的控制器,利用MATLAB Simulink中的工具进行仿真分析。 (3)直线一级倒立摆根轨迹校正控制 利用MATLAB Simulink来实现根轨迹校正控制参数设定和仿真,并利用该参数来设定只限一级倒立摆的根轨迹校正控制器值,分析和仿真倒立摆的运行情况。 3. 实验装置 直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。 图1 一级倒立摆实验硬件结构图 对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。计算机从I/O设备中实时读取数据,确定控制策略(实际上是电机的输出力矩),并发送给I/O设备,I/O设备产生相应的控制量,交与伺服驱动器处理,然后使电机转动,带动小车运动,保持摆杆平衡。

一阶倒立摆控制系统设计

课程设计说明书 课程名称:控制系统课程设计设计题目:一阶倒立摆控制器设计院系:信息与电气工程学院班级: 设计者: 学号: 指导教师: 设计时间:2013年2月25日到2013年3月8号

课程设计(论文)任务书 指导教师签字:系(教研室)主任签字: 2013年3月5日

目录 一、建立一阶倒立摆数学模型 (4) 1. 一阶倒立摆的微分方程模型 (4) 2. 一阶倒立摆的传递函数模型 (6) 3. 一阶倒立摆的状态空间模型 (7) 二、一阶倒立摆matlab仿真 (9) 三、倒立摆系统的PID控制算法设计 (13) 四、倒立摆系统的最优控制算法设计 (23) 五、总结............................................................................................... 错误!未定义书签。 六、参考文献 (29)

一、建立一阶倒立摆数学模型 首先建立一阶倒立摆的物理模型。在忽略空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。 系统内部各相关参数定义如下: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)1.一阶倒立摆的微分方程模型 对一阶倒立摆系统中的小车和摆杆进行受力分析,其中,N和 P为小车与摆杆相互作用力的水平和垂直方向的分量。

图1-2 小车及摆杆受力图 分析小车水平方向所受的合力,可以得到以下方程: (1-1)由摆杆水平方向的受力进行分析可以得到下面等式: (1-2)即: (1-3) 把这个等式代入式(1-1)中,就得到系统的第一个运动方程: (1-4) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程: (1-5) 即: (1-6)力矩平衡方程如下: (1-7) 由于所以等式前面有负号。

相关主题
文本预览
相关文档 最新文档