第十一讲-方程的迭代解法与函数的迭代、混沌与分形实验
- 格式:pdf
- 大小:95.94 KB
- 文档页数:1
函数方程与迭代1.迭代法先看一个有趣的问题:李政道博士1979年4月到中国科技大学,给少年班的同学面试这样一道题: 五只猴子,分一堆桃子,怎么也平分不了,于是大家同意先去睡觉,明天再说.夜里一只猴子偷偷起来,把一个桃子吃掉后正好可以分成5份,收藏起自己的一份后又去睡觉了.第二只猴子起来后,像第一只猴子一样,先吃掉一个,剩下的又刚好分成5份,也把自己的一份收藏起来睡觉去了.第三、第四、第五只猴子也都是这样:先吃掉一个,剩下的刚好分成5份.问这堆桃子最少是多少个? 设桃子的总数为x 个.第i 只猴子吃掉一个并拿走一份后,剩下的桃子数目为i x 个,则14(1)5i i x x -=-, 1,2,3,4,5i =.且0x x =.设44()(1)(4)455f x x x =-=+-.于是:14()(4)45x f x x ==+-, 224(())()(4)45x f f x x ==+-,334((()))()(4)45x f f f x x ==+-, 444(((())))()(4)45x f f f f x x ==+-,554((((()))))()(4)45x f f f f f x x ==+-,由于剩下的桃子数都是整数,∴55|4x +.∴最小的x 为:5543121x =-=. 上面的解法,我们利用了一个函数自身复合多次,这就叫迭代.一般地,设:f D D →是一个函数,对x D ∀∈,记(0)()f x x =,(1)()()f x f x =,(2)()(())f x f f x =,…,(1)()()(())n n f x f f x +=,n N *∈,则称函数()()n f x 为()f x 的n 次迭代,并称n 为()()n f x 的迭代指数.反函数记为()()n f x -.一些简单函数的n 次迭代如下:(1)若()f x x c =+,则()()n f x x nc =+; (2)若()f x ax =,则()()n n f x a x =;(3)若()a f x x =,则()()n n a f x x =; (4)若()1x f x ax =+,则()()1n x f x nax =+; (5)若()f x ax b =+(1a ≠),则()1()1nn na f x a xb a -=+-; ()()n f x 的一般解法是先猜后证法:先迭代几次,观察规律并猜测表达式,证明时常用数学归纳法.1.求迭代后的函数值例1 自然数k 的各位数字和的平方记为1()f k ,且11()[()]n n f k f f k -=,求(11)n f (n N *∈)的值域. 解:由条件可知: Λ;169)652()256()11(;256)961()169()11(;169)94()49()11(;49)61()16()11(;164)4()11(;4)11()11(21621521421321221=++===++===+===+======+=f f f f f f f f f f f所以(11)n f (n N *∈)的值域为{4,16,49,169,256}。
迭代·混沌·分形柴文斌(四川省遂宁中学校629000)一、课例背景在20世纪下半叶,计算机的“魔杖”不断制造出新的数学分支,它最拿手的迭代计算引出了“混沌学”,接着又导致了分形几何的产生. 分形的思想和方法在模式识别,自然图象的模拟,信息讯号的处理,以及金融模型,艺术的制作等领域都取得了极大的成功.二、教学目标①本课例按《新课标》的要求,通过分形为载体,引起学生深厚的兴趣,在探究过程中,浅介数学新思想、新发展,同时让学生发现数学美,激发他们勇敢地追求美,主动地创造美,从而陶冶他们的情操,培养他们创新的精神.②总结平常练习过的从迭代、分形为背景数学试题,让他们用联系、发展的眼光,体会“背景深刻,方法独到”高考压轴题设计意图,明白“基础扎实,能力到位”明确要求.三、教学重点①应用计算机让学生感受分形图之美妙及形成数学原理.②分析分形为背景数学试题,形成高观点下审视数学问题.四、教学难点①迭代、混沌、分形定义度的把握.②Julia集、Mandelbrot集及其特征.五、教学过程(一)美丽的分形图形运用多媒体展放《孔雀开屏》等11幅分形艺术作品.师:这些美丽图形自然而优美,纷繁而有序,放射出诱人的色彩,在绚丽的色彩变化背后有几分神秘,似乎没有人会对这些图形无动于衷,你们相信,这些美妙的图形是运用数学知识,通过计算机构造出来的吗?是如何构造的呢?我们还得从函数迭代说起!(二)函数的迭代问题1:计算:①x n n sin lim ∞→ ②=∞→x n n cos lim 问题2:211n n x x +=-11=x轨道:1,0,-1,0,-1,……5.02=x轨道:0.5,―0.75,―0.4375,―0.80859,…―1,0,―1,0,-1问题3:①有没有这样一个初态把它代入211-+=n n x x ,结果不变吗?· ·A B251- 251+ ②618.11=x 写出系统轨道③619.11=x 写出系统轨道问题4:二次函数2)(z z f =进行迭代 ①i z 211=,写出系统轨道 ②i z +=11,写出系统轨道问题5:2)(z z f =且1||0<z求证:1|)(|0<z f证明:i y x z 000+=且1||0<z|2||)(|0020200i y x y x z F +-=20022020)2()(y x y x +-=22020)(y x +=20||z = 因此,在区域1||00<<z 中,1|||)(|00<<z z F ,这就意味着2)(z z F =的每一次迭代,即21n n z z =+都会使z 向靠近0的方向移动,我们说z 向0收敛,或是z 的吸引号,若1||0>z 近似于上面的结论,会发现,经过迭代z 会趋向于∞.若1||0=z ,很明显,z 是平面上单位圆上的点. 于是我们发现复平面上可分为两个区域,一个区域便落在其中的点向0吸引与逼近,而另一个区域便落在其中的点∞逃逸,它们分界线便是1)(0=z F 的单位圆,就是Julia 集.(三)混沌①C z z f +=2)(,0≠C 时,其吸引子不再是0,而是一个区域被吸进去的点会遍整个区域,我们称这个区域为混沌区. 同时,分界线不再是1|)(|0=z F 的单位圆,它是一个不规则不光滑的分界线,就像一个孤岛的海岸线一样.②《三五历经》中说:“天地混沌如鸡子,盘古生其中,万人千岁,天地开辟,阳清为天,阴浊为地,盘古在其中,一日九变;神于天,圣于地. 天月高一丈,地日厚一丈,盘古月长一丈,如此万人千岁,天数极高,地数极深,盘古极长.”③宇宙起源的问题.(四)分形不使系统发散的那么初态的集合组成“内集”,其他的“初态”组成“外集”,内集与外集的边界叫做Julia 集.问题6:运用多媒体展示:i z z f 12.0765.0)(2+-=(一个完全不连通)i z z f +=2)((连通) 特点:处处不光滑,自相似性、精细结构②Mandelbrot 集我们看到,当C 在复平面变化时它的Julia 集也在复平面内变化,而且这些集合可以分成连通与不连通两类. 如果参数C 所对应的Julia 集是连通的,我们就将这个C 染成黑色,否则染上白色,这样得到的黑色集就叫做以参数C 为元素的Mandelbrot 集.问题7:运用多媒体展示Mandelbrot 集,可以看出它有非常复杂的结构,这一结构的明显特征是一个主要心形图与一系列圆盘形的“芽苞”连接在一起,并且,每一个芽苞又被一细节更细小的“芽苞”所环绕,以至无穷. 同时,这些精细的芽苞分支都带有与整体曼德布罗特集相似的微型拷贝.(五)试题研究问题8:将一个单位正三角形一分为四,且挖去中间一个小正三角形,然后再上面三个小三角形中重复上面的步骤. 设初始三角形的面积为1. C n 、S n 分别表示第n 次操作各图形的周长和面积.①求C n 、S n 的表达式.②n 趋于无穷时,C n 、S n 趋于什么?问题9:记P 0表示面积为1的等边三角形,P k+1是对P k 进行如下操作得到:将P k 的每条边三等份,以每边中间部分的线段为边,向外作等边三角形,再将它中间部分的线段去掉,记S n 为曲线P n 所围成图形的面积.①求数列S n 的通项公式.②n n S ∞→lim 问题10:一种树形图为:第一层是一条与水平线垂直的线段长度为1,第二层与第一层线段的前端作两条与线段都成135°角的线段,长度为其一半,第三层按第二层的方法滚动,在第二层线段前端生成两条线段,重复前面的作法,作图到第n 层,称水平线到第n 层最高点的距离为到树形图的第n 层高度,试求:①树形图的第三层及第四层总高度②树形图的第n 层总高度h n③n n h ∞→lim问题11:⎪⎩⎪⎨⎧-+)1(221)(x x x f 121210≤<≤≤x x 定义 *∈=N n x f f f x f n ))(()(①求)152(2007f ②]}1,0[,)(|{15∈==x x x f x B求证:B 中至少含有9个元素问题12:如右图是某计算机的程序框图.(I)求打印出来的x 的值;(II)求打印出来的z 的值;(III)若将程序框图中的语句(9)“n=2007?”改为“94≥z ?”,则张三同学说这是死循环(即一直无限算下去而没有结果),而李四说不会是死循环,你认为哪个同学说的正确?并说出你的理由.问题13:用牛顿迭代法求根.17世纪,牛顿创立了一种依靠简单计算求解方程根的方法.假设你知道某一方程0)(=x f 的近似解为0x ,此0x 接近于你还不知道的真正解x ,从而可以计算出相应的0)(=x f 及其导数0)(0=x f 的值. 由于0x 接近于x ,所以导数)(0x f '可近似写成00)()(x x x f x f --. 又因为0)(=x f 所以此导数为:000)()(x x x f x f --='] 于是有 )()(000x f x f x x '-=-则修正一次后的近似解为)()(001x f x f x x '-= 重复这个过程得到序列数n x ,它会从极快的速度收敛于此方程的真正解.请你用上述方法 81)(3-=x x f 6.00=x 时①求2x ,3x ,4x . ②100001|21|<-n x 时,n 的范围. 问题14:用多媒体展示基于牛顿迭代法的01=-n z 迭代图形.问题15:(角谷猜想) 任给一个自然数,若它是偶数则将它除以2;若它是奇数,则将它乘3再加1,反复这样运算,经有限步之后其结果必为1. 问题16:分形几何上物理学是怎样?六、课例设计反思:1.数学≠数学题. 数学教育,我想不仅要让学生认识到数学是一门科学,数学是工具,数学是技术,而且应当让他们认识到:作为人类精神、智慧与理性的最高代表之一,数学不仅是文化的重要组成部分,还在文化发展中占据着举足轻重的地位,数学是美的,数学是有意思的.2.Shirley(1986)提出,数学分为形式和非形式,应用和纯粹的,我们平常看到多数中小学讲授的数学知识是形式纯数学,这对学生形成完善的数学的文化观有缺陷,新课标模块设计也充分考虑到这一缺陷,本课例对非形式化教学,研究性学习作些探讨.。
微分方程中的混沌理论研究混沌理论是20世纪70年代后期发展起来的重要学科,它主要研究非线性系统中的混沌现象。
而微分方程作为数学中一门重要的分支,也渗透了混沌理论的探索与研究。
本文将着重探讨微分方程中的混沌理论研究。
一、混沌现象的起源和定义混沌现象最早可以追溯到1800年代的天体力学领域。
之后,其他领域也发现了类似的混沌现象,比如流体力学、电路分析和生物学等。
混沌现象的定义可以简单地理解为对初始条件的微小扰动会引发系统近乎无法预测的行为。
混沌系统具备无序性、不可预测性和敏感依赖于初始条件等特征。
二、微分方程中的混沌现象微分方程是研究变化率和求解变化率的数学工具。
在微分方程中,一阶微分方程、二阶微分方程以及其他高阶微分方程的研究中,混沌现象被发现并引起了学者们的浓厚兴趣。
例如,一个简单的非线性微分方程可以描述一个摆的运动情况。
当摆的角度小于某个阈值时,系统表现为有序的周期运动;而当摆的角度超出这个阈值时,系统将表现出混沌行为,摆动的轨迹变得无法预测和重复。
三、混沌理论在微分方程中的应用混沌理论在微分方程中的应用十分广泛,涵盖了许多领域,比如机械振动、电路理论、流体力学、生物系统和经济学等。
在机械振动方面,混沌理论可以用于研究非线性振动系统的运动规律。
通过对非线性微分方程进行建模和仿真,可以揭示系统运动的混沌行为,进而对系统进行优化和控制。
在电路理论领域,混沌电路的设计和分析是一个重要研究方向。
通过巧妙构造非线性电路模型,可以实现具有混沌行为的电路系统。
这种电路系统对于信息加密等应用有着重要的作用。
流体力学是混沌理论应用最为广泛的领域之一。
在流体力学中,混沌现象的研究可以帮助解释流体运动的复杂性,并揭示其中的规律性。
例如,通过对湍流流动的混沌特性进行研究,可以改善天然气输送管道和空气动力学领域中的气流控制等问题。
此外,混沌理论还可以应用于生物系统和经济学等领域。
在生物系统中,混沌现象的研究有助于理解生命的底层机制,并促进对疾病等问题的诊断和治疗。
试验十二 分形、混沌——迭代一、试验目的:1、Koch 曲线、Sierpinski 三角形、Cantor 集的计算机实现2、掌握用迭代、递归生成分形3、用Matlab 观察分岔与混沌现象二、分形相关程序:1、从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。
算法分析:考虑由直线段(2个点)产生第一个图形(5个点)的过程。
图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P 。
显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P 点以2P 点为轴心,逆时针旋转600而得。
旋转由正交矩阵 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=)3cos()3sin()3sin()3cos(ππππA 实现。
算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。
结点的坐标数组形成一个25⨯矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。
矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。
进一步考虑Koch 曲线形成过程中结点数目的变化规律。
设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。
实验程序及注释:p=[0 0;10 0]; %P 为初始两个点的坐标,第一列为x 坐标,第二列为y 坐标 n=2; %n 为结点数A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵for k=1:4d=diff(p)/3; %diff 计算相邻两个点的坐标之差,得到相邻两点确定的向量%则d 就计算出每个向量长度的三分之一,与题中将线段三等分对应m=4*n-3; %迭代公式q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k 位置上的点的坐标 n=m; %迭代后新的结点数目endplot(p(:,1),p(:,2)) %绘出每相邻两个点的连线axis([0 10 0 10])实验数据记录:由上面的程序,可得到如下的Koch 分形曲线:2、由四边形的四个初始点出发,对于四边形的每条边,生成元如下:可得到火焰般的图形。
0,1称为(f、迭代法函数的迭代是数学研究中的一个非常重要的思想工具,哪怕是对一个相当简单的函数进行迭代,都可以产生异常复杂的行为,并由此而衍生了一些崭新的学科分支,如分.同时,迭代在各种数值计算算法以及其它学科领域的诸多算法中处于核心的本实验的基本理论是分形几何学程序运行如下:练习2:利用迭代公式1(),0,1,...()n n g x x x n g x +=-=' 得到()^32g x x =-的迭代序列,其中01x =,10n =,程序运行如下:练习3:对给定的矩阵M ,数组f 和初始向量0x ,由迭代公式1n n x Mx f +=+得到的迭代序列如下:练习4:利用迭代公式11()x L D A X D b --=-+将方程组⎪⎩⎪⎨⎧=++=++11111111.......................................b x a x a b x a x a n nn n n n 即Ax b =改成多种等价形式x Mx f =+做迭代,观察其收敛状况。
给定(){}1,2,2,(1,1,1),(2,2,1)A =-与(){}2,1,1,(1,1,1),(1,1,2)A =--,运行结果如下:练习5:同练习4,给定(){}1,2,2,(1,1,1),(2,2,1)A =-与(){}2,1,1,(1,1,1),(1,1,2)A =--,利用迭代公式111()()x I L Ux I L D b ---=-+-对方程组Ax b =做迭代。
程序运行如下:实验结果和结果分析:对于书上给出的例题程序,要实际上机亲自操作一次,从而了解不同命令的不同作用,对于相似的命令要区分明白他们的不同之处。
这一章小的命令比较多,也比较杂,需要分门别类区分开,并且分别运行一下。
书后的练习题离不开前面的例题,要在掌握好例题的情况下,多练习一些习题,加深记忆。
Mathematica 在迭代法解方程组非常方。
实验题目:用迭代法求解方程及线性方程组。
实验问题:函数的迭代是数学研究中的一个非常重要的思想工具。
哪怕是对一个相当简单的函数进行迭代,都可以产生异常复杂的行为,并由此而衍生了一些崭新的学科分支,如分形和混沌。
同时,迭代在各种数值计算算法以及其他学科领域的诸多算法中处于核心的地位。
首先,我们来探讨利用迭代求解方程的近似解。
实验目的:1. 学会基本Mathematica 语句并用其解决实际问题。
2. 了解Mathematica 系统 。
3. 用Mathematica 解决在求方程解的迭代过程。
1.方程求解给定实数域上光滑的实值函数f(x)以及初值0x 定义数列,,1,0),(1 ==+n x f x n n (1) ,,1,0, =n x n 称为f (x )的一个迭代序列。
给定迭代函数f(x)以及一个初值0x 利用(1)迭代得到数列,,1,0, =n x n 如果数列n x 收敛于一个*x ,则有)(**x f x = (2) 即*x 是方程x=f(x)的解。
由此启发我们用如下的方法球方程g(x)=0的近似解。
将方程g(x)=0改写为等价的方程x=f(x), (3) 然后选取一初值利用(1)做迭代。
迭代数列n x 收敛的极限就是方程g(x)=0的解。
用上述方程求方程的根的一个首要问题是迭代是否收敛?经过试验我们知道,使得迭代序列收敛并尽快收敛到方程g(x)=0的某一解的条件是迭代函数f(x)在解的附近的导数的绝对值近两小。
这启发我们将迭代方程修改成x x f x h x )1()()(λλ-+== (4) 我们需要选取λ使得01)('|)('|=-+=λλx f x h得)('11x f -=λ 于是1)(')()(---=x f xx f x x h特别地,如果f(x)=g(x)+x ,则我们得到迭代公式.,1,0,)(')(1 =-=+n x x n n x g x g n n (5) 2.线性方程组的迭代求解给定一个n 元线性方程组⎪⎩⎪⎨⎧=++=++n n nn nn n n b x a x a b x a x a 111111 (6)或写成距阵的形式Ax=b, (7)其中)(ij a A =是n 阶方程,T n x x x ),,(1 = 及T n b b b ),,(1 =均为n 维列向量。
方程的迭代解法与函数的迭代、混沌与分形实验
一、编写程序,对不同的λ进行迭代)1(1n n n x x x −=+λ, 并用图形加以显示(收敛?发散?混沌?) 并特别讨论如下情况迭代的结果
4
546.3 46.34.3 32
26
.11=<<≤≤==λλλλλ)()
()
()()(
二、 编程生成如下雪花状分形图,具体步骤如下:将单位长度的一条线段三等分,将中间的一段去掉,代之以更小的等边三角形的两条边,如图(1),对每条边依次做下去,得到如图所示的的雪花状图形,如图(2)。
图(1) 图(2)
三、 炮弹发射视为斜抛运动,已知初速度为200m/s,问要击中水平距离300m,垂直距离160m 的目标,当忽略空气阻力时,发射角应为多大。
如果只考虑水平方向的阻力时,且阻力与水平方向的速度成正比,比例系数为0.1,发射角又应该为多大?。