HeteRecom A Semantic-based Recommendation System in Heterogeneous Networks
- 格式:pdf
- 大小:1.42 MB
- 文档页数:4
小学上册英语第1单元期中试卷(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The chemical symbol for nickel is _____.2.I make _____ (晚餐) for my family.3.We are going to the ___. (beach) this summer.4.The rabbit hops over the ______.5.What do you call a collection of poetry published together?A. AnthologyB. CollectionC. VolumeD. Book答案: A6. A _______ (小鲸鱼) can sing songs underwater.7. A _____ (植物研究计划) can address global challenges.8.I enjoy making ________ (生日蛋糕) for friends.9.My mom is a great __________ (家长) who supports us.10.The __________ (悬崖) is dangerous but beautiful.11. A __________ is a type of chemical bond formed by sharing electrons.12. A saturated fat is ______ at room temperature.13.My grandpa enjoys gardening ____.14.My teacher is _______ (友好的).15.Solids have tightly packed ______.16.The classroom is _____ (clean/dirty).17.What do you call the process of plants making their own food?A. PhotosynthesisB. RespirationC. FermentationD. Transpiration答案:A18.We have a ______ (丰富的) calendar of events.19. A jellyfish has a gelatinous ______ (身体).20._____ (温带) plants can survive in seasonal changes.21.My dad is a strong __________ (支持者) of my education.22. A cat's purring can soothe ______ (焦虑) feelings.23.The antelope gracefully moves through the grasslands, a testament to speed and ____.24.My aunt is very _______ (形容词). 她总是 _______ (动词).25.Many flowers are ______ (一年生) and die after one season.26.The capital of the Cayman Islands is __________.27.I enjoy playing in the ______ (秋天) leaves when they turn bright ______ (颜色).28.They are ___ a movie. (watching)29.I enjoy ______ (探索) the world around me.30.The element with the chemical symbol Fe is _______.31.I find _____ (乐趣) in reading.32.The chemical formula for silver acetate is _______.33. (Renaissance) artists were supported by wealthy patrons. The ____34.I have _____ (three/four) pets.35.What is the coldest season of the year?A. SpringB. SummerC. FallD. Winter答案:D.Winter36.What is the name of the sweet food made from chocolate and cream?A. GanacheB. FrostingC. MousseD. Pudding答案: C37. A ____(community development) focuses on improving living conditions.38.The process of combining elements to form compounds is called ______.39. A hamster can run for hours on its ______ (轮子).40. A __________ is a common example of a base.41.The museum is very _______ (有教育意义的).42.What is the main ingredient in sushi?A. NoodlesB. RiceC. BreadD. Potatoes答案: B43.I can ______ (dance) with my friends.44.What is the name of the famous landmark in the USA?A. Statue of LibertyB. Washington MonumentC. Golden Gate BridgeD. All of the above答案: D. All of the above45.She is a friendly ________.46.I want a pet _______ (fish).47.I like to _______ (paint) with watercolors.48. A __________ is a narrow valley.49.The __________ helps some animals to glide through the air.50.The chemical formula for boric acid is ______.51.The playground is ________ (适合孩子们).52.She is a _____ (历史学家) who studies ancient civilizations.53.I go to school by ______.54.What is the name of the famous painting by Van Gogh?A. The Starry NightB. The ScreamC. Girl with a Pearl EarringD. The Mona Lisa答案:A.The Starry Night55.The chemical name for HO is _______.56.What do we call the famous American holiday celebrated on July 4th?A. ThanksgivingB. Independence DayC. Memorial DayD. Labor Day 答案:B58.The ancient Egyptians kept _______ as pets. (猫)59.The ancient Romans had a system of laws known as ________.60.The ancient Romans built _____ to celebrate their victories.61.I love to explore ________ (村庄) during vacations.62.I think animals are very _______ (形容词). They bring joy and _______ (快乐) to our lives.63. A __________ is a small body of water, usually smaller than a lake.64. (Magna Carta) was signed in 1215 to limit the power of the king. The ____65.The ancient Greeks believed in the importance of ________ (艺术).66.What is 60 ÷ 3?A. 15B. 20C. 25D. 30答案:b67.What do you call the person who helps you in a gym?A. TrainerB. ChefC. DoctorD. Teacher答案: A68.The apples are _______ (ripe) and ready to eat.69. A ______ has a unique pattern on its fur.70. (18) is the imaginary line that divides the Earth into northern and southern halves. The ____71.The chemical formula for magnesium oxide is _____.72.Which animal lives in a den?A. WolfB. EagleC. FishD. Frog答案:A73.The penguin waddles across the ______ (冰).74.My mom enjoys __________ (与朋友聚会).75.In _____ (日本), sushi is a popular dish.76.My brother is my best _______ who plays games with me.78.In the garden, I planted _____ (多种) vegetables like carrots and tomatoes.79.The ______ teaches us about climate change.80.Carbon dioxide is produced when we __________ (呼吸).81.The crow is known for its ________________ (智慧).82. A squirrel's diet consists mainly of ______ (坚果) and grains.83.The chemical formula for glucose is ______.84.The chemical symbol for promethium is _____.85.How many colors are in a standard rainbow?A. 5B. 6C. 7D. 8答案:C86.n Wall fell in _____. The Berl87.The reaction between an acid and a base produces ______.88.The forecast says it might ______ (下雨) this evening.89.My teacher teaches us . (我的老师教我们。
S tud y o n th e Ed g e Effe c t of O rth op te ra n C om m u n ity i n N i n g x ia H e la n M o u n ta i nHE H a i 2m i n g 1,Y AN G G u i 2ju n 2,HE L i 2ro n g 2,WAN G Xi n 2p u3,431.Sci e nce and Tech no l o gy Dep a rt m e nt,N i ng xi a U nivers i ty,Yi nchua n 750021;2.Schoo l o f L i fe Sc i en ce ,Yi nchua n 750021;3.Schoo l o fAg ri cu lt u re,N i n gxi a U n i ve rs it y,Yi nchua n 750021; 4.Ke y Labo ra t o ry f o r R es t o rat i o n a nd R econ s tru cti o n o f D eg raded Eco sy s t em i n No rth 2we s tern C h i na of M i n is try o f Edu ca ti o n,Yinchuan 750021Ab s t ra ct [O bject i ve]The s tudy a i m ed t o d iscus s the i nfl uen ce s o f ed ge effect on o rtho p t e ran comm un it y i n ea st s l o p e o f Helan Mo un t a i n.[M eth od ]Sam p l e s a re co l l e cted by u s i ng samp l e zo ne m e t ho d.The d i ffe ren t sp ecies o f o rt hop terans i n d i ffe ren t hab i ta ts are reco rded.[Resul t]Th e p ercen tage of O ed i po di d ae,C atan t op i dae and Pamp hg i dae i n t o t a l are 42.65%,29.15%a nd 12.76%re sp ecti ve l y .From scat t e red g ras s 2l a nd i n teri o r t o e dge and then t o des ert g ras s l an d,abun dance i n crea se i n t u rn,bu t d i ve rs it y i n the edge is the h i ghe s t .The d i vers i ty i nde x o f o r 2thop t e ran comm un i ty decrea se w i th the dis t a nce aw ay fr om edge i nc rea s i ng.The ri chne ss chang es w it h the dis t a nce aw ay fr om the edge.The re are 4t ype s o f edg e effect s i n cl ud i ng ha bitat gene ralis t,hab it a t gene ra l is t edge e xp l o it e r,hab i ta t spec i a l is t e dge exp l o i te r and h abitat s p ec i alist edge a vo i de r i n the sca ttered g ras s l an d 2d es ert gra s s l and eco t on e acco rd i ng t o Sisk a nd M arg ul e s πs crit e ri o n.[C on clus i on ]The re se arch p rov i de s da t a an d theo retical ba s i s fo r t he b i od i ve rs it y p ro tect i o n,devel opm en t a nd ut i li zati o n o f o rtho p t e ran ,and t he d evel opm en t o f co n se rva ti o n bi o l o 2gy .Key w o rds O rt hop tera;Edg e effec t ;D i vers i ty;Sca ttered gra s sland 2de se rt gra s s l and Eco sys tem ;He l an M oun ta i nR D , M ,S y M y f ,N y x T S (N T 22)32x @y The re se a rch o n the beha vi o ra l re spo nse s or se l e ct trends o f spe c i e s to ha bita t edge is ve ry i m po rta nt t o unde r 2stand the edge e ffec t [1].The re ac ti o ns t o the e dge a re va ri e d a cco rdi ng to t he bi o l o g i ca l a nd e xte rna l co nditi o ns,a nd m any othe r fa cto rs.B ec ause i n se c ts a re hi ghl y sen siti ve t o habita t cha nge s,som e i n sec ts a re use d a s environ m enta l i ndi ca 2t o rs [2,3].O rthop t e ra n i n e a st sl ope of He lan M ounta i n a re m a inl y distribu t e d in sc a tte red gra ssland and de se rt g ra ss 2l and .Through the s t udy o f e dge e ffec t fo r o rthop te ra i nse ct comm unitie s i n e a st sl ope of He l a n Mo un t a in,we discus s the diffe re nc e s am ong di ffe ren t o rthop te ran sp ec i e s t o the sam e ty p e of edge re a cti on so tha t we could ca rry ou t p reve nti o n a nd con tro l li ng wo rk rea sonab l y a nd app rop ri a te ly on the l o 2cu st,p re se rve a nd m a inta i n the e xisti ng ba l a nce of the e co 2system sta te ,a nd give ce rta in da ta a nd theo re ti c a l ba sis t o bi odive rsity con se rva ti on .E xp e ri m e n ta l S ite sR e se a rch a rea is l o ca te d in Ningxi a He l a n M ounta i n Na 2ti ona l Na ture R e se rve ,no rthwe st of N i ngxi a ,whi ch borde rs Inne r M ongoli a Autonom ous Re gi on i n we st a nd no rth,a nd sp i ns t he tem pe ra te steppe and de se rt i n the t wo vege ta ti o n re gi ons .Annua l a ve ra ge t em pe ra ture is -0.8℃,a nnua l a v 2e rage sunsh i ne i s ove r 3000h,fro st 2free pe ri od a re 128-175days,a ve rage ra i nfa l l is be t w e e n 200-400mm ,and a nnua l e vapo ra ti o n i s ove r 2000mm.S ca tt e re d gra ssl a nd a nd de se rt gra ss l and a re the i m po rtan t ve ge ta ti on i n ea s t sl ope of He l a n M oun ta i n .Sc a tte red gra ss l and is m a i nl y distri buted i n a lt .1500-2100m i n a ri d l ow 2mo un t a i n .Xe ri c shrub such a s U l 2m us g l a uce sc en s,P runu s m ongolica a nd A j a ni a fruti cul o sa a re spa rse l y dis tri buted,wh il e S ti pa ,Se t a ri a viri dis a nd A rt e 2m isi a su t d i gita ta e t a l .a re grow i ng th i ckl y .Ave rage ra infa ll is 250-300mm.De se rt gra ssland is i n a lt .1200-1500m ,a ve rage tem pe ra ture is 8℃,a ve rage ra infa ll is 200-250mm.M a ny pa rts of the bed r o ck e xpo se s,soil is infe rtil e si 2e ro zem.M a i n ve ge t a ti on type s a re S ti pa gra sse s,xe ri c a nd de se rt xe ri c sem i 2sh rubs a j a ni a.In a dditi on,fo re land p l uvi a l fan gra ss l and is i nc lude d .Re sea rch p l ots a re l o c a ted i n the geographica l coordi na te s of 105°56′-106°03′E,38°27′-39°50′N,e l e va ti o n ra nge i s 1400-1600m.It is the tran si 2ti ona l re gi on o f sc a tte red gra ssland a nd de se rt gra s sl a nd.M e th o d sE xp e ri m en ta l de s ignF i ve sam p l e zo ne s w it h t he width of 5m we re se l e c ted i n the ve rtica l dire c ti on of the edge.The inte rva l be t we e n eve ry zone w a s 10-20m ,9p l o ts we re cho sen i n e a ch zone.The a re a of the pl o t se l e c ted i n sca tt e re d g ra ss l a nd,de se rt g ra s s 2l a nd a nd edge l a nd wa s 5m ×5m.The inte rva l be t w ee n e a ch p l o t wa s 20m.S pec ifi c samp li ng prog ram is shown i n F i g.1(show i ng t w o zone s )[4-7].Samp li ng wo rks we re conduc te d be t we en June and August in 2008.Ac co rd i ng to the di ffe ren t spe c i e s a nd habita ts i n cap turing p roce ss,we u se d ne tm e th 2od,fre e 2ha nd c ap t u re and trapp i ng m e thod e tc .I nse ct spe c i 2m e ns we re b r o ught bac k to the l a b afte r the po isoning,i den ti 2fied a nd reco rde d t he spe c i e s a nd qua ntiti e s of orthop te ra n a cco rding t o the l ite ra ture m onograph [8].F x (I ;II )D y R f M f f 2Agri cu l tu ral Sc i ence &Techno l o gy,2010,11(2):113-116,145C op yright κ2010,I nf o r m at i o n I n s ti tu t e of HAAS.All ri gh ts res erved.Ani m a l S ciencee ce i ve d:ecem be r 242009Accep t e d:a rch 192010uppo rted b i n i s tr o Educa ti o n ew C en tur E ce ll en t al e n ts chem e C E 070470.C o rre spo n di n g au tho r .E m ail :w ang i npu i g.1E pe ri m en t p l o ts de s i gn :scatte red g ras s l an d :d es ert g ras s l an d a ta an a l s i sich ne ss o sp ec ies ea su rem ent o the nu m be r o sp ec i e s i n comm uniti e s,ofte n c ha ra cte rized w ith"S".S ha nno n2W ie ne r d ive rs ity inde x(H′) H′=-∑P i l nP iH′is the Sha nno n2W i e ne r di ve rsity inde x;P i is the p ro2 po rti on o f i th ta xa i ndividua l num be rs i n the t o ta l i ndi vidua l nu m be rs.S is the nu m be r o f spe c i e s i n comm un i ty.E ve nn es s ind ex(E) E=H′/l o g2(S)o r E=H′/ln(S)E is t he e venne ss i nde x i n t he form ul a.D om ina nc e Ind ex(D) B e rge r2P a rke r i nde x is adop ted.D=Nm a x/NTD is the dom i na nce i ndex i n the fo r m u l a;Nm ax i s the popula ti on of dom i na nt spe c i e s;NT is the popul a ti on of a ll ty p e spe c i e s i n comm un i ty.Com m u nity s i m ila rity ind ex S i m il a ri ty coe ffi c i e nt fo r m ula ra ised by Ja c ca rd(1901)is a dop ted:q=c/(a+b-c)I n the fo r m ula,q is t he comm unity inde x;c is the com2 mo n spec ie s i n sam p l e A and B;a is the tota l spe c i e s in sam2 pl e A;b is the t o ta l spe c i e s i n sam p l e B.Sp e c ie s ab unda nc e va lue The t o ta l num be r o f i ndi vidua l spe c i e s pe r25m2i n eve ry sam p l e i s counte d a s the abun2 dance of e ac h i nse c t.I ndi vi dua l a ve rage of fi ve p l o ts w ith a ce rta i n distance away from the edge is shown a s the sp ec i e s a bunda nce va lue[5].R e s u lts a n d A n a lys isCom p os ition o f O rthop te ran C omm un itySpe c i m e ns o f4874orthop te ra n w e re collec te d a nd i den2 ti fied a s28spe c i e s,be l o ng i ng to9fam ili e rge st num be r of i ndi vi dua ls a re O ed i p odida e,C a tan t opida e a nd P am pha gi2 dae,a ccoun ti ng fo r42.65%,29.15%a nd12.76%in to t a lo r2 t hop te ra n re spe c ti ve l y,they a re the dom i na nt sp ec i e s i n the su rve y a re a(F i g.1);Foll owe d by A rcyp te ri da e,a c counti ng fo r7.29%i n t o ta l o rthop te ran.B radyporida e,Te tri go i dae, Conocep ha l ida e,P yrgom o r p hi da e a nd Ac ri di da e a re the com2 mo n spe c i e s i n t he surve y a rea,a cco unti ng fo r1%-5%.In a ll co ll e c ted spe cie s,C a lli ptam us ba rba rus ba rba rus, C.ba r2 ba ru s,O eda leu s i nfe rna lis and O.deco rus a sia ti c us a re the dom i na nt spe cie s in the surve y a re a,a cco un ti ng fo r53.48% i n tota l.D ive rs ity of O rthop te ra n Com m u n ityThe edge of sca tte red g ra s sl a nd a nd de se rt gra ssland is the comm on e dge ha bit a t type s e xi s t e d in e a st sl op e of He l a n M oun ta i n.Acco rdi ng t o the distance awa y from edge,45re2 se a rc h p l o ts(5samp l e zo ne s,ea ch zone conta i n s9p l o ts) a re ga the re d t o three gr o up s:sca tte re d gra ssl a nd habita t (p l o ts s1t o s15)conta ins three dista nce group s(40m,60m a nd80m)de ep i n t o the sc a tte red gra s sl a nd inte ri or.D e se rt g ra ss l a nd ha bita t(p l o ts s31t o s45)co nta i n s three dista nce g r o up s(40m,60m a nd80m)de ep int o the de se rt gra ssl a nd i nte ri o r;Edge l a nd habita t(p l o ts s16t o s30)co nta i ns t he o th2 e r th re e d i s tance group s(e dge l a nd,deep i nto the sca tte re d g ra ss l a nd i nte ri o r fo r25m,de ep i nto the de se rt gra ssland in2 te ri o r fo r25m)(Ta bl e2).O rthopte ra n di ve rsity inde x i n edge l a nd is sli ghtl y h i ghe r tha n t he t w o adjac en t e co system s,a nd de se rt gra ss l and inte ri or is hi ghe r tha n sca tte re d gra ss l a nd in2 te ri o r.The re i s s i gni fi c an t diffe re nc e in H′i ndex be t we en edge l a nd a nd sca tte re d gra ssl a nd(P<0.05),but no si gni fi c an td i ffe re nce be t w ee n e dge l a nd a nd de se rt gra s sl a nd(P>0.05).B e ca use the re a re so m a ny suitab l e ha bita t fra g m e nts fo r o rt hop te ra n i n sca tte re d g ra ss l a nd,no t on l y the surviva l of l ocus ts a re re stricte d,but a lso t he sp re a d a nd distr i bu ti on of them a re li m ited,so the di ve rsity is l ow.Tre nd s of e ve nne s s E is a s foll ow s:sca tte re d gra ssl a nd>e dge l a nd>de se rt g ra ss l a nd.Tab le1 Sp eci e s com po s i t i o n in su rvey area sFam i l y S p ec i e sA mo2untP e rce n2tage∥% B radypori da e Zi chya p i ec hockii Ce j cha n250.51Zi chya a l a san i ca B2B i e nk1142.34 Conocepha li da e Conoc epha l us c hi nens i s Re dtenbac he r781.60 Te tri goi dae Fo r mosa te tti x he l a nshane nsis Zhe ng410.84P a ra t e tt ix uva r ovi S eme nov701.44 Pampha gi da e Hap l otr op i s ne i m ongol e nsis Yi n1232.52F i lchne re ll a be i cki Ramme1362.79F i lchne re ll a he l a nsha nens i s Zhe ng1022.09P se udo t m e t his bra chypte rus Li480.98P se udo t m e t his a l a sha ni cus B.2B i enko1493.06Eo t me thi s ho l ane nsis Zheng e t G ow641.31 Pyrgomo r p hi da e Atra c t omorpha s i ne nsis Bo li v a r641.31 C a t a nt opida e O xya a de nt a ta W i ll e m se721.48Ca ll i p t amus ba r ba rus ba rba rus Go sta76215.63Ca ll i p t amus ba r ba rus(Co sta)52310.73 A rcypte ri da e Cho rthi p pu s a l bonemus Che ng e t Tu2074.25Cho rthi p pu s hsi a i Cheng e t Tu1483.04 O e di p odi da e O eda l e us de corus a si a ti cu s B.B i e nk o63813.09O eda l e us i nf e r na li s Sa ussure68414.03Anga ra c ri s rhodop a(Fisc he rW a l he i m)891.83Bryodema koz l oviB.B i e nk o1643.36Bryodeme l l a ho l de re ri ho l de re ri(Kr a uss)1553.18Bryodema n i g r opte ra Zheng e t G ow1072.20Ce l e s ska l o z uboviA de l.581.19Comp so r h i p i s da vi di ana(S aus sure)1072.20Sp hi ngono t us ni ngsi a nu s Zhe ng e t G ow360.74Lep t opte rni s grac il is(Eve rsma nn)410.84 Ac ri d i da e Ac ri da c i ne re a(Thunbe rg)691.42 T o ta l4874100 Ta b l e2 D i ve rs it y index o f o rthop t e ran comm unity i n s urvey a reaR i chn es s of spec i es(S)D i ve rsity i nde x(H′)E ven nes s i ndex(E)Dom i nance i nde x(D) Scatte red g ras s l and SG16 2.16050.78320.2924 Edge l and SG2DG25 2.84350.87670.1633De se rt gras s l and D G28 2.79760.84040.2183 S i m il a rity of o rt hop te ra n i n sca tte re d gra ssl a nd,edge l a nd and de se rt g ra ss l a nd a re shown i n Table3.De se rt gra ss l and ind i ca te s a hi gh si m il a rity with edge l a nd and m iddle y Sy B f y(f f2ond com po ne nts is92.32%)(F i g.2),we fi nd t ha t the re a re g re a t di ffe rence am ong sca tte red g ra ss l a nd i n te ri o r,e dge l a nd a nd de se rt gra ssland i nte ri o r,no ove rl ap i n the so rti ng m ap,y T22 y411Ag ri cu l tu ral Sc i ence&Tech no l o gy Vo l.11,No.2,2010dis si m i la rit w ith sca tt e re d g ra ss l a nd.ca tte re d gra ssl a nd show s l o w s i m ila rit with e dge l a nd.a se d on the PCA o o rthop te ra n comm unit com po siti o n a ccum ula ted va riance contri bu ti on ra te o the irst a nd se c but de se rt gra s sl a nd is re l a tive l c l o se t o e dge l a nd.he re sult show s tha t orthop t e ra n i n de se rt gra ss l a nd ha s the t e nd e nc t o sp re a d t o sca tte re d gra s sl a nd.Ta b l e 3 The s i m il a rit y co effi cient o f o rtho p t e ran i n d i ffe ren t hab it a tsScatte red gras s l andEdge g ra s sl a nd De se rt gra s sland Scatte red g ras s l and 10.52000.4643Edge g ra ss l and 0.520010.8929De se rt gras s l and0.46430.89291F ig.2 The PCA o rd i na ti on o f O rt hop tera n comm un i t i esO rthop te ra n d ive rs ity w ith d iffe re n t d is ta nc e aw a y f rom e dgeW e compa re the d i ve rsit y o f o rthop te ran a nd the com po 2siti on o f spe c i e s with di ffe ren t dista nce awa y from edge ,the re sults a re shown i n Fig .3.The re is a te nde nc y tha t the di ve r 2sity o f o rthop te ra n comm unity de c re a se s w ith t he d i s tance a 2wa y from e dge i nc rea si ng both i n sca tte re d gra s sl a nd o r de s 2e rt gra ss l and .The d i ve rs it y of sca tte re d g ra ss l a nd 80m awa y from e dge dec rea se 0.9542com pa red w ith e dge l a nd,but the re is no s i gni fican t di ffe re nce of di ve rsity i n de se rt g ra ss 2l and w ith t he dista nce aw ay from edge inc rea si ng .Sp ec i e s com po siti o n of o rthop te ran comm un i ti e s in sc a tte red gra ssl a nd dec rea se with the dista nce awa y fr om e dge inc re a s i ng .16spe c i e s a re co ll ec te d i n sc a tte red gra s sl a nd 40m aw ay from e dge ,a ccounting fo r 57.14%i n t o ta l am oun t in survey a rea ;13sp ec i e s a re co ll e c ted i n sca tte re d gra ssland 80m awa y from e dge ,a cco un ti ng fo r 46.42%i n t o t a l am ount;Sp ec i e s com po siti o n of o rthop t e ra n comm uniti e s i n de se rt gra ssl a nd i nc rea se w ith the dista nce awa y from e dge i nc rea si ng .All spe c i e s c an be fo und i n de se rt g ra ss l a nd 40m aw ay from edge.F ig.3 Comm unity d i vers i ty and n um be r o f spec i e s o f O rthop 2teran i n d i ffe ren t edg e di a tanceE dg e e ffe c t of C om m un ityEdge effe ct of comm unity is ge ne ra l ity in eco t one e co sys 2t em.Thr o ugh the s t udy of edge e ffec t,we coul d unde rstand t he e dge i m pa c t on t he spe ci e s distri buti on pa tte rn and fo r m a ti on,f y,y,y S M [],y f ff 2de se rt g ra ss l a nd e cotone (F ig .4).Eo t m e this ho l a ne ns i s,Zi c hya p i ec hockii ,P se udot m e t his bra chy p te rus a nd Sphin 2gonotu s n i ngsi a nus be l o ng t o hab it a t spe cia list e dge avo i de r .The se ki nds of i n se c ts adap t t o d i s tri bute i n de se rt xe ri c ve ge 2ta ti on w it h e xpo sed be drock i n m a ny pa rts a nd i nfe rtil e de se rt g ra ss l a nd,no distribu ti on i n the edge of sca tt e re d gra ssland 2de se rt gra ss l and .P seudo t m e this a l a sha nicus be l ongs to ha bi 2ta t sp ec i a l ist edge e x p l o i te r,distri buti ng in de se rt gra ssl a nd a nd e dge l a nd .Zi chya a l a sa ni ca ,Co nocepha lus ch i ne ns i s,F il chne re l la be i c ki ,B ryodem a koz l ovi and B ryodem e ll a ho l 2de re ri ho l de re ri be l o ng t o hab i ta t gene ra list edge e xpl o ite r,the y a dap t t o distribu t e i n the edge shrub zone of sca tte re d g ra ss l a nd 2de se rt g ra ss l a nd .It is m o re suitable fo r the ir su rvi v 2a l beca use of the abunda nt food a nd cha nge d m ic r o 2envir o n 2m e nt i n e dge land a nd becom e the i de a l e co l o g i ca l p l a ce com 2pa red with the ha bita t i nte ri o r .For m o sa te tti x he l a nsha ne ns i s,P a ra te tti x uva rovi ,Atra ctomo rpha s i nen sis,O xya a den t a ta,Ca l li p tam u s ba rba rus ba rba ru s,C a ll i p tam u s ba rba rus,C ho r 2thi pp us a l bonem us,C ho rt h i p pu s hs i a i,O e da l e us de co rus a si 2a ti cu s,Oe da l e us infe rna lis,C e le s ska l oz ubo vi,Com p so rhi p is da vi di a na,Lep top te rnis g ra c i lis,Ac ri da cine re a ,Hap l o tr op is ne i m ongo l e nsis,Anga ra cris rhodopa and B ryodem a ni g r op 2te ra be l ong t o ha bita t gene ra list,the y d i s tri bute i n sca tte re d g ra ss l a nd 2de se rt g ra ss l a nd a nd edge land w it h e xten si ve a 2dap tab i lity .The i ndi vi dua l c an succ e ssfu ll y c ro ss the bo unda 2ri e s be t we e n fragm e nts a nd a dap t the cha nge d e nviron m en t d i ffe re nt fr om the inte rna l hab i ta t .The y rega rd t his type of ha bita t a s a ne a r 2homo ge neous w it h s m a ll envir onm e nta l c ha nge ,ha ving no si gni fica nt e ffe ct o n t he ir survi va l .B ut they do n πt show a ve ry uniform distribu ti on of adap tab i lity i n sca t 2te re d g ra s sl a nd 2de se rt g ra ss l a nd a nd e dge l a nd.W hen the d i s t a nce awa y from e dge i nc rea se s,the amo unt of Ca l li p ta 2m u s ba rba rus ba rba rus a nd C a lli p tam us ba rba rus i nc re a se i n de se rt g ra s sl a nd i ncre a se ,but de c re a se i n sca tt e re d g ra s s 2l a nd.The dis tri buti o n of O eda leu s de co ru s a si a ti c us a nd O e da leu s i nfe rna lis show oppo site trend w ith t hem.The d i s tri 2buti o n of Hap l o trop is ne i m ongo l e nsis,F il chne re lla he lan s 2hane nsis,Anga ra c ris rho dop a and B ry odem a ni grop t e ra i n sca tt e re d g ra ss l a nd is few.D is c u s s io nThe s tudy shows tha t o rt hop te ra n comm unity ha s s i gn i fi 2c ant di ffe rence s be t w e e n sca tte red g ra ss l a nd a nd de se rt g ra ss l a nd.The re a re appa re nt di ffe re nti a ti o n i n e dge land a nd sca tt e re d gra ss l a nd comm unit y com pos iti on,be i ng a m ixtu re of f o re st spe cie s and de se rt gra ss l a nd spe c i e s .Edge a nd de se rt gra s sl a nd comm unity com pos iti on a re si m il a r .B a sed on the compo siti on a ttri bute so rt of orthop te ra n comm uniti e s,orthop t e ra n i n de se rt gra ssland have the t e nd 2e nc y t o sp re a d t o the sca tte re d g ra s sl a nd .Edge e ffe ct of o rthop te ra n dec re a se s w ith the dista nce awa y from edge i ncre a si ng .Spe c i e s com po siti on of o rt hop te r 2a n comm un i ti e s in sca tte re d gra ssland de cre a se s w it h the d is 2tance aw ay fr om e dge inc re a s i ng,w hi le show i ng the oppo site trend i n de se rt gra ss l and .The re is no endem i c spe c i e s i n sca tt e re d g ra ss l a nd .The re a re 4ty p e s of e dge e ffe c ts for o rthopte ran i n sca t 2te re d gra s s 2de se rt gra ssl a nd e co t o ne.The a na l ysis of d i ffe r 2x f ff f ff x ff [35]N ff f y ,x yz ff f y T 511HE Ha i 2m i ng e t a l .Study o n the Ed ge Effect o f O rt hop t e ran Comm un it y in Ningx i a He l a n M ou nta i n t h i s w i ll provi de a theo re ti ca l ba sis o r conse rva ti on bi o l og bi odi ve rsit bi ol ogi ca l contr o l a nd i nse ct p e stm a na gem ent .Acco rdi ng t o the c rite ri on ra ised b isk a nd a rgu l e s 9the re a re 4t p e s o e dge e ec ts i n the sc a tte red gra ssl a nd e nt t a a o o rt hop te ra n to e dge e e c t shows tha t re sults romd ie re nt ta a a re di e re nt -.e vill e e t a l .po i n ted tha t ba se d on the di e rence o t h is ana l s is we m u st e nsure the ta a wh il e a na l i ng the edge e ec t o bi o l o g .he conc ep tF i g.4 4t ype s of respo n se of O rtho p t e ran t o e dge"Anca nc e li ng 2out e ffe ct"we re propose d when the y ana l yze dorde rs taxa of inse c ts [10].The study fi nds tha t suc h p he nom e 2non e xists i n P am phagida e a nd O ed i p odida e ,it i ndica te s tha t dom i na nt popul a ti on m a y de te r m i ne the em e rge nce of t h is phe nom e non.The re fore ,the study of b i o l ogy rea c ti on t ype s t o e dge e ffec t ha s g rea t sign i fi ca nce on eco sys tem re s t o ra ti o n a fte r la rge 2sca le disturba nce a nd the e col ogica l re se a rc h inc l u 2di ng t he ana lys is of bi o 2a rea trend .A t the sam e ti m e w e ca n se e tha t diffe re nt spe c i e s of gra sshoope r ha ve d i ffe re nt re a c 2ti on t o the sam e edge type ,re fl e c ti ng ha bi ta t se lec ti ve diffe r 2e nc e of gra s shoope r .R e fe re n c e s[1]HA I L A Y,H ANSKI I K,N I E M ELA J ,e t a l .Fo res try and bo real fau 2na:m atchi ng m ana gem ent w it h na t u ral f o re s t dynam i cs [J ].Ann Zoo l Fenn i ci ,1994,30:17-30.[2]EY R E MD,LO TT DA,GAR S I D E A.As se ss i ng the po t en ti a l fo r en 2v i ronm en t a l mo n i t o ri ng us i ng ground beetl e s (Co l eop t e ra:C arab i 2dae )wit h ri ve rs i de and Sco tti sh da ta[J ].Ann Zoo l Fenn i ci ,1996,33:157-163.[3]L I A N Z M (廉振民),Y U GZ (于广志).Edge effect and b i od i ve rs it y(边缘效应与生物多样性)[J ].C h i nese B i od i vers it y (生物多样性),2000,8(1):120-125.[4]L I U C M (刘缠民),L I A N Z M (廉振民).The s tudy o n d i versity o fg ra sshopp ers com m unit y i n No rth Shaanxi(陕西北部蝗虫群落多样性研究)[J ].J ou rnal of Xuzho u No r m a lU ni vers i ty (徐州师范大学学报),2001,19(2):63-65.[5]L I U C M (刘缠民),L I A N Z M (廉振民).Gras shoppe r comm unit ys truct u re o n the no rt he rn s l ope of Tai ba iM oun t a i n of Q inli ng (秦岭太白山北坡蝗虫的群落结构)[J ].Zoo l og i cal R es earch (动物学研究),2002,23(4):301-305.[6]L I A N Z M (廉振民),Y U GZ (于广志).Ana l ys i s o n t he edge re s po n 2se s of g ras shoppe rs t o the edge zone bet ween fi e l dl an d andwas tel and (农田-荒地边缘地带中蝗虫边缘反应分析)[J ].Acta Eco l o gi ca Si n i ca (生态学报),2001,21(8):1270-1277.[7]Y U X D (于晓东),LUO TH(罗天宏),ZHOU HZ (周红章),et a l .I n 2fl uence o f edge effect o n d i versity o f g r o und 2dwe l li ng be etl e s a cr o s s a fo res t 2g ras s l and eco t o ne i n Wo l o ng Na t u ral Re se rve ,S (边缘效应对卧龙自然保护区森林草地群落交错 带地表甲虫多样性的影响)[J ].Ac t a En t om o l og i ca Si n i ca (昆虫学报),2006,49(2):277-286.[8]ZHENG Z M (郑哲民),WAN LS (万力生).Gras shopp er i n N i ngxi a(宁夏蝗虫)[M ].Xi ’an:Shaanxi Norma l Unive rs i ty Pre s s (西安:陕西师范大学出版社),1993:1-147.[9]S I SK TD,MAR GULES CR.Hab i tat edge s an d re sto rati on:m e t h 2o ds fo r quantifyi ng edge effects an d p red i c ti ng the re sults of r e s t o 2ra ti o n eff o rts [M ]//SA UNDERS DA,HOBB S RJ ,EHRL I CH PR .Na t u re con serva ti o n 3-t he recon s tructi on o f fragm en t e d eco sys 2tem s .Pert h:Su rrey B eatty a nd Son s,1993:57-68.[10]NEV I L LE PJD,B LAC KDG.An i m a l s on t he edge:the can ce l i n g 2o ut effect[J ].Mem o irs o f t he M us eum of Vi ct o ri a,1997,56(2):623-630.[11]L I S M (李淑梅),MA KS (马克世),L I J P (李季平).Study o n the bi od i versit y o f so il fauna i n d i ffe rent l and use type (土地不同利用类型下土壤动物群落多样性研究)[J ].J o urna l o f Anhui Ag ri cu l tur 2al Sci ences (安徽农业科学),2008,36(2):309-310,358.[12]WA N G Y H (王玉红).S t ud i e s on p es tspec i es of Hem i p tera a nd O r 2thop teran on fruit trees i n Q i nhuangd ao area (秦皇岛地区半翅目、直翅目果树害虫种类研究)[J ].Heb ei Fruits (河北果树),2009(6):6.[13]TENG Z Q (滕兆乾),L I N YZ (林育真),WANG Y W (王裕文).Studi e s o n comm un i ty d i ve rs it y of O rt hop teran s i n J i nan (济南市郊直翅目(O rt hop tera )昆虫群落多样性研究)[J ].Ludo ng Un i versit y J ou rna l (鲁东大学学报):Na t u ral Sci ence Ed i ti on (自然科学版),2003,19(1):35-40.[14]XI E GL (谢广林),WAN G W K (王文凯).A p reli m inary study onO rthop t e ra i n Houhe N ati ona l Na t u re R es erve (后河国家自然保护区直翅目昆虫初步研究)[J ].J ou rnal o f Yangtze Un i ve rs it y (长江大学学报):Na t u ral Sci ence Ed i ti o n (自科版),2006,3(1):110-112.[15]ZHEN G Z M (郑哲民),ZHONG Y L (钟玉林).Three new s p eci e so f O rthop t e ra fr om Hube i P r o vi nce (湖北省直翅目三新种(直翅目))[J ].En t om o t a xonom i a (昆虫分类学报),2005,27(4):249-256.[16]ZHENG Z M (郑哲民),L IM (李敏),W EIXJ (魏秀娟).A new spe 2ci es of the genu s cho rthi ppu s fi ebe r fr om Q i nli ng Mou ntai n Area (O rt hop t e ra:A rcyp te ri dae)(秦岭地区雏蝗属1新种记述(直翅目:网翅蝗科))[J ].J o urna l o f Huazhong Ag ri cult u ral Un i versit y (华中农业大学学报),,(3)66R Z NG 2 R YI N 2 R f WU X 2y (下转第5页)611Ag ri cu l tu ral Sc i ence &Tech no l o gy Vo l .11,No.2,2010ou thwes t C hi na -200928:28-29.es p o n s i b le e d it o r:HA C a i l i e s p o n s ib le t ra n s la to r:J i a n l i e s p o n s ib l e p ro o rea d e r:iao an14Ne t B e an s I D E5.0wa s deve l opm en t langua ge.The co rre 2spo nd i ng re tri e va l sys tem a i m i ng a t c rop p e sts w a s c re a te d a nd com pa re d w it h tra diti ona l se a rch e ngine (Ta bl e 1).The first 20e ffec ti ve info r m a ti on we re a dopte d .Ta b l e 1 Com pa rison o f re trieval sys tem p e rf o rm ance %D i s eas es and i n se ct p es ts Goo g l e B a i du Yahoo C I S B acte ri a l s talk r o t30352560Dac t y l ispa se ti fe ra (chap uis )30453570R ou nd spo t35352565He l o tr o pha l euco s ti gm a l aw is40553060 AC I S ga ve the fu l l con si de ra ti ons t o u se r re quirem e nt a ndit wa s cons truc te d on the ba s is of g ramm a r,sem a ntic a ndpragm a ti c.The re tri e va l e nvi ronm e nt and ta rge t w e re unde r 2st ood t o som e e xt e nt,the refo re ,the required i nfo r m a ti o n could be found mo re a cc ura te.C o n c lu s io n sThe com p re he ns i ve i nfo r m a ti on t heo ry is sta rti ng sta ge inCh i na a nd fo re i gn co un tri e s,whil e di ffi cu l ty is the comp lex conve rs i o n p roce ss fr om i nf o r m a ti on t o know l e dge a nd from know l edge t o i n te lli ge nce ,be side s;the re i s no unive rsa l prin 2c i p l e a l go rith m w ith str o ng m a ne uve rability t o suppo rt .S tud 2yi ng conve rsi o n a l go ri thm o f i nf o r m a ti on,know l e dge a nd inte l 2li gence by re fe rri ng da ta m i ni ng a nd re la ted tec hno l ogy of know l edge d iscove ry w ill becom e a re sea rch focu s .R e fe re n c e s[1]WANG SQ (王世耆).R evi ew o f i nforma ti on t echno l o gy app li ca ti oni n agri cult u re (信息技术农业应用述评)[J ].C om pu t e r and Agri cul 2t u re (计算机与农业),1996(3):1-5.[2]ZH ONG YX(钟义信).Pri nci p l es o f i nf o r m ati on sc i ence (信息科学原理)[M ].3r ded (第3版).B eij i n g:B e i ji ng Un i versit y of Po s ts and Tel e comm un i cati on s Pre ss (北京:北京邮电大学出版社),2002:45-48.[3]H AN J W ,K A MBER M.Da t a m ini ng co ncep ts and t echn i que s[M ].San Ma t eo ,CA:Mo rgan Kauf mm an Publi s hers,2000.[4]DUB O I S D,PRADE H .Fuzzy se ts and s ystem s (t h eo ry an d app l i 2ca ti o n)[M ].O xf o rd,U K :Academ i c Pre ss ,1980.R es p o n s i b le e d it o r:C HEN Xiu 2ch e n R es p o n s ib le t ran s la to r:L I Zh u 2le R e s p o n s ib l e p ro o fread er:WU Xiao 2y an基于全信息理论的农业信息检索系统吴启明3 (河池学院,广西宜州546300)摘要 通过分析语法、语义、语用信息,建立了基于全信息的农业信息检索系统AC IS 。
热带作物学报2021, 42(9): 2542 2548 Chinese Journal of Tropical Crops收稿日期 2021-02-23;修回日期 2021-03-20基金项目 国家自然科学基金项目(No. 31770657,No. 31570544,No. 31900016)。
作者简介 陈 彬(1990—),男,博士研究生,研究方向:森林微生物资源遗传多样性。
*通信作者(Corresponding author ):梁俊峰(Liang Junfeng ),E-mail :*******************。
Russula indocatillus , a New Record Species in ChinaCHEN Bin 1, 2, SONG Jie 1, WANG Qian 1, LIANG Junfeng 1*1. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, Guangdong 510520, China;2. Nanjing For-estry University, Nanjing, Jiangsu 210037, ChinaAbstract: Russula indocatillus was reported as new species to China. A detailed morphological description, illustrations and phylogeny are provided, and comparisons with related species are made. It is morphologically characterized by a brownish orange to yellow ochre pileus center with butter yellow to pale yellow margin, white to cream spore print, subglobose to broadly ellipsoid to ellipsoid basidiospores with bluntly conical to subcylindrical isolated warts, always one-celled pileocystidia, and short, slender, furcated and septated terminal elements of pileipellis. The combination of detailed morphological features and phylogenetic analysis based on ITS-nrLSU-RPB2 sequences dataset indicated that the species belonged to Russula subg. Heterphyllidia sect. Ingratae . Keywords: Russulaceae; new record species; phylogeny; taxonomy DOI 10.3969/j.issn.1000-2561.2021.09.014印度碗状红菇——一个中国新纪录种陈 彬1,2,宋 杰1,王 倩1,梁俊峰1*1. 中国林业科学研究院热带林业研究所,广东广州 510520;2. 南京林业大学,江苏南京 210037摘 要:本研究报道一个中国红菇属新记录种——印度碗状红菇(Russula indocatillus )。
【赢在高考·黄金8卷】备战2024年高考英语模拟卷(北京专用)黄金卷01(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分知识运用(共两节,满分30分)第一节完形填空(共10小题;每小题1.5分,共15分)阅读下面短文, 掌握其大意, 从每题所给的A、B、C、D四个选项中, 选出最佳选项, 并在答题卡上将该项涂黑。
(2023秋·北京海淀·高三统考期中)On a sunny afternoon, Anthony Perry stepped off the train at Chicago’s 69th Street station. The 20-year-old, who worked nights in a grocery store, was on his way to see his 1 .On the platform, something unthinkable happened: a man fell over the edge and onto the electrified train tracks! As Perry and other horrified passengers watched, he shook uncontrollably as the 2 moved through his body.“Help him!” someone cried. “Please, someone!”Perry couldn’t just stand there and 3 . He sat at the edge of the platform and eased himself down.4 all rails between the man and him were electrified, he quickly leaped towards the victim, using a high-knee technique from his high school football days.Perry soon reached down and grasped the victim’s wrist. 5 , he felt a powerful electric shock shoot through his body. Perry jumped back. He reached down a second time, and was shocked again. But the third time he seized the man’s wrist and forearm, and managed to move the guy’s body away from the 6 .“Give him chest compressions!” yelled an old lady on the platform.Perry was no expert, but for a few moments h e worked on the man’s heart until the victim regained 7 . Then, first-aiders arrived. Perry let the professionals 8 . Heart still racing from the electric shocks, he climbed back up onto the platform, grabbed his things and continued on to hi s grandfather’s.The evening news reported the incident, 9 an unnamed hero with saving the victim’s life. To many,Perry’s 10 deeds demonstrated the power of choosing compassion over personal safety. 1.A.manager B.client C.grandfather D.aunt2.A.current B.oxygen C.wave D.blood3.A.imagine B.watch C.shout D.record4.A.Hoping B.Assuming C.Complaining D.Recalling5.A.Instantly B.Slightly C.Normally D.Surprisingly6.A.train B.crowds C.platform D.rails7.A.strength B.balance C.consciousness D.control8.A.look ahead B.take over C.get around D.keep away9.A.providing B.engaging C.assisting D.crediting10.A.generous B.grateful C.courageous D.faithful【答案】1.C 2.A 3.B 4.B 5.A 6.D 7.C 8.B 9.D 10.C【导语】本文是一篇记叙文。
扫描电子显微镜下的海藻生物
佚名
【期刊名称】《大自然探索》
【年(卷),期】2005(000)008
【摘要】海洋浮游生物是海洋生物的重要组成部分,它们数量庞大、种类繁多,是海洋不少鱼类和动物的主要食物来源,是海洋食物链中重要的一环。
目前人们对海藻的了解非常少,它们对整个海洋生态环境的影响,以及人类的活动对它们的影响都是科学家所关注的。
【总页数】2页(P10-11)
【正文语种】中文
【中图分类】Q949.254
【相关文献】
1.木薯海藻糖合成酶基因MeTPS6克隆及其在非生物胁迫下的表达分析 [J], 丁泽红;铁韦韦;付莉莉;颜彦;胡伟;;;;;
2.木薯海藻糖合成酶基因MeTPS6克隆及其在非生物胁迫下的表达分析 [J], 丁泽红;铁韦韦;付莉莉;颜彦;胡伟
3.中国热带农业科学院热带生物技术研究所大型海藻研究团队赴泰国开展热带大型海藻资源考察 [J],
4.南非推出海藻类生物质反应器可将海藻类生物质转化成生物燃料 [J],
5.海藻生物液肥应用前景广阔——张树清谈全自动连续酶解法生产海藻生物液肥[J], 陈熙
因版权原因,仅展示原文概要,查看原文内容请购买。
第 32 卷 第 12 期Vol.32,No.12126-1382023 年 12 月草业学报ACTA PRATACULTURAE SINICA 卫宏健, 贺文员, 王越, 等. 丛枝菌根真菌与褪黑素对多年生黑麦草耐热性的影响. 草业学报, 2023, 32(12): 126−138.WEI Hong -jian , HE Wen -yuan , WANG Yue , et al . The effects of arbuscular mycorrhizal fungi and melatonin on the heat tolerance of perennial ryegrass. Acta Prataculturae Sinica , 2023, 32(12): 126−138.丛枝菌根真菌与褪黑素对多年生黑麦草耐热性的影响卫宏健,贺文员,王越,唐明,陈辉*(华南农业大学林学与风景园林学院, 岭南现代农业科学与技术广东省实验室, 广东 广州 510642)摘要:高温胁迫是限制冷季型草生长发育的主要因素。
为探究单独接种丛枝菌根真菌(AMF )和外源褪黑素以及联合应用对多年生黑麦草生长和耐热性的影响,采用盆栽试验测试分析高温胁迫下丛枝菌根真菌和外源褪黑素处理对多年生黑麦草的生长,内源褪黑素含量及其合成基因的表达,抗氧化能力和渗透调节物质含量的影响。
结果表明,高温胁迫明显抑制多年生黑麦草的生长,而外源褪黑素处理提高了AMF 在多年生黑麦草根系中的定殖率。
接种AMF 和/或褪黑素处理均能促进高温胁迫下多年生黑麦草的生长,增加多年生黑麦草根系内源褪黑素含量和上调褪黑素合成基因的表达,降低相对电导率(EL )、丙二醛(MDA )含量和多酚氧化酶(PPO )活性,同时提高根系抗氧化酶(SOD 、POD 、CAT 和APX )和苯丙氨酸解氨酶(PAL )活性,以及类黄酮、脯氨酸、总酚、可溶性糖和甜菜碱的含量。
瑞氏木霉纤维素酶和木聚糖酶启动子的评价与特征摘要关于瑞氏木霉中四种纤维素酶和一种木聚糖酶基因的启动子的综合分析,显示其表达了一种来自于大肠杆菌的单一表达子uidA,从而构建出功能强大的纤维素酶过高产菌株。
GUS基因的表达量低于每个启动子必然与其mRNA基因完全相关,这表明GUS的产量是在转录水平进行控制的。
该uidA基因的转录水平明显低于本地基因的mRNA,但他们的产生与其本地纤维素酶和木聚糖酶基因mRNA的水平相适应,这是由除cbh2启动子之外的同种启动子来推动的。
与野生型T瑞氏木霉PC - 3 - 7和其他uidA基因转化子相比,在cbh1和cbh2 disruptant突变株中其纤维素降解活性及蛋白量下降。
观察发现,与初始PC - 3 –7和其它uidA基因转化子相比,在等量SDS-PAGE胶体蛋白的情况下,该cbh1disruptant突变株产生了更多的CBH II, EG I, EG III和木聚糖酶。
通过应用实时定量PCR对这些转化子纤维素酶和木聚糖酶基因mRNA水平的测定,对这种观察结果进行了进一步分析。
在Pcbh1-gus 中,相应于cbh2和egl1基因的mRNA水平均高于初始T.reesei PC-3-7和其它所有突变菌株。
cbh2突变菌株的cbh1表达量其它所有测试的菌株。
uidA的整合同源基因在egl1,egl3和xyn3位点还发现导致了cbh1 mRNA水平的少量提升,而egl1, egl3, 和xyn3的mRNA水平在所有转化子中与其在T. reesei PC-3-7.中的水平相当。
关键字瑞氏木霉Hypocrea jecorina启动子纤维素酶木聚糖酶介绍矿物燃料燃烧产生温室气体,现在被公认为全球变暖和气候变化的主要原因。
为了降低对化石燃料的依赖,科学家正在探索一系列的替代品。
纤维素生物质由于其可再生性,来源丰富,并且不与粮食作物竞争土地,而被认为是一个有吸引力的替代能源来源。
褪黑素及其在植物中的功能研究进展(英文)
张娜;张海军;杨荣超;黄韫宇;郭仰东
【期刊名称】《农业科学与技术:英文版》
【年(卷),期】2012(13)9
【摘要】褪黑素是一种广为人知的动物激素,在动物中由松果体合成与分泌,参与动物的昼夜节律的调节。
现已发现褪黑素在高等植物中广泛存在,但是目前有关褪黑素在植物中的功能的研究还不是很多。
已有的研究表明,褪黑素在植物中可能的作用有调节光周期、参与生长调节、清除活性氧、提高抗氧化酶活性等。
根据近年的研究结果对植物中褪黑素的作用进行综述,重点阐述已经发现的褪黑素在植物上的功能作用,对其潜在生理功能进行了预测,并指出了目前研究中的不足,突出需要重点研究的方向。
【总页数】5页(P1833-1837)
【关键词】褪黑激素;高等植物;抗氧化酶活性;动物激素;甲氧基色胺;生长调节剂;昼夜节律;生物功能
【作者】张娜;张海军;杨荣超;黄韫宇;郭仰东
【作者单位】中国农业大学,农学与生物技术学院,设施蔬菜生长发育调控北京市重点实验室
【正文语种】中文
【中图分类】Q576;Q949.405
【相关文献】
1.褪黑素在植物中的功能分析 [J], 蒋炎欣
2.植物中褪黑素的研究进展 [J], 赵燕;王东华;赵曦阳
3.褪黑素的动物药理及植物抗逆功能研究进展 [J], 张燕;夏更寿;梅丹妮;张傲
4.植物抗病基因结构、功能及其进化机制研究进展(英文) [J], 刘金灵;刘雄伦;戴良英;王国梁
5.褪黑素在植物中的功能研究进展 [J], 张娜;张海军;杨荣超;黄韫宇;郭仰东
因版权原因,仅展示原文概要,查看原文内容请购买。
2025届安徽省普通高中毕业班8月调研考试英语试题考试时间:120分钟试题总分:150分注意事项1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试卷上作答无效。
3.考试结束后,请将答题卡交回,试卷自行保存。
满分150分,考试用时120分钟。
第一部分听力(共两节,满分30分)略第二部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项。
AWildlife conservation programs are a great way to get involved in the preservation of endangered species, as well as learn how you can help protect them. If you are a wildlife lover, here are some programs you can choose.•Animal Rescue Project, South AfricaYou will be working with experienced conservationists in Cape Town. A significant challenge is to find new homes for homeless dogs and cats. The project comprises two sections: a fully equipped animal hospital and an adoption center focusing on securing new homes. Due to limited funding, the center can only afford a small number of permanent staff, relying heavily on wildlife lovers to assist with daily tasks and provide hands-on care for these animals.•Sea Turtle Conservation Project, Sri LankaRecent years have witnessed a significant decline in the sea turtle’s numbers due to numerous commercial fishing. As a wildlife lover, your role extends to supporting hatcheries(孵化场) in their conservation efforts. Additionally, your involvement helps these hatcheries with funds, as we provide a placement fee for each wildlife lover, enabling them to generate additional income.•Wildlife Conservation Program, AustraliaYou will be engaged in activities such as animal feeding, cleaning, maintenance, and enrichment. This program provides an incredible opportunity to gain firsthand international work experience. For you, this program is an excellent choice. Not only will you contribute to a noble cause, but it also offers a fantastic opportunity to meet people from around the world.•Marine Conservation Program, BaliYou will be working in Tianyar, where the reef is now in a worsening state. The project was initiated to restore and conserve Tianyar’s coral reef, not only to protect its remarkable and delicate ecosystems but also to secure a sustainable future for the residents.21. What problem does the adoption center meet with?A. Insufficient equipment.B. Insecure surroundings.C. Shortage of shelters.D. Lack of hands.22.Which program will offer financial assistance?A. Animal Rescue Project, South Africa.B. Sea Turtle Conservation Project, Sri Lanka.C. Wildlife Conservation Program, Australia.D. Marine Conservation Program, Bali.23. What is the main purpose of the text?A. To promote program cooperation.B. To advocate restoring ecosystems.C. To introduce endangered species protection.D. To encourage engagement in wildlife preservation.BUsers of Google Gemini, the tech giant’s artificial-intelligence model, recently noticed that asking it to create images of Vikings, or German soldiers from 1943 produced surprising results: hardly any of the people depicted were white. Other image-generation tools have been criticized because they tend to show white men when asked for images of entrepreneurs or doctors. Google wanted Gemini to avoid this trap; instead, it fell into another one, depicting George Washington as black. Now attention has moved on to the chatbot’s text responses, which turned out to be just as surprising.Gemini happily provided arguments in favor of positive action in higher education, but refused to provide arguments against. It declined to write a job ad for a fossil-fuel lobby group (游说团体), because fossil fuels are bad and lobby groups prioritize “the interests of corporations over public well-being”. Asked if Hamas is a terrorist organization, it replied that the conflict in Gaza is “complex”; asked if Elon Musk’s tweeting of memes had done more harm than Hitler, it said it was “difficult to say”. You do not have to be a critic to perceive its progressive bias.Inadequate testing may be partly to blame. Google lags behind OpenAI, maker of the better-known ChatGPT. As it races to catch up, Google may have cut corners. Other chatbots have also had controversial launches. Releasing chatbots and letting users uncover odd behaviors, which can be swiftly addressed, lets firms move faster, provided they are prepared to weather (经受住) the potential risks and bad publicity, observes Eth an Mollick, a professor at Wharton Business School.But Gemini has clearly been deliberately adjusted, or “fine-tuned”, to produce these responses. This raises questions about Google’s culture. Is the firm so financially secure, with vast profits from internet advertising, that it feels free to try its hand at social engineering? Do some employees think it has not just an opportunity, but a responsibility, to use its reach and power to promote a particular agenda? All eyes are now on Google’s boss, Sundar Pichai. He says Gemini is being fixed. But doesGoogle need fixing too?24.What do the words “this trap” underlined in the first paragraph refer to?A.Having a racial bias.B.Responding to wrong texts.C.Criticizing political figures.D.Going against historical facts.25.What is Paragraph 2 mainly about?A.Gemini’s refusal to make progress.B.Gemini’s failure to give definite answers.C.Gemini’s prejudice in text responses.D.Gemini’s avoidance of political conflicts.26.What does Eth an Mollick think of Gemini’s early launch?A.Creative.B.Promising.C.Illegal.D.Controversial.27.What can we infer about Google from the last paragraph?A.Its security is doubted.B.It lacks financial support.C.It needs further improvement.D.Its employees are irresponsible.CWe go through life assuming we’re in charge of our own minds —until temptation (诱惑) strikes. Few things better illustrate how little control we really have. You can know exactly what you should do (decline the second slice of cake or the third cocktail), but that hardly seems to matter when the urge arises. More self-discipline is rarely the answer, though. Instead, if you can understand what’s going on inside your head when temptation comes, you’ll be far better placed to make a healthier choice.Sometimes, you need to push yourself, the idea behind which, in psychology, is to make the better choice the easier choice. (School pupils eat more healthily, it’s been shown, when the salads are within easier reach than the chips.) So, instead of relying on willpower, stop keeping ice creams in your freezer! Use StayFocused or similar apps to block distracting websites. Change your environment, and temptation will be a non-issue.For every person, behind every bad habit, there's a reasonable desire: some people eat or drink too much because they're lonely, or smoke to get a break from a busy schedule. Once you’ve uncovered this underlying need, find a different way to meet it: call a friend; take a coffee break instead of a cigarette break. There’s nothingwrong with the need—only with the way you’re currently meeting it.It’s a strange truth that we’ll break all sorts of promises to ourselves— yet most of us wouldnever fail to show up at a prearranged meeting with a friend. Involve others in your temptation-resistance efforts, whether it's asking someone to check in weekly to see if you’re sticking to your plan, or never going shopping alone if you’re subject to impulse purchases. Best of all, launch a joint plan, in which two of you decide to give up a bad habit. That turns a challenge into a fun game.28.What does “that” mean in paragraph 1?A.Temptation.B.Self-awareness.C.Choice.D.Self-motivation.29.Which should be a good choice if you feel worn out from a packed timetable?A.Exercise strong willpower over it.B.Keep ice creams within easy reach.C.Use StayFocused to refresh yourself.D.Chat with a friend over a cup of coffee.30.What does the author suggest you do according to paragraph 4?A.Seek partners’ support.B.Leave challenges behind.C.Keep your promises.D.Say no to playing games.31.What is the text mainly about?A.What causes temptation.B.How to keep temptation at bay.C.Why urges set in.D.How to keep life under control.DChina successfully launched the Chang’e-6 spacecraft on Friday A Long March-5rocket lifted it off from the Wenchang Space Launch Site in Hainan. This was a huge success and a remarkable achievement for China’s space exploration program. The launch not only shows China’s advanced technological abilities but also makes scientists and space lovers around the world excited.Collecting samples from the far side of the moon is a new thing for humanity. We have very little knowledge about this mysterious side. If the Chang’e-6 mission is successful, it will give scientists important and direct facts to know more about the far side’s environment, geological features, and material make-up. This will be an important step forward in our exploration of the moon and the universe as a whole.The Chang’e-6 spacecraft has an orbiter, a lander, an ascender (上升器), and a returner. When it reaches the moon, it will land carefully on the far side. Within 48 hours after landing, a robot arm will carefully collect rocks and soil from the lunar surface. Also, a drill will go into the ground to take samples from deeper layers. At the same time, a series of complex scientific tests and analyses will be done to get valuable data.The far side of the moon is very different from the side we can see. The Apollo basin in the South PoleAitken Basin is chosen as the landing and sampling place for the Chang’e-6 mission. This area is thought to have precious clues about the moon’s formation and development, giving possible ideas about the early history of our celestial (天体) neighbor.This mission has many technical difficulties and needs the latest technologies. It also gets help from international cooperation, showing the spirit of working together in the global search for space exploration. The exploration of the far side of the moon may provide valuable scientific data and open up new possibilities forfuture space activities, such as setting up long- term lunar bases and using lunar resources.The success of the Chang’e-6 mission has the possibility to make more international cooperation in space exploration. It shows China’s strong wish to add to the growth of global knowledge about the universe and encourages other countries to work together to find out the secrets of the universe.32. What is the main purpose of the Chang’e-6 mission?A. To build a base on the far side of the moon.B. To study how the moon moves around.C. To collect and bring back samples from the far side of the moon.D. To look for water on the moon.33. Which of the following is true about the far side of the moon?A. It’s different from the side we can see.B. It’s the same as the side we can see.C. We know a lot about it.D. It has no rocks or soil.34. What might the exploration of the far side of the moon lead to?A. No change in the future.B. New chances for space activities.C. Fewer friends for China in space.D. No new technologies.35. What could be a suitable title for this passage?A. “The Mystery of the Moon”B. “The Far Side of the Moon: Unknown Territory”C. “Space Exploration and Challenges”D. “China’s Chang’e-6 Mission: Unveiling the Secrets of the Moon’s Far Side”第二节(共5小题;每小题2.5分,满分12.5分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
小学上册英语第一单元测验试卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.The flowers are ______ in the garden. (blooming)2.The ______ is known for her supportive nature.3.I enjoy _____ (fishing/hunting) in the summer.4.On the farm, there are many ______ (动物). I like the ______ (小羊) because it is fluffy and soft.5.I like to _____ (制作) handmade gifts.6. A ________ (园艺) enthusiast loves planting.7.The _______ is home to various creatures.8.I like to ______ (玩) in the park after school.9.I love _____ (春天) flowers.10. A substance that can act as a reducing agent is called a ______ agent.11.The owl's feathers are designed for ________________ (静音) flight.12.How many teeth does an adult human have?A. 20B. 24C. 28D. 3213.I love _____ (spending/spent) time with friends.14.I like to ______ (参加) environmental activities.15.The leaves on the _______ turn red in autumn.16.The ant is very _________. (忙碌)17.I like to ride my ________ (摩托车) on weekends.18. A ______ is used to measure temperature.19.What do we call the area of land that is below sea level?A. BasinB. DepressionC. TrenchD. All of the above答案:D All of the above20. A ______ (青蛙) has webbed feet for swimming.21. A solution with a pH below is ______.22.What do you call the natural satellite that orbits the Earth?A. StarB. PlanetC. MoonD. Comet23.The mouse is very _______ (小心) when looking for food.24.The first successful human flight in space occurred in ________.25.There are ten _____ (students) in the class.26. A _______ is a type of mixture where the components are not evenly distributed.27.What do you use to draw?A. PencilB. ForkC. SpoonD. Plate28.The ______ (蚂蚁) works hard to gather food.29.My house has a big ______.30.My friend gave me a ______ (拼图) for my birthday. It has many pieces and is very ______ (有趣的) to do.31.I have a ___ (hobby/job) that I enjoy.32. A solution can be diluted by adding more ______.33.The chemical formula for potassium nitrate is ______.34.An endothermic reaction absorbs ______ from the environment.35.The ______ (气味) of flowers can be very pleasant.36.My mother is a _____ (护士) who loves her job.37.The __________ (历史的思考方式) shape our discourse.38.The Stone Age is known for the use of _______ tools.39.What do we call the study of living things?A. ChemistryB. BiologyC. PhysicsD. Geography答案:B40.What is the capital of Sweden?A. OsloB. CopenhagenC. StockholmD. Helsinki答案:C41.The discovery of ________ has drastically changed our approach to agriculture.42. A _______ (小海星) has five arms and lives in the sea.43. A _______ is a combination of two or more elements that are physically blended but not chemically combined.44.What do we call the place where we learn?A. SchoolB. HospitalC. OfficeD. Farm答案:A45.The fall of the Western Roman Empire occurred in ________ (公元476年).46.The _____ (peach) tree bears sweet fruit.47.I collect _____ (邮票).48.My sister loves to __________ (帮助) younger kids.49.Many cultures celebrate the __________ (植物的生长季节).50. A gas at high pressure can be compressed to form a ______.51.We have a ______ of friends at school. (group)52.The country famous for its fashion is ________ (法国).53.What is the term for a baby bird?A. ChickB. CalfC. PupD. Kit答案:A54.What do you call a baby kangaroo?A. JoeyB. CubC. PupD. Kit55.Sarah is my ______. We play together every day.56.Many plants are _____ (雌雄同体), meaning they have both male and female parts.57.The chemical formula for tartaric acid is ______.58.We had a _________ (玩具派对) where everyone brought their favorite toys.59.What is the name of a baby horse?A. CalfB. FoalC. KidD. Pup60.She is _______ (smiling/crying) because she is happy.61.What do we call the tall structures that touch the sky?A. MountainsB. TreesC. BuildingsD. Hills答案:C62.The ______ is a talented dancer.63.My grandpa is a very nice ____.64.My family celebrates every ____.65.I call my dad “.”66.What do you call the time when the sun goes down?A. SunriseB. SunsetC. NoonD. Midnight67. A compound that has both acidic and basic properties is called an ______.68.The firefighter saves _____ (生命) during emergencies.69.The butterfly emerges from its _________ (蛹).70.I like to _____ (读书) in my spare time.71.The ______ is a talented public speaker.72. A wave can carry energy and information through ______.73.The center of our solar system is the ______.74.Plants can grow in ______ (不同的) environments.75.What is the term for the sudden appearance of a new star in the sky?A. NovaB. SupernovaC. PulsarD. Variable Star76.What do we celebrate on the Fourth of July in the USA?A. ThanksgivingB. Independence DayC. ChristmasD. New Year答案:B77.Which tool is used to cut paper?A. ScissorsB. KnifeC. RulerD. Stapler78.The frog jumps from ______ to ______.79.The _____ (小鸟) fluffs its feathers in the cold.80.How many colors are in the rainbow?A. 5B. 6C. 7D. 881.I like to play with my _________ (拼图) while listening to music.82.What is the color of snow?A. WhiteB. BlackC. GrayD. Blue83.Metalloids have properties of both ________ and nonmetals.84.What do we call the movement of people from one place to another?A. MigrationB. TravelC. DisplacementD. Relocation答案:A85.The crab has a hard _______ (外壳).86.The ______ helps people stay fit.87.Understanding how plants interact with their ______ is essential for ecology. (了解植物如何与环境相互作用对生态学至关重要。
HeteRecom:A Semantic-based Recommendation Systemin Heterogeneous NetworksChuan ShiBeijing University of Posts and TelecommunicationsBeijing,China shichuan@Chong ZhouBeijing University of Posts andTelecommunicationsBeijing,Chinazhouchong90@Xiangnan KongUniversity of Illinois at ChicagoIL,USAxkong4@Philip S.Yu University of Illinois atChicago,IL,USA King Abdulaziz University Jeddah,Saudi Arabia psyu@Gang LiuBeijing University of Posts andTelecommunicationsBeijing,Chinaliugangofbupt@Bai WangBeijing University of Posts andTelecommunicationsBeijing,Chinawangbai@ABSTRACTMaking accurate recommendations for users has become an important function of e-commerce system with the rapid growth of WWW.Conventional recommendation systems usually recommend similar objects,which are of the same type with the query object without exploring the semantics of different similarity measures.In this paper,we organize objects in the recommendation system as a heterogeneous network.Through employing a path-based relevance mea-sure to evaluate the relatedness between any-typed objects and capture the subtle semantic containing in each path, we implement a prototype system(called HeteRecom)for semantic-based recommendation.HeteRecom has the fol-lowing unique properties:(1)It provides the semantic-based recommendation function according to the path specified by users.(2)It recommends the similar objects of the same type as well as related objects of different types.We demon-strate the effectiveness of our system with a real-world movie data set.Categories and Subject DescriptorsH.2.8[Database Management]:Database applications-Data MiningGeneral TermsAlgorithms,Design,ExperimentationKeywordsheterogeneous information network,recommendation,simi-larity,semantic search 1.INTRODUCTIONWith the rapid growth of WWW,we are being surround-ed by a large amount of information on the web.Recom-mendation is an effective way to reduce the cost forfinding information.It has been widely used in many e-commerce applications,such as Amazon,eBay,and Taobao.Many recommendation methods have been proposed,which can be roughly classified into two categories:content-based filtering(CB)and collaborativefiltering(CF).CB analyzes correlations between the content of the items and the user’s preferences[1].CF analyzes the similarity between users or items[2].These methods have been applied to recommen-dation systems and achieved great success.However,these recommendation systems have the following disadvantages.•Conventional recommendation systems usually recom-mend similar products to users without exploring thesemantics of different similarity measures.However,the similar products are often different based on simi-larity semantics.For example,in the movie recommen-dation,the similar movies based on the same actorsare different from those based on the same directors.Conventional systems usually give a recommendationwithout considering the subtle implications of similar-ity semantics.The proposed system is more appeal-ing to provide a semantic recommendation function,which will give more accurate recommendation whenusers know their intents.•Conventional systems only recommend same-typed ob-jects.However,a system may be more useful if it si-multaneously recommends more related objects underdifferent semantics.For example,when users selectmovies,the system not only recommends the similarmovies,but also suggests some related actors and di-rectors(note that they are not limited to the actorsand directors of this movie).The user mayfind aninteresting actor and then search the movies of the ac-tor.The relevance recommendation will provide richerinformation and enhance user experience. Nowadays,social networks consisting of different types of information become popular.Particularly,the advent ofPermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.KDD’12, August 12–16, 2012, Beijing, China.Copyright 2012 ACM 978-1-4503-1462-6/12/08...$15.00.(a)Heterogeneous net-work of movie data(b)Network schemaFigure1:An example of heterogeneous information network and its schema.the Heterogeneous Information Networks(HIN)[3]provides a new perspective to design the recommendation system. HINs are the logical networks involving multiple-typed ob-jects and multiple-typed links denoting different relations. It is clear that HINs are ubiquitous and form a critical com-ponent of modern information infrastructure[3].Although the bipartite network[5]has been applied to organize com-ponents of recommendation system,HIN is a more general model which contains more comprehensive relations among objects and much richer semantic information.Fig.1(a) shows an HIN example on the movie recommendation data. The network includes the richer objects(e.g.,movie,actor, director)and their relations.The network structure can be represented with the star schema as shown in Fig.1(b). HIN has an unique property[6,7]:the different paths con-necting two objects have different meanings.For example,in Fig.1(b),movies can be connected via“Movie-Actor-Movie”(MAM)path,“Movie-Type-Movie”(MTM)path,and so on. It is clear that the semantics underneath these paths are d-ifferent.The MAM path means that movies have the same actors,while the MTM path means that movies have the same types.Here the meta path connecting two-typed ob-jects is defined as relevance path[6].Obviously,the distinct semantics under different relevance paths will lead to differ-ent relatedness and recommendation.Focusing on non-personalized recommendation,this pa-per demonstrates a semantic recommendation system,called HeteRecom.Different from conventional recommendation systems,it is based on HIN.Generally,HeteRecom has the following unique features.(1)Semantic recommendation. The system can recommend objects of the designated type based on the relevance path specified by users.(2)Rel-evance recommendation.Besides the same-typed objects recommendation,the system can recommend other related objects.The implementation of HeteRecom faces the following challenges.(1)Relevance measure of heterogeneous object-s.In order to recommend the different-typed objects,the system needs to measure the relatedness of different-typed objects.(2)The weight learning method.It is a key issue for an integrated recommendation to automatically deter-mine the weights of different relevance paths.(3)Efficien-t computing strategies.In order to provide online service, the recommendation system needs to efficiently compute the relevance measure.In order to solve these challenges,the HeteRecom systemfirst applies a path-based relevance mea-sure,which can not only effectively measure the relatedness of any-typed objects but also subtly capture the semantics containing in the relevance path.Besides,a heuristicweightFigure2:The architecture of HeteRecom system. learning method can automatically determine the weight-s of different paths.Moreover,many computing strategies are designed to handle huge graph data.This paper demon-strates the effectiveness of HeteRecom on the real movie data through providing online semantic and relevance rec-ommendation services.2.OVERVIEW OF SYSTEMFig.2shows the architecture of HeteRecom,which main-ly consists of four components:•Data extraction:it extracts data from different data source(e.g.,database and web)to construct the net-work.•Network modeling:it constructs the HIN with a given network schema.According to the structure of da-ta,users can specify the network schema(e.g.,bipar-tite,star or arbitrary schema)to construct the HIN database.The database provides the store and index functions of the node table and edge table of the HIN.•Network analysis:it analyzes the HIN and provides the recommendation services.Itfirst computes and stores the relevance matrix of object pairs by the path-based relevance measure.Based on the relevance matrix and efficient computing strategies,the system can provide the online semantic recommendation service.Through the weight learning method,it can combine the rele-vance information from different semantic paths and provide online relevance recommendation service.•Recommendation service:it provides the succinct and friendly interface of recommendation services.3.IMPLEMENTATION OF SYSTEMIt is challenging in many ways to implement these com-ponents.First,it is difficult to measure the relatedness of any-typed objects in a HIN.Second,It is not easy to com-bine those recommendation information on different seman-tic paths.Third,there are many challenges in the computa-tion and storage of huge relevance matrix.In the following section,we will present the solutions to these challenges.3.1A Path-based Relevance MeasureThis paper applied the HeteSim[6],a path-based rele-vance measure,to do semantic recommendation.The basic idea behind HeteSim is that similar objects are related to similar objects.The HeteSim is defined as follows. Definition1.HeteSim[6]:Given a relevance path P=R1◦R2◦···◦R l,HeteSim between two objects s and t (s∈R1.S and t∈R l.T)is:HeteSim(s,t|R1◦R2◦···◦R l)=1|O(s|R1)||I(t|R l)||O(s|R1)|∑i=1|I(t|R l)|∑j=1HeteSim(O i(s|R1),I j(t|R l)|R2◦···◦R l−1)(1)where O(s|R1)is the out-neighbors of s based on relation R1,I(t|R l)is the in-neighbors of t based on relation R l,and R.S(R.T)represents the source(target)object of relation R,respectively.Essentially,HeteSim(s,t|P)is a pair-wise random walk based measure,which evaluates how likely s and t will meet at the same node when s follows along the path and t goes against the path.The path implies the semantic information and HeteSim evaluates the relatedness of any-typed object pairs according to the given path.The HeteSim measure has shown its potential in object profiling,expertsfinding, and relevance search.The detailed information can be seen in[6].Since relevance paths embody different semantics,users can specify the path according to their intents.The seman-tic recommendation calculates the relevance matrix with HeteSim and recommends the top k objects.3.2Weight Learning MethodThere are many relevance paths connecting the query ob-ject and related objects,so the relevance recommendation should comprehensively consider the relevance measures based on all relevance paths.It can be depicted as follows.Sim(A,B)=N∑i=1w i∗HeteSim(A,B|P i)(2)where N is the number of relevance paths,P i is a relevance path connecting the object types A and B,w i is the weight of path P i.Although there can be infinite relevance paths connecting two objects,we only need to consider those short paths,since the long paths are usually less important[7]. The next question is how to determine the weight w i.The supervised learning[4]can be used to estimate these param-eters.However,it is impractical for an online system:(1)It is time-consuming,even impractical,to learn these parame-ters on an online system.(2)It is very labor intensive and subjective work to label those learning instances.Here we propose a heuristic weight learning method.The importance(I)of a path P=R1◦R2◦···◦R l is determined by its strength(S)and length(l).Obviously, the path strength is decided by the strength of relations constructing the path,which can be defined as follows.S(P)=l∏i=1S(R i)(3)The strength of a relation A R−→B is related to the degreeof A and B based on R.Intuitively,if the mutual connectivelinks between A and B are smaller,they are more importantto each other,so their relation strength is stronger.Forexample,the relation strength between movie and director(MD)is stronger than that between movie and type(MT).So we can define the relation strength as follows.S(R)=(O(A|R)I(B|R))−α(α∈[0,1])(4)where O(A|R)is the average out-degree of type A and I(B|R)is the average in-degree of type B based on relation R.The importance(I)of the path P is positively correlativeto the path strength(S)and negatively correlative to thepath length(l).Here we define it as follows.I(P)=f(S,l)=e S−l(5)For multiple paths(P1,P2,···,P N),the weight(w i)of pathP i isw i=I i∑i=1I i(6)In HeteRecom,we consider all relevance paths whoselength is smaller than a threshold Len.The relevance rec-ommendation combines the relevance measure results of allthese paths with the weight learning method and makes anintegrated recommendation.3.3Efficient Computing StrategiesAs an online recommendation system,HeteRecom needsto do a real-time recommendation for user’s query.Howev-er,a HIN is usually huge and the computation of HeteSimis time-consuming.So the system employed many efficientcomputing strategies.Three basic strategies are depicted asfollows.Off-line computation.The primary strategy is to com-pute relevance matrix off-line and make recommendationsonline.For frequently-used relevance paths,the relevancematrix HeteSim(A,B|P)can be calculated ahead of time.The online recommendation on HeteSim(a,B|P)will bevery fast,since it only needs to locate the position in thematrix.Fast matrix multiplications.The most time-consumingcomponent in the system is the matrix multiplications inHeteSim.There are many frequent patterns in relevancepaths.Since the matrix multiplications satisfy the associa-tive law,we can precede to compute the product of frequentpatterns iteratively.Moreover,those frequent patterns onlyneed to be computed once.For example,we only need tocompute the frequent pattern AMA once for the symmetricpath AMAMA.Since the short pattern is more frequent,weonlyfind the most frequent relation pair in each iteration.Matrix sparsification.The relevance matrix often be-comes denser along the matrix multiplications[4].The densematrix may cause two difficulties.(1)It is time and spaceexpensive to do matrix multiplications.(2)It costs a lotof time and huge memory to load and search these denserelevance matrix.As a consequence,we need to sparsifythe reachable probability matrix along the matrix multipli-cations without much loss of accuracy.The basic idea is totruncate those less important nodes whose relevance valueis smaller than a thresholdε.The static threshold[4]isnot suitable,since it may truncate some important nodes(a)Semantic recommendation based on MAMpath (b)Relevance recommendationFigure 3:The HeteRecom prototype system.with small relevance values and keep those unimportant n-odes with large relevance values.Since we usually pay close attention to the top k recommendation,we set the thresh-old εas the top k relevance value of the matrix.The k is dynamically adjusted as follows.k ={L if L ≤W⌊(L −W )β⌋+W (β∈[0,1])others where L is the vector length.W is the threshold which deter-mines the size of non-zero elements.The larger W or βmay lead to the denser matrix with less loss.In order to quick-ly determine the top k relevance value,it is approximately computed with the sample data from the raw matrix.4.DEMONSTRATIONWe showcase the HeteRecom prototype system using IMD-B movie data as the example application.The IMDB movie data was downloaded from The Internet Movie Database 1.The IMDB movie data collects 1591movies before 2010.The related objects include actors,directors and types,which are organized as a star schema shown in Fig.1(b).Fig.3demonstrates the interface of the HeteRecom sys-tem,which is developed with Java.The left part of in-terface shows the basic information of the data set.The right part shows the recommendation results.In the se-mantic recommendation,users specify the key words and semantic path,the recommendation results will be exhibit-ed in the panel.Fig.3(a)shows the movies with the same actors of “Iron Man”by specified the “MAM”path.The HeteRecom can make many recommendations that conven-tional systems cannot do.For example,recommending the movies that have the same style with the movies of “Arnold Schwarzenegger”can be done by the path AMT M .In the relevance recommendation,the system can simultaneously recommend different-typed objects.Fig.3(b)shows the recommendation results of the movie “Iron Man”,which in-cludes the similar movies and related actors,directors and types.We can make many interesting recommendations on HeteRecom .For example,if we want to know the informa-tion about the action movie,we can search “action”.The system will recommend related action movies,actors and directors.1/Note that this is an ongoing project.We will provide web service on internet and a more friendly interface will be implemented with visualization techniques.Moreover,HeteRecom is a general tool to do recommendation on HIN.Other recommendation tasks can be easily loaded into this system through extracting the HIN from the raw data.In addition,user preference can also be integrated into the HeteRecom system.5.CONCLUSIONThis paper studied the recommendation problem from the heterogeneous network angle and designed a novel recom-mendation system:HeteRecom .The HeteRecom system has two unique properties:semantic recommendation and relevance recommendation.The HeteRecom demonstrates its effectiveness on the real-world movie data set.Acknowledgments.It is supported by the National Natural Science Foundation of China (No.60905025,61074128,61035003).It is also sup-ported by the Fundamental Research Funds for the Central Universities.6.REFERENCES[1]M.Balabanovic and Y.Shoham.Content-basedcollaborative mun.ACM ,40(3):66–72,1997.[2]J.Breese,D.Heckerman,and C.Kadie.Empiricalanalysis of predictive algorithms for collaborative filtering.In UAI ,pages 43–52,1998.[3]J.Han.Mining heterogeneous information networks byexploring the power of links.In DS ,pages 13–30,2009.[4]o and W.Cohen.Fast query execution forretrieval models based on path constrained random walks.In KDD ,pages 881–888,2010.[5]M.Shang,L.Lu,Y.Zhang,and T.Zhou.Empiricalanalysis of web-based user-object bipartite networks.In EPL 90(0120)48006,2010.[6]C.Shi,X.Kong,P.S.Yu,and S.Xie.Relevance searchin heterogeneous networks.In EDBT ,2012.[7]Y.Sun,J.Han,X.Yan,P.Yu,and T.Wu.Pathsim:Meta path-based top-k similarity search inheterogeneous information networks.In VLDB ,pages 992–1003,2011.。