当前位置:文档之家› 激光测距论文讲解

激光测距论文讲解

激光测距论文讲解
激光测距论文讲解

激光测距及在军事上的应用

摘要

激光技术这一高新技术,经过半个世纪的发展,从机理原理,实验手段到制造工艺都已逐步成熟,且先进的激光器不断研制成功,并凭借其高亮度、方向性强、单色性好、相干性好的显著特点,在工业、农业、医疗、军事等领域的应用已经是大显神威。而激光武器经过不断地开发和研究,目前已有了重大的进展:低功率激光武器已开始装备部队,高功率激光武器则在技术上已基本成熟,将在未来现代化战争或局部战争中发挥举足轻重的作用。

本文简要介绍了脉冲激光测距原理及常见的激光测距仪,并对它们在军事上的应用作了相应的介绍。

关键词:激光测距;激光测距仪;军事应用

一、引言

激光测距是激光在军事上应用最早和最成熟的技术。自1960 年第一台激光器--红宝石激光器发明以来,便有人开始进行激光测距的研究。和微波测距等其它方法相比,激光测距具有更好的方向性和更高的测距精度,测程远,抗干扰能力强,隐蔽性好,因而得到广泛的应用。激光测距的研究还对雷达技术的发展起了很大的促进作用,因而在国民经济和国防建设中具有重要意义。根据所发射激光状态的不同,激光测距分为激光脉冲测距和连续波激光测距,后者根据起止时刻标识的不同又分为相应激光测距和调频激光测距。本文将介绍脉冲测距的最新技术发展。

二、脉冲激光测距原理

脉冲激光测距是利用激光脉冲持续时间极短,能量在时间上相对集中,瞬时功率很大(一般可达兆瓦)的特点,在有合作目标的情况下,脉冲激光测距可以达到极远的测程;在进行几公里的近程测距时,如果精度要求不高,即使不使用合作目标,只是利用被测目标对脉冲激光的漫反射索取的反射信号,也可以进行测距。

图1 脉冲飞行时间激光测距系统

一个典型的脉冲飞行时间激光测距系统通常有以下五个部分组成:激光发射单元,一个或两个接收通道,时刻鉴别单元,时间间隔测量单元和处理控制单元。激光发射单元在t0 时刻发射一激光脉冲,其中一小部分功率直接进入接收通道1,经时刻鉴别单元产生起始(START)信号,开始时间间隔测量;其余功率从发射天线向目标发射出去,经距离R 到达目标后被反射;接收通道2 的光电探测器接收到返回脉冲,经放大后到达时刻鉴别单元,产生一终止(STOP)信号,终止时间间隔测量;时间间隔测量单元把所测得的结果t 输出到处理控制单元,最后得到距离R=ct/2。

[1]

三、激光测距在军事上的应用

3.1 激光测距光源

战术和战略用脉冲激光测距仪主要包括红宝石、Nd∶YAG、CO2、喇曼频移Nd∶YAG 和Er∶玻璃等脉冲激光测距仪。

3.3.1 红宝石脉冲激光测距仪

0.69μm 的红宝石脉冲激光测距仪是第一代军用激光测距仪,其结构简单,紧凑。因工作波长属近红外绿光,极易暴露目标,加上对人眼极不安全,目前除少数应用外已被淘汰。

3.1.2 Nd∶YAG 脉冲激光测距仪

Nd∶YAG 脉冲激光测距仪的主要优点是隐蔽性、电效率和脉冲重复工作频率大大优于红宝石激光测距仪,因而从60 年代后期开始广泛装备部队;主要缺点:①工作波长为1.06μm,相对说来较短,在大气中的衰减较大,不完全适合自然雾和战场烟幕等环境条件;② 1.06μm 波长被发射后经人眼聚焦进入视网膜,在很短的距离上若不加防护观察,可以使人眼永久致盲;③1.06μm 波长不与8~12μm 热成像系统兼容。而Nd∶YAG 脉冲激测距仪目前仍具有无法取代的独特优点。

3.1.3 CO2 脉冲激光测距仪

CO2 脉冲激光测距仪是70 年代末和80 年代中期主要针对1.06μm 的Nd∶YAG 激光测距仪的缺点发展起来的新一代人眼安全激光测距仪。其主要优点有:①大气穿透能力优于Nd∶YAG 激光波长,能在较低能见度和战场烟幕等大气条件下工作;②能与8~12μm 波段内的典型热成像系统兼容并可共用接收光学系统和探测器,能有效实现热成像仪能探测到的绝大多数目标;③能实现对人眼安全。主要缺点是:①10.6μm 的CO2 激光波长极易被水分子(H2O)吸收衰减,在大气中含水蒸汽密度大的睛天和潮湿条件下,限制了它的最大测距能力,特别是雨天和目

标被雪覆盖时,目标呈现多镜面对称反射,对CO2 激光波长测距不利;③10.6 μm 的CO2 激光波长对战术目标的反射系数低于1.54、1.06 和0.69μm 的激光波长。

3.1.4 喇曼频移Nd∶YAG 和Er∶玻璃脉冲激光测距仪

喇曼频移Nd∶YAG 和Er∶玻璃脉冲激光测距仪也和CO2 一样发展于70 年代末和80年代中期,主要优点是:①大气穿透能力高于1.06μm 的Nd∶YAG 激光波长而低于CO2 激光波长;②对目标的反射系数和在睛天、高温度条件下测距时,其性能高于CO2 激光波长并与Nd∶YAG 激光波长相当;③对人眼的安全性高于CO2 激光波长。缺点是由于1.54μm 波长属中红外波段,不能与8~12μm 的热成像系统兼容,加上转换效率低、脉冲能量小和重复工作频率低(喇曼频移Nd∶[3][2]

YAG 除外)等限制了它们的应用。

3.2 脉冲激光测距在军事上的应用

脉冲激光测距仪作为军用装备器材,发展于60 年代初。经过30 多年的开发、研制和装备,目前国外已完成了“手持式、脚架式、潜望式、坦克、装甲、水面舰载、潜艇潜望、高炮、机载、机场测云、导弹和火箭发射、人造卫星、航天器载”等约十三大类400 多个品种和型号,其中装备量最大的是以Nd∶YAG 为器件的固体脉冲激光测距仪,其次是喇曼频移Nd∶YAG 和Er∶玻璃以及CO2 脉冲激光测距仪。

3.2.1 轻型便携式脉冲激光测距仪

轻型便携式脉冲激光测距仪包括步兵和炮兵侦察用的手持式以及前沿侦察和前沿对空控制(FAC)双用途的激光测距仪—目标指示器。对上述用途的系统,要求机动灵活、重量轻、体积小、用电池组作电源、可靠性和维修性高以及单一产品的成本低等。主要技术性能:最大测程4~10km,测距精度±10m,重复频率为单次,束散角1~2mrad。值得关注的的是,由于上述激光测距仪及其系统常与其他友军密切配合作战且不带装甲部队大范围训练以及无合作目标、操作手不带防护目镜等,人眼安全极为重要。因此,这类脉冲激光测距仪已逐渐由装备

Nd∶YAG 激光测距仪改为喇曼频移Nd∶YAG 和Er∶玻璃1.54μm 的人眼安全激光测距仪。

在现代战争中,由以前单一的步兵、炮兵独立作战发展到有步兵、炮兵和海军陆战队组成的特种部队联合作战,武器系统也由单一的地炮、高炮逐渐采用多功能综合高技术。因此激光测距仪也由单一测距功能的便携式、手持式发展到激光测距、红外瞄准的昼夜观测仪以及激光测距、目标指示、红外瞄准的激光红外目标指示器等。

3.2.2 地面车载脉冲激光测距仪

地面车载脉冲激光测距仪包括坦克、步兵战车(IFV)、火控、对空防御、火炮或导弹制导火控以及目前发展的地面车载激光测距仪—目标指示器等。其主要技术性能:最大测程4~10km,测距精度±5~10m,目标分辨约20m,重复频率

0.1~1Hz,束散角0.4~1mrad。激光测距仪在坦克火控系统中的应用是提供弹道轨迹的超仰角修正信息和因逆风或目标移动引起的方位角校正信息以及距离信息。步兵战车主要是使用激光测距仪去测量目标是否在反坦克导弹的距离内,其次用于枪炮火控和对目标的分选。为了做到激光测距仪完全有效地对任何能探测到的目标测距以及通过火控系统全天候被动探测、识别和分选,这些系统还应包括:瞄准光学系统、电视摄像机和红外热成像仪(FLIR)等。这是目前非常迫切需要的但不可能通过任何单一功能和单一波长激光测距仪能完全满足的系统。据外刊报道,美国休斯公司采用喇曼频移Nd∶YAG 激光测距、电视摄像和红外成像组成的坦克、装甲车激光测距仪系统是目前最新型的设备。但是这种系统若采用

1.06μm 的Nd∶YAG 激光测距,尽管在测距仪上装上衰减滤光片,对合作目标测距训练时已基本达到人眼安全要求,而经论证后的坦克和步兵作战的操作人员及指挥、作战人员应采取人眼安全措施,或者采用人眼安全的1.54μm 激光波长测距,从根本上实现对人眼安全的要求。

3.2.3 对空火炮和导弹防御脉冲激光测距仪

对空防御的脉冲激光测距仪以及采用了自保护措施的步兵战车对空防御脉冲激光测距仪均应按火控系统和作战系统的要求工作,在距离和距离速率以内对空中高速机动目标提供稳定的跟踪信息和距离信息,以对抗武装直升机、隐身飞机和巡航导弹、反辐射导弹的威胁。这就要求激光测距仪提供比较高的数据率(高的激光脉冲速率)和相当高的距离精度,如最大测程为4~20km,测距精度为

2.5~5m,重复频率为6~20Hz,束散角为0.5~2.5mrad 等。然而,若其交战距离相当远(约达20km 以上),这么远的距离实际对抗出现在不模糊的大气条件下,仅要求激光测距仪的灵敏度比坦克测距仪稍高一些;若在某些高湿度季节或某些高温度气象区域内,由于很强的H2O 分子吸收,限制了长波长(如10.6μm 的CO2)脉冲激光测距仪最大测距能力的发挥,此时,应采用1.06μm 的Nd∶YAG 脉冲激光测距仪,或者采用喇曼频移Nd∶YAG 及Er∶玻璃(1.54μm)的脉冲激光测距。

3.2.4 机载脉冲激光测距仪

机载脉冲激光测距仪可以用来装备武装直升机的导弹指令制导和装备固定翼飞机,用于封锁支援的光电飞行器等目标以及拦截飞机和导弹的攻击。这些典型应用一般采用1.06μm的Nd∶YAG 激光测距仪并具有激光测距和目标指示的能力,或者采用1.54μm 波长的人眼安全喇曼频移Nd∶YAG 脉冲激光测距仪_目标指示器等,以保护机载系统完成作战任务或主动攻击空中的光电目标。机载脉冲

激光测距仪的主要技术性能:测程远(用于武装直升机为4~10km,用于固定翼飞机为10~20kM)、测距精度高(用于武装直升机为±5~10m,用于固定翼飞机为

±1~10m)、重复频率高(用于武装直升机为4Hz,用于固定翼飞机为5~20Hz)、束散角小(用于武装直升机为0.4~1mrad,用于固定翼飞机为0.1~0.5mrad),同时机载设备应体积小、重量轻并要与航空指示器共用。因此,激光器必须使用高效循环液体作冷却器,以适应高的运转速率要求,否则要采用气体或混合气体升压冷却。

3.2.5 舰载脉冲激光测距仪

舰载脉冲激光测距仪的发展在轻型便携式、车载和对空防御激光测距仪之后,它包括水面舰载和潜艇潜望两大类。水面舰载脉冲激光测距仪在技术性能指标方面与车载火控和对空防御激光测距仪相同,在环境使用方面要适应舰载海[4]

空、海面以及海上盐雾的荷刻要求,而在体积、重量、电效率、维护保养能力和成本等方面的要求又不苛刻。因此,目前大量用来装备常规火控和对空防御的海军舰只,如掩护(无声雷达)舰载飞机回收和与红外热成像、电视等组成跟踪系统,全天候监视和跟踪空中目标等独特的舰上应用正在出现,其应用前景相当广泛

[5]。

四、结束语

激光武器不但反应速度快,而且杀伤命中率特别高,几乎是100%,因为激光

武器以光束攻击目标,可以不考虑射击提前量,而且目标的机动性也不会影响激光器的性能。所以,激光武器的杀伤率就非常高,一旦锁住目标,就能将其摧毁或破坏。另一个重要优点是单发成本相当低,每发仅1000 ~ 3000 美元。因此,用激光武器来对付在全世界扩散的“ 廉价低空飞行器“ 大有好处。使用战区高空防御武器或其它昂贵的反导系统来对付近程火箭,其代价也太高。所以,发展激光防空武器就成了必然趋势。 [6]

参考文献

[1]李适民. 激光器件原理与设计[M]国防工业出版社 1998

[2]陈家璧,彭润玲. 激光原理及应用[M] 电子工业出版社 2008

[3]梅遂生,王戎瑞.光电子技术[M] 国防工业出版社 2008

[4]陈娅冰等. 激光武器新技术及应用[ J]. 激光与光电子学进展,

2003:12-16

[5]王乐.激光在现代军事中的应用[J].光机电信息. 2002,(6):23—24 [6]赵江,徐世录. 激光武器的现状与发展趋势[J] 2005:67-70

脉冲激光测距仪的设计-课程设计

目录 第一章绪论 (1) 1.1设计背景 (1) 第二章脉冲激光测距仪的工作原理 (2) 2.1测距仪的简要工作原理 (2) 第三章脉冲激光器的结构及工作过程 (3) 3.1激光脉冲测距仪光学原理结构 (3) 3.1.1测距仪的大致结构组成 (3) 3.2主要的工作过程 (4) 3.3主要部件分析: (4) 3.3.1激光器(一般采用激光二极管) (4) 3.3.2激光二极管的特性 (5) 3.3.3光电器件(采用雪崩光电二极管APD) (6) 第四章影响测距仪的各项因素 (7) 4.1光脉冲对测距仪的影响 (7) 4.2发散角对测距仪的影响 (8) 第五章测距仪的光电读数显示 (9) 5.1距离显示原理及过程 (9) 5.2测量精度分析 (10) 5.3总述 (11) 参考文献 (11)

第一章绪论 1.1设计背景 在当今这个科技发达的社会,激光测距的应用越来越普遍。在很多领域,如电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,军事,农业,林业,房地产,休闲、户外运动等都可以用到激光测距仪。 激光测距仪一般具有精确度和分辨率高、抗干扰能力强、体积小、重量轻等优点,因而应用领域广、行业需求众多,市场需求空间大。 当前激光测距仪的发展趋势是向测量更安全、测量精度高、系统能耗小、体积小型化方向发展。激光测距仪一般采用两种方法来测量距离:脉冲法和相位法。而其中脉冲激光测距的应用领域也是越来越宽广,比如,地形测量、战术前沿测距、导弹运行轨道跟踪以及人造卫星、地球到月亮距离的测量等。脉冲激光测距法是利用激光脉冲持续时间非常短,能量相对集中,瞬时功率很大(可达几兆瓦)的特点,在有合作目标的情况下,脉冲激光测距可以达到极远的测程;如果只是利用被测目标对脉冲激光的漫反射所取得的微弱反射信号,也是可以测距的。因而脉冲激光测距法应用较多。

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

激光的应用论文

摘要 激光是20世纪人类的重大科学发明之一,它的英文名称LASER的音译,是取自英文Light Amplification by Stimulated Emission of Radiation的各单词头一个字母组成的缩写词,意思是"通过受激发射光扩大"。,它对人类的社会生活产生了广泛而深刻的影响。激光技术在短短几十年内就推广应用到现代工业、农业、医学、通信、国防、和科学技术的各个方面与本身的点是分不开的。作为高科技的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生产和生活的许多方面得到了大量的应用,与激光相关的产业已经在全球形成了超过千亿美元的年产值。 关键词:激光重大科学激光技术高科技

LASER is the 20th century one of the great scientific human invention, its English name LASER transliteration, is taken from English Light Amplification by Stimulated Emission of Radiation every word of the first letters of the abbreviations, means "Light Amplification by Stimulated Emission of Radiation". , it to human social life produces an extensive and profound influence. Laser technology in a few decades is applied to the modern industry, agriculture, medicine, communications, national defense, and science and technology of various aspects of the point with itself is not divided. As a high-tech research, it not only widely used in science and technology research each frontier fields, and has been in the human production and many areas of life get a lot of application, and laser related industry has been formed in the global $billions more than annual output. Key words: laser great scientific laser technology high-tech

激光测距仪系统设计毕业设计论文

毕业设计(论文) 题目:激光测距仪系统设计(英文):System Design of a Laser Range Finder 院别:机电学院 专业:机械电子工程 姓名: 学号: 指导教师: 日期:

激光测距仪系统设计 摘要 本次激光测距仪系统设计采用的是相位式测距法,相位激光测距又称调幅连续波激光测距通常是基于对目标回波相位的探测,在诸如军事、航空、工业和体育等领域已经取得广泛的应用。相位激光测距仪的发展趋势是小型化、高可靠性、便于与其他仪器集成。 本文介绍了相位式激光测距仪的测距原理,提出了测距系统的具体设计方案。设计围绕接收和发射系统的性能开展,主要包括了锁相环、分频器、信号整形与放大电路、弱信号检测滤波与放大电路、混频器、鉴相测相器、信号处理与显示电路、单片机89C51 的软硬件设计和C语言软件编程等问题。利用Proteus软件对系统电路进行绘制以及利用CAD设计了系统机械的结构。 关键词:激光测距;相位;锁相环;混频器;分频器;单片机

System Design of a Laser Range Finder ABSTRACT The phase-ranging method is adopted in the system design of the laser range finder. It is also known as amplitude modulation of continuous wave laser ranging and is usually based on the detection of the phase of the target echo, has been widely used in many fields such as military, aerospace, industrial and sports etc. This thesis first introduces ranging principle of phase-shift laser range finder and proposes the concrete design scheme. Design is carried out around the performance of the receive and transmit systems, which includes the designs of phase-locked loop, frequency divider, signal shaping && amplifying circuit, weak signal detection filter && amplifier, frequency mixer, phase discriminator && detector, signal processing and display circuit and the hardware && software of the 89C51 microcontroller, and C language software programming. Proteus software is used to draw the circuits in the system drawing and CAD is applied to design the mechanical structure of the system. Keywords:Laser ranging; Phase; Phase locked loop; Frequency mixer; Frequency divider; Single chip microcomputer

一种手持式激光测距仪的电路设计

设计天地 Design Field 引言 该测距仪利用测量调制的激光信号相位差进行距离的测量。为了提高精度,采用高速时钟利用数字方式进行相位测量。使用单片机技术实现人机接口和数据运算。 该系统采用单片机加CPLD的设计方法, CPLD主要进行地址译码、鉴相、时钟分频等功能,单片机采用最常用的AT89C51,主要完成运算和人机接口。 设计思路 该测距仪利用反射方式进行测量。测距仪发射经过调制的激光信号到达目的地,经目的地反射后回到仪器,仪器计算出信号从发送到接收的时间差,再和激光信号的速度进行相乘。得到信号经过的总距离。 由此可得到测距基本公式为: 假设仪器发射角频率为ω的正弦波,经反射器反射回测试设备,被仪器的接收系统接收。收到的正弦信号在相位上和发射的正弦信号相比较,有一个相位差Φ。 发射信号为:u=Vmsin(ωt+φ0) 其中Vm为振幅,ω为角频率,t为时间,φ0为初相位。 经反射后回到设备的正弦信号不考虑其振幅变化u=Vmsin(ωt-ωt2D+φ0) 其中,ωt2D就是正弦波在二倍距离上传播所引起的相位变化: Φ=ωt2D 将其带入测距基本公式,可得到: 式中: c——电磁波在真空中的传播速度;f——电磁波的频率;n——大气的折射率; Φ——电磁波在被测距离上往返传播的相位差。因此,只要计算出信号从发送到接收的相位差就可以求出设备与被测点之间的距离。 该设备需要测量100m距离,我们选用150m作为设备的测程范围。并取混频时中频F中=10KHz。用 40MHz时钟对混频后10KHz信号进行采样。由下式 c=f×λ和 L=λ/2可得(40MHz/10KHz=4000): 令L1=150m, 可得λ=300m,c=3×108m/s,计算得F1=1.0×106Hz。L1最小=300/4000=0.075m。 令L2=7.5m,可得λ=15m,c=3×108m/s,计算得F2 =20×106Hz。L2最小=15/4000=0.00375m。 由以上计算可得,选择F1=1MHz,F2=20MHz可符一种手持式激光测距仪的电路设计 The Circuit Design of A Laser Range Finder 西安邮电学院继续教育学院 高敏西安深亚电子有限公司 王建锋 摘 要:本文介绍了一种以单片机和CPLD为核心的测距仪的电路设计。该电路用高速时钟进行数字鉴相、测量, 省去了模数转换,利用软硬件相结合的方式,提高了测量精度,缩短了测量时间。 关键词:激光测距;数字鉴相

材料工程新工艺新技术论文——激光切割的原理及应用

激光切割的原理及应用 【摘要】 激光加工技术是一种先进制造技术,而激光切割是激光加工应用领域的一部分,激光切割是当前世界上先进的切割工艺。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料 【关键词】激光切割的原理 激光切割的分类及特点 激光切割技术的应用 1.概述 激光切割是激光加工行业中最重要的一项应用技术。它占整个激光加工业的70%以上。激光切割与其他切割方法相比,最大区别是它具有高速、高精度及高适应性的特点。同时还具有割缝细、热影响区小、切割面质量好、切割时无噪声、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代一些需要采用复杂大型模具的冲切加工方法,能大大缩短生产周期和降低成本。 因此,目前激光切割已广泛地应用于汽车、机车车辆制造、航空、化工、轻工、电器与电子、石油和冶金等工业部门中。 2.激光切割的原理 在激光束能量作用下(氧助切割机制下,还要加上喷氧气与到达燃点的金属发生放热反应放出的热量),材料表面被迅速(ms 范围)加热到几千乃至上万度(℃)而熔化或汽化,随着汽化物逸出和熔融物体被辅助高压气体(氧气或氮气等惰性气体)吹走,切缝便产生了(原理图见图2)[1]。脉冲激光适用于金属材料, 连续激光适用于非金属材料, 后者是激光切割技术的重要应用领域。与计算机控制的自动设备结合, 激光束具有无限的仿形切割能力, 切割轨迹修改方便通过预先在计算机内设计, 进行众多复杂零件整张板排料, 可实现多零件同时切割 , 图 2激光切割的原理图 图 1 激光切割

激光测距论文讲解

激光测距及在军事上的应用 摘要 激光技术这一高新技术,经过半个世纪的发展,从机理原理,实验手段到制造工艺都已逐步成熟,且先进的激光器不断研制成功,并凭借其高亮度、方向性强、单色性好、相干性好的显著特点,在工业、农业、医疗、军事等领域的应用已经是大显神威。而激光武器经过不断地开发和研究,目前已有了重大的进展:低功率激光武器已开始装备部队,高功率激光武器则在技术上已基本成熟,将在未来现代化战争或局部战争中发挥举足轻重的作用。 本文简要介绍了脉冲激光测距原理及常见的激光测距仪,并对它们在军事上的应用作了相应的介绍。 关键词:激光测距;激光测距仪;军事应用 一、引言 激光测距是激光在军事上应用最早和最成熟的技术。自1960 年第一台激光器--红宝石激光器发明以来,便有人开始进行激光测距的研究。和微波测距等其它方法相比,激光测距具有更好的方向性和更高的测距精度,测程远,抗干扰能力强,隐蔽性好,因而得到广泛的应用。激光测距的研究还对雷达技术的发展起了很大的促进作用,因而在国民经济和国防建设中具有重要意义。根据所发射激光状态的不同,激光测距分为激光脉冲测距和连续波激光测距,后者根据起止时刻标识的不同又分为相应激光测距和调频激光测距。本文将介绍脉冲测距的最新技术发展。 二、脉冲激光测距原理 脉冲激光测距是利用激光脉冲持续时间极短,能量在时间上相对集中,瞬时功率很大(一般可达兆瓦)的特点,在有合作目标的情况下,脉冲激光测距可以达到极远的测程;在进行几公里的近程测距时,如果精度要求不高,即使不使用合作目标,只是利用被测目标对脉冲激光的漫反射索取的反射信号,也可以进行测距。 图1 脉冲飞行时间激光测距系统 一个典型的脉冲飞行时间激光测距系统通常有以下五个部分组成:激光发射单元,一个或两个接收通道,时刻鉴别单元,时间间隔测量单元和处理控制单元。激光发射单元在t0 时刻发射一激光脉冲,其中一小部分功率直接进入接收通道1,经时刻鉴别单元产生起始(START)信号,开始时间间隔测量;其余功率从发射天线向目标发射出去,经距离R 到达目标后被反射;接收通道2 的光电探测器接收到返回脉冲,经放大后到达时刻鉴别单元,产生一终止(STOP)信号,终止时间间隔测量;时间间隔测量单元把所测得的结果t 输出到处理控制单元,最后得到距离R=ct/2。

PD-I激光测距仪作业指导书

PD-I激光测距仪作业指导书 1.目的 规范PD-I激光测距仪的操作程序,保证正确使用仪器,保证检测工作的顺利进行和设备安全。 2.适用范围 PD-I高精度手持式激光测距仪不仅可以准确快捷的用来测量距离,计算面积和体积,而且更方便、安全、可靠,尤其在测量较远距离时。因此被广泛应用于以下领域:建筑工程、内外装修、舞台布置、房屋验收鉴定、测绘行业、林业、市政工程、交通事故现场测量等。 3.主要技术指标 3.1. 技术参数 外观及操作界面见下图

3.2. 性能特点 4.操作规程 4.1. 主要功能键 4.1.1 开关机 启动:短暂按启动键。在按动下个按键前,电池的显示会一直显示在显示屏上的。 关闭:按住关闭键直到仪器关闭。为了延长电池的使用寿命,在3分钟内未触摸任何键盘时,激光将会自动关闭。6分钟后仪器将会自动关闭。

4.1.2 清除键 使用清除键回到上一指令。在测量面积或体积时,可以用清除键清除单个测量结果,重新进行测量。 4.1.3 照明 按住照明键,显示屏上的照明会开启或关闭。在关闭仪器时,灯也会关闭。 4.1.4 测量基准边 在固定挡板打开时,仪器能自动识别测量基准边,并设置测量基准边以使得到正确的测量值。 测量基准边的标准设置是后沿。按测量基准边键,可将测量基准边一次性地设置为从这个边出发的测量。在测量后测量基准边会自动还原为以后沿为基准的设置。也可以将测量基准边常设为前沿,较长时间按测量基准边-键{A,8}来完成此设置。较长时间按测量基准边-键{A,8},将测量基准边返回到后沿。 4.2. 测量 4.2.1. 单个距离测量 按DIST键开启激光。再按此键进行测量。测量结果将显示在显示屏上。4.2.2. 最大/最小值测量 这个功能可以提供从某一点出发来进行的最大或最小值的测量。用于确定到墙角的距离(最大值)或垂直距离(最小值)等用法。 按住DIST键,直到听到峰鸣声。缓慢地在目标周围大范围的移动激光,例如:房间的一角。再次按DIST键,停止测量。这时所需的最大或最小测量值。如同最后一个测量值,将显示在显示屏上。 4.3. 功能 4.3.1. 加/减 依照下列的步骤,来进行测量值的加减: 测量+/-测量+/-测量+/-…=结果 按等于键来结束多个测量,其结果显示在显示屏的主显示上,测量中间值会逐一显示在额外显示栏内。按清除键可重新操作上一步骤。 用同样的方法可以进行面积和体积的加减。 4.3.2. 面积

基于TDC-GP21的激光测距设计

基于TDC-PG21的激光测距 【摘要】激光测距仪正朝着小型、低功耗和高精度方向发展,尝试研制一种高精度的便携式脉冲激光测距仪。针对脉冲式激光测距技术展开,重点研究短时间间隔的高精度测量这一关键技术。在对普通脉冲激光测距机的时间间隔测量方法分析后,提出了基于高精度时间间隔测量芯片TDC-GP21的便携式脉冲半导体激光测距仪系统方案。分析了TDC-GP21时间测量原理,设计了基于TDC-GP21的时间间隔测量单元,脉冲半导体激光器的驱动电源、光电探测器的驱动电路。针对有限距离的计数分辨率引起的误差,结合传统提高时间分辨率的方法,并对这一技术进行研究、发展和创新,使得测距系统的时间测量精度得到了很好的保证及提高,降低了硬件成本,简化了控制电路。 【关键词】激光测距,时间间隔测量,TDC—GP21,测距精度

Laser Ranging Based on TDC-GP21 [Abstract]The laser range finder is developing in small,low-power and high-precision direction.A portable laser range finder with high precision was researcher in this paper. We have studied the pulsed laser ranging technology, and the priority is the critical technology of the high-precision measurement in short intervals. In this paper,we have proposed the solutions of the portable diode laser rangefinder system based on the high-precision time interval measurement chip TDC-GP21, through a deep research of the principle of the pulsed laser rangefinder. studied the time measuring principle of the TDC-GP21, designed the time interval measurement unit that based on the TDC-GP21, designed the driven power of the pulse- semiconductor lasers and the driven circuit of the photoelectric detector. T o solve the error caused by the count resolution in a limited distance, we have combined traditional methods to improve the time resolution, and with the research, development and innovation of the technology, we have ensured and developed the time measurement accuracy of the ranging system, reduced the cost of the hardware and simplified the control circuit. [Key Words] Laser ranging, Time intervals , TDC-GP21, Ranging precision measurement

激光技术的发展及应用论文

激光技术的发展及应用 引言 随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。 “激光”一词是“LASER”的意译。LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。 激光不是普通的光,其特性是任何光都无法比拟的。激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。 一、激光发展史 激光技术的启蒙研究发展就完全印证了上面的话。最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在

频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光. 受激辐射提出后,陆续有科学家进行研究。如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。1940年法布里坎特首先注意到了负吸收现象。这一阶段发展并不迅速。到了第二次世界大战之后,1947年兰姆和雷瑟夫指出通过粒子数反转可以受激辐射,从此激光理论的研究开始突破。1952年帕塞尔及其合作者实现了粒子数反转,观察到了负吸收现象。第二年,韦伯产生了利用受激辐射诱发原子或分子,从而放大电磁波的思想,进而提出了微波辐射器的原理。1957年斯科威尔实现了固体顺磁微波激射器。既然微波可以激发受激辐射,那么红外乃至可见光等也应该可以。1958年汤斯和肖洛发表了著名的“红外与光学激射器”一文,1959年汤斯提出了建造红宝石激光器的建议。终于1960年由休斯航空公司的莱曼建造出第一部可用的激光装置。(我国第一台红宝石激光器于15个月后的1961年8月建成。)从此人类拥有了激光这一利器。 由于生产技术不成熟,激光技术产生之初并未有太多实际用途。后虽有切割,光束武器等应用,但又受制于制造成本高昂和气候条件复杂等。几十年来各方面工程师和专家一直努力改进创新激光技术及应用,随着激光技术的发展成熟,今天,它已经广泛地应用于生产生活的各方面。 二、激光的特点及激光器 激光的特点主要有四点,一是方向性好,激光束偏离轴线的发散角往往非常小,甚至可以用来测量地球到月球的精确距离(发射到38万公里外的月球形成的光斑直径不超过一公里);二是亮度高,激光功率在空间高度集中,亮度是普通太阳光的百万倍;三是单色性好,比如氪激光的波长范围只有4.7微埃,比原来个公认单色性最好的氪灯高出数个数量级;四是相干性好,激光器输出的光子频率、偏振、相位和传播方向都完全一致,这使得很多光学实验的精度大大提高。

SW-50A手持式激光测距仪操作规程

1. 目的 1.1 规范SW-50A手持式激光测距仪操作程序,正确使用仪器,保证检测工作顺利 进行。 2. 范围 2.1 本规程适用于SW-50A手持式激光测距仪的使用操作。 3. 职责 3.1 操作人员按照本操作规程使用仪器,并进行日常维护。 3.2 保管人员负责监督仪器操作是否符合规程,并对仪器进行定期维护保养。 4. 规程 4.1安装更换电池 打开仪器背面的电池门,按照极性指示正确放入电池,并关闭电池门。 仪器能使用1.5V AAA的碱性电池或标配3.7V 850mAh锂电池。 长时间不使用仪器时请取出电池以避免电池腐蚀仪器主机。 4.2启动仪器及功能设置 ●启动仪器和关闭仪器 关机状态下,按键,仪器启动,仪器进入待测模式。 开机状态下长按键3秒关闭仪器。150秒内未对仪器进行任何操作,仪器将 自动关闭。 ●单位设定 在长度待测模式下,长按键,进入测量单位调整状态,可重置当前测量单位, 该仪器提供了6种单位可供选择。 ●测量基准设置 短按基准键进行设计前端基准、中端基准和末端基准的相互转换,系统默认 为末端基准。 ●延时测量 长按基准键开启延时测量模式,延时时间为5秒,可按键进行时间调 整。按键开始倒计时,倒计时结束开始测量。 ●背光灯开启/关闭

本仪器背光灯为自动开和关。仪器在键入任一按键后,背光灯会持续打开15 秒,15秒后,仪器无任何操作将自动关闭背光灯以节省电源。 ●声音的开启/关闭 短按键,关闭语音功能,仪器提示“语音关”,再短按键,开启语音功能, 仪器提示“语音开”。 4.3自动校准功能 校准方法:在关机状态下,同时按住键和键,直到屏幕出现‘CAL’,下端 有闪烁的数字,进入自助校准模式。 可根据仪器的误差用键对这个数值进行调整。调整范围为-9~9mm 例如:实际距离为3.780m 若本机测量值为3.778m,比实际值小2mm,则可进入校准模式,用键将校准值 在现有基础上上调2mm。 若本机测量值为3.783m,比实际值大3mm,则可进入校准模式,用键将校准值 在现有基础上下调3mm。 调整完毕后,按键保存校准结果。 4.4测量 ●单次测量 待测模式下按键,仪器激光发射,锁定测量点。再按键进行单次距离数据的 测量,测量结果显在主显示区 ●连续测量 待测模式下长按键,进入连续测量状态,屏幕上辅助显示区会显示此次连续测 量过程中的最大测量值和最小测量值。 主显示区会显示当前测量值,短按键或者键退出连续测量模式。 ●面积测量 按键一次,屏幕会显示,长方形一条边闪烁。 根据提示完成下列操作: 按键进行第一条边的测量(长) 按键进行第二条边的测量(宽) 仪器会自动进行面积运算,结果显示在主显示区。辅助显示区显示长方形的长 和宽的测量值。 在测量过程中,还可以键入清除本次测量结果重新测量。

光电子课程设计_基于三角测量法的激光测距

光电子课程设计: 基于三角测量法的激光测距 摘要:本文先对激光测距的种类及原理进行介绍,其次分析不同种类的优缺点。确定制作测距仪器的制作方向。分析测量当中不同元器件存在的问题,寻找有效的解决方案,重点研究摄像头成像时存在误差的形成原因。根据研究得到的数据,对PC客户端的程序设计进行调整。利用程序尽可能减少由于硬件产生的误差。重点是设计出能确定光点的定位算法,通过对摄像头的定标、激光定位,达到实验数据与实际测量误差在10%以内。最后,提出对作品进行优化和系统功能提升计划 关键词:短距离、低成本、三角测量法 ABSTRACT: In this paper, the principle of laser ranging species and introduced first, followed by analysis of the advantages and disadvantages of different types. Production rangefinder to determine the direction of the production. Analytical measurements among different components of the problems, to find effective solutions to the causes errors in the presence of the camera focused on imaging. According to data obtained from studies on the client PC programming adjustments. The use of procedures to minimize errors due to hardware-generated. Focuses the light spot can be determined to design the location algorithm, through the camera calibration, laser positioning, to the experimental data and the actual measurement error is within 10%. Finally, the work in optimizing system functionality and Enhancement Programme KEY WORDS: Short distance、Low cost 、Triangle measurement

激光定位讲解

激光是用测距来定位的,就是发射一个激光信号,根据收到从物体反射回来的信号的时间差来计算这段距离,然后根据发射激光的角度来确定物体和发射器的角度,从而得出物体与发射器的相对位置。 然后,激光扫描仪根据自身的位置(一般是用GPS定位或者输入用户自定义的位置坐标),便可以确定物体的位置了。 GPS也是一种测量技术,原理是根据卫星发送的信号计算出某时刻与3颗或以上的卫星的距离,从而计算出所在的位置。 现在激光定位一般分两种,一种是机载激光扫描,一种是地面激光扫描。机载的一般都装有GPS和惯性导航系统用来获取某时刻飞机的位置和角度,精度在0.3m,高度精度在0.15米左右。地面的是固定在一个点做扫描,范围是几十米到几百米,精度在15mm到1m左右(根据扫描范围不同)。 激光定位准直仪是针对大型设备的安装、维修、检测而研究设计的专用高精度基准测量仪器。本光学系统中科学地设计了空间位相调制器,在长距离测量时光斑是环栅结构,光斑的图像清晰,使全程测量过程中不用调焦,实现了全程无调焦运行差,从而保证了主机所提供的激光束是一条高清晰度,易于分辨的激光光束。激光定位准直仪光靶(含磁性底座)可以吸附在被测物体上,以便用户完成检测、加工、安装等需要。其发展最开始用于军工业,导弹瞄准以及设备定位。 激光测距(laser distance measuring)是以激光器作为光源进行测距。根据激光工作的方式分为连续激光器和脉冲激光器。氦氖、氩离子、氪镉等气体激光器工作于连续输出状态,用于相位式激光测距;双异质砷化镓半导体激光器,用于红外测距;红宝石、钕玻璃等固体激光器,用于脉冲式激光测距。激光测距仪由于激光的单色性好、方向性强等特点,加上电子线路半导体化集成化,与光电测距仪相比,不仅可以日夜作业、而且能提高测距精度,显著减少重量和功耗,使测量到人造地球卫星、月球等远目标的距离变成现实。 激光测距-方法 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间。光速和往返时间的乘积的一半,就是测距仪和被测量物体之间的距离。脉冲法测量距离的精度是一般是在+/- 1米左右。另外,此类测距仪的测量盲区一般是15米左右。 激光测距仪-概述 激光测距仪是利用激光对目标的距离进行准确测定(又称激光测距)的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。 若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。

激光加工论文

激光加工论文 题目:激光加工技术 专业:电子科技 班级:08-1 学号:200811010145 姓名:杨林

激光加工技术 摘要: 激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。 关键词: 加工原理、发展前景、强化处理、微细加工、发展前景。 一、激光加工的起源和原理 随着科学技术的发展和社会需求的多样化,产品的竞争越来越激烈,更新换代的周期也越来越短。为此,要求不但能根据市场的要求尽快设计出新产品,而且能在尽可能短的时间内制造出原型,从而进行性能测试和修改,最终形成定型产品。而在传统制造系统中,需要大量的模具设计、制造和调试等工作,成本高,周期长,已不能适应日新月异的市场变化。为了提高研发和生产速度,快速而精确地制作出高质量、低成本的模具和产品,能对市场变化做出敏捷响应,人们作了大量的研究和探索工作。随着工业激光器价格的不断下降和工业激光加工技术的日益成熟,给模具制造和产品生产工艺带来了重大变革 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 二、激光加工的特点

Trupulse360激光测距仪中文操作说明.

TruPulse360简易操作说明一、外观说明 1. 1. 发射键 (开机键) 2. 上翻菜单键 3. 下翻菜单键 4. 可调目镜 5. 屈光度调节环 6. 脚架连接口 7. 吊带和镜头盖栓靠杆 8. RS232 数据输出端口 9. 电池盖 10. 激光接收镜头 11. 激光发射镜头 / 目镜 二、基本操作 2.1 开机 打开电池盖,按电池室内图示方向装入2支5号电池,盖好盖子。按下“发射键 (开 机键)”约3秒即开机。 2.2 关机 同时按“下上翻菜单键”和“下翻菜单键”约4秒即关机。待机2分钟左右自动关机(开启蓝牙功能时待机30分钟后关机)。

2.3 系统设置 2.3.1 按住下翻菜单键4 秒钟,进入上图所示系统设置菜单, 按上下键切换”Units”“bt”“InC”“H_Ang”等设置项目。 按发射键进入设置选项, 再按上下键切换选择项, 按发射键选定项目, 再按发射键回到测量工作状态。 测量单位设置 距离单位:Feet(英尺) / Meter(米)倾斜角度单位 Degree(度) 蓝牙功能设置 出现bt_on时按发射键选中拉牙功能开启,出现btoFF 时按发射键关闭蓝牙。

倾斜角度校正: 按住下翻菜单键4 秒,进入系统设置菜单, 按上下键切换到上图所示inC设置画面,按发射键进入inC的设置 菜单,按上下键切换no / yes,当画面显示yes 是按发射键进入倾角校正。 校正图示:把仪器放在平板上,按上图所示方向摆好后各按发射键一次

方位角校正

Slope Distance (SD) 斜距 Azimuth (AZ) 方位角 Inclination (INC) 倾角Horizontal Distance (HD) 水平距Vertical Distance (VD) 垂直距离Height Routine (HT) 高差Slope Distance (SD) 斜距 Azimuth (AZ) 方位角 Inclination (INC) 倾角Horizontal Distance (HD) 水平距Vertical Distance (VD) 垂直距离Height Routine (HT) 高差

激光测距系统设计

本科生毕业设计(论文) 开题报告 题目:激光测距系统设计 姓名:黄侠 学号:201006060118 指导教师:吕岑 班级:光信101 所在院系:电气与信息工程学院

课题名称激光测距系统设计 课题来源科研课题课题类型工程设计类指导教师吕岑 学生姓名黄侠学号201006060118 专业光信息科学与技术 一、课题的意义以及国内外发展状况: 课题的意义: 激光与普通光源有显著的差别,它利用受激发射原理和激光腔的滤波效应,使所发射的光束具有一系列新的特点:激光有小的发散角,即所说的方向性好或准直性好;激光的单色性好,即相干性好,激光的输出功率有限,但是功率密度很高,一般的激光亮度要比太阳表面的亮度大。在激光问世以前,人们没有什么办法来获得强相干光。激光技术出现后,很快被应用到各种测量(大地测量、地形测量、工程测量、航空摄影测量以及人造地球卫星的观测和月球的光学定位等航天测量)中。与此同时,现代电子技术的飞速发展和光电器件性能的不断提高,使激光测距仪成为距离测量的主要仪器之一。与其它测距技术相比,激光具有角分辨率高、抗干扰能力强,可以避免微波贴近地面的多路径效应和地物干扰问题,并且具有天线尺寸小、质量轻、结构小巧、和安装调整方便等优点,激光测距仪是目前高精度测距最理想的仪器之一。由于以上各方面的原因,使得激光测距在测量领域得到了青睐,并被迅速推广。 激光测距仪的研究应用在国民经济和国防建设中具有非常重要的意义。激光测距的精度与操作者的经验和被测距离无关,误差仅取决于仪器本身的精度。用激光测距对卫星进行精密测轨,精度已达l cm,日本用于预防地震的长距离监测系统,全程84 km,误差小于l mm。军事上装备的激光测距仪,重量一般为10 kg左右,最小的只有0.36 kg,体积只有香烟盒那么大,激光由于方向性好,所以可以不用巨大的天线就可以发射极窄的光束。激光测距不仅分辨率高,而且具有抗干扰能力强的窄光束和短的脉冲宽度,不仅使横向和纵向目标分辨率大大提高,而且不受电磁干扰和地波干扰。 由于激光与激光测距技术很多优点的存在,本课题意在研究出相位法激光测距的光学系统。 国内外发展现状: 国外发展现状 20世纪中期,激光测距机是激光器在军事上最早应用的项目。世界上第一台激光测距机于1961年诞生在美国休斯飞机公司,称为柯利达I型.经过30年的发展,军用激光测距机已更新了两代,研制发展了三代。第一代激光测距机采用发射0. 6943,cun红外红宝石激光器和光电倍增管探测器,是最早问世的激光测距机.20世纪70年代初期少量装备部队,如美国的AN/GVS-3、日本的70式,因其隐蔽性差、效率低、体积大、重量重、耗电多,很快便被第二代激光测距机取代。第二代激光测距机采用发射 1. 06,tnn近红外钦激光器(主要是Nd:YAG激光器,少数为钦玻璃激光器)和硅光电二极管或硅雪崩光电二极管探测器。第二代比第一代隐蔽性好、效率高、小巧、耗电少,因此第二代激光测距机的小型化研制进展迅速。第三代激光测距机,即人眼安全的激光测距机。目前已研制成工作波长为10. 6μm和1. 54μm 的三种不同类型的各种型号的人眼安全激光测距机,己进入生产和应用阶段。与此同时,激光测距技术也逐渐应用到民事领域。从20世纪70年代初至今的近30年,国外许多大学、研究机构和公司也开展了这方面的研究工作。

相关主题
文本预览
相关文档 最新文档