当前位置:文档之家› 压电陶瓷特性分析(一) 压电效应

压电陶瓷特性分析(一) 压电效应

压电陶瓷特性分析(一) 压电效应
压电陶瓷特性分析(一) 压电效应

压电陶瓷特性分析(一)

压电效应

压电效应是1880年由居里兄弟在α石英晶体上首先发现的。它是反映压电晶体的弹性和介电性相互耦合作用的,当压电晶体在外力作用下发生形变时,在它的某些相对应的面上产生异号电荷,这种没有电场作用,只是由于形变产生的现象称为正压电效应。当压电晶体施加一电场时,不仅产生了极化,同时还产生了形变,这种由电场产生形变的现象称为逆压电效应,逆压电效应的产生是由于压电晶体受到电场作用时,在晶体内部产生了应力,这应力称为压电应力,通过它的作用产生压电应变,实验证明凡是具有正压电效应的晶体,也一定具有逆压电效应,两者一一对应[92]。

任何介质在电场中,由于诱导极化的作用,都会引起介质的形变,这种形变与逆压电效应所产生的形变是有区别的。电介质可能在外力作用下而引起弹性形变,也可能受外电场的极化作用而产生形变,由于诱导极化作用而产生的形变与外电场的平方成正比,这是电致伸缩效应。它所产生的形变与外电场的方向无关。逆压电效应所产生的形变与外电场成正比例关系,而且当电场反向时,形变也发生变化(如原来伸长可变为缩短,或者原来缩短可变为伸长)。此外,电致伸缩效应在所有的电介质中都具有,不论是非压电晶体还是压电晶体;只是不同结构的电介质晶体的电致伸缩效应的强弱不一样。而逆压电效应只有在压电晶体中才具有。

能产生压电效应的晶体叫压电晶体。一类压电晶体是单晶,如石英(SiO2),酒石酸钾钠(又称洛瑟盐,NaKC4H4O6?H2O),锗酸铋(Bi12GeO20)等。另一类压电晶体

称为压电陶瓷,如钛酸钡(BaTiO3),锆钛酸铅[Pb(Zr x Ti rx)O3,代号PZT],日本制成的铌镁锆钛酸铅[Pb(Mg1/3Nb2/3)O3加入PZT,代号PCM],中国制成的锑锰锆钛酸铅[Pb(Mn1/2Sb2/3)O3加入PIT代号PMS]等。

电介质的极化

压电晶体都是电介质,而且是各向异性电介质,因此压电晶体的介电性质与各向同性电介质的介电性质是不同的。

电介质在电场作用下要产生极化,极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间的相互吸引力的暂时平衡统一的状态。电场是极化的外因,极化的内因在于介质的内部,随着介质内部的微观过程的不同,极化的主要机理有三种[97]。

(1) 组成电介质的原子或离子,在电场

作用下,带正电荷的原子核与其壳层电子

的负电中心出现不重合,从而产生电偶极

矩,这种极化称为电子位移极化。

(2) 组成电介质的正负离子,在电场

作用下发生相对位移,从而产生电偶极

矩,这种极化称为离子位移极化。

(3) 组成电介质的分子是有极分子,具有一定的本征电矩,但由于热运动,取向是无序的,整个电介质的总电矩为零(图5.1)。当外电场作用时,这些电偶极矩将

发生沿外场的定向排列,从而在电介质中产生宏观电偶极矩,这种极化称为取向极化。

一、无极分子的位移极化

当无极分子电介质处在外电场中时,在电场力作用下,分子的正负电荷中心将产生相对位移形成一个电偶极子,它们的等效电偶极矩P的方向都沿着电场的方向(图5.2),对于一块电介质整体来说,由于电介质中每一个分子都形成了电偶极子,它们在电介质中作如图 5.3所示的排列。在电介质内部相邻电偶极子的正负电荷相互靠近,如果电介质是均匀的,那么,在它内部处处仍然保持电中性,但是在电介质的两个和外电场强度E0相垂直的表面上,将分别出现正电荷和负电荷(图5.3),这些电荷不能离开电介质,也不能在电介质中自由移动,称之为极化电荷。这种在外电场作用下,在电介质中出现极化电荷的现象叫电介质的极化。外电场愈强,每个分子的正负电荷中心之间的相对位移愈大,分子的电偶极矩也愈大,电介质两表面上出现的极化电荷也愈多,被极化的程度愈高。当外电场撤去后,正负电荷的中心又重合在一起(P=0),所以这类分子可看作由两个异号等量的等效电荷以弹性力相联系的一个弹性电偶极子,其电偶极矩P的大小与场强成正比,由于无极分子的极化在于正负电荷中心的相对位移,所以常叫做位移极化.

二、有极分子的取向极化

至于有极分子电介质,分子中正负电荷的中心本来就等效为一个电偶极子,它在外电场的作用下,将受到力矩的作用,使分子的电偶极矩P转向电场的方向(图5.4),因为分子热运动的干扰,这种转向是微小的,不可能使所有分子的电偶极矩都沿着电场方向排列起来(图5.5)。外电场愈强,分子的电偶极矩的转向排列也愈整齐,在宏观上,在电介质与外电场垂直的两表面上出现的极化电荷也愈多,被极化的程度也愈高。当外电场撤去后,由于分子的热运动而使分子的电偶极矩的方向又变成无规则的排列,电介质仍呈中性。有极分子的极化在于等效电偶极子转向外电场的方向,所以叫取向极化。一般说来,分子在取向极化的同时,也还存在着位移极化。

无极分子和有极分子这两类电介质极化的微观过程虽然不同,但宏观的效果却是相同的,都是在电介质的两个相对表面上出现了异号的极化电荷,且外电场愈强,所出现的极化电荷也愈多。因此,下面从宏观上描述电介质的极化现象时,就不必分为两种电介质来讨论。

晶体的铁电性

有些电介质的极化现象很是特殊,在一定的温度范围内,它们的介电常数并不是常量,而是随场强而变化的,并且在撤去外电场后,这些电介质并不成为中性,而有剩余的极化。为了和铁磁性物质能保持磁化状态相类比,通常把这种性质叫做铁电性[94]。具有铁电性的电介质则叫做铁电体。其中以钛酸钡陶瓷(BaTiO3),酒石酸钾钠单晶(NaKC4H4O6?H2O)等最为突出[95]。

铁电体在电极化过程中将显示出电滞现象(图5.6)。电滞回线表明,铁电体的极化强度与外加电场之间呈现非线性关系,且极化强度随外电场反向而反向。极化强度反向是电畴反转的结果,所以电滞回线表明铁电体中存在电畴,所谓电畴就是铁电体中自发极化方向一致的小区域,电畴与电畴之间的边界称为畴壁[97]。铁电晶体通常是多电畴体,每个电畴中的自发极化具有相同的方向,不同电畴中自发极化强

度的取向间存在着简单的关系,如图5.7。

对于多晶铁电体,由于各晶粒间晶轴取向的完全任意性,因此就整个多晶体而言,不同电畴中自发极化的相对取向之间没有任何规律性。

铁电体一般不能自发地形成单电畴,但在强的外电场下可使多畴晶体单畴化。在强的外电场作用下,多畴晶体中自发极化平行或接近于外场方向的电畴体积将由于新畴核的形成和畴壁的运动而迅速扩大,其它方向的电畴体积则迅速减小并消失,使整个晶体变成一个单电畴体。在外电场作用下,新畴核和畴壁运动的动力学过程称为电畴的反转过程。这种反转具有某种滞后特性,因此铁电体显示出前述的电滞回线。

为讨论简化计,在此只考虑单晶体,并假定自发极化的取向只有两种可能—沿某晶轴的正向和负向;外电场方向平行于极化轴。当外电场为零时,晶体中相邻电畴的极化方向相反,晶体的总电矩为零。当外电场逐渐增加,自发极化方向与电场方向相反的那些电畴体积将由于电畴的反转而逐渐减小,与电场方向相同的那些电畴则逐渐扩大,于是晶体在外场方向的极化强度随着电场增加而增加,如图 5.6中O-A段曲线所示。当电场增大到足够使晶体中所有反向电畴均反转到外场方向时,晶体变成单畴体,晶体的极化达到饱和,如图5.6中C附近部分所示。此后电场再增加,极化强度将随电场线性增加(与一般电介质的极化相同),并达到最大值P max,P max是最高极化电场的函数。将线性部分外推至电场为零时,在纵轴上所得截矩Ps 称为饱和极化强度,实际上它就是每个电畴原来所具有的自发极化强度。当电场从图中C处开始减小时,极化强度将沿C-B曲线逐渐下降。电场减至零时,极化强度下降至某一数值P r,P r称为铁电体的剩余极化强度。电场改变方向,并沿负值方向增加到E c时,极化强度下降至零,反向电场再继续增加,极化强度反向,E c就称为铁电体的矫顽场强。随着反向电场的继续增加,极化强度沿负梯度方向继续增加,并达到负方向的饱和值(-P r),整个晶体变为具有负向极化的单畴晶体。若电场由高的负值连续变化到高的正值时,正方向的电畴又开始形成并生长,直到整个晶体再一次变成具有正向极化的单畴晶体。在这个过程中,极化强度沿回线的FGH部分回到C点。这样,在大的交变电场作用下,电场变化一周,上述过程就重复一次,显示出图5.6所示的电滞回线。回线包围的面积就是极化强度反转两次所需的能量。

压电陶瓷微位移器件性能分析

压电陶瓷微位移器件性能分析 我国1426所在80年代研制出的WTDS-I型电致伸缩微位移器在国内许多研究部门得到应用,但生产单位没有及时对该器件的迟滞、蠕变、温度特性,尤其是动态特性进行必要的研究。作者根据本文的研究需要,对国内应用该产品的情况进行了大量调研和实验研究,从而获得了一些有关该产品性能的情况,现介绍如下: 一、迟滞及蠕变特性 图5.9是作者测得的WTDS-I电致伸缩微位移器的电压 位移实验曲线。从实验中发现,在高压段,微位移器出现蠕变现象,即在一定电压下,位移达到一定值后随时间缓慢变化,在较长的时间内达到稳定值,这一现象是微位移器内部电介质在电场作用下的极化驰豫造成的。图5.10是在300伏时,微位移器位移随时间的变化曲线。 二、温度特性 原航空航天部303所对WTDS-I型电致伸缩微位移器的温度特性进行了测试。图5.11是在一定电压下,微位移器的伸长量与温度的关系曲线,当温度低于0℃或超过20℃时,伸长量变小。 三、压力特性 在作者的要求下1426所对WTDS-I型电致伸缩微位移器的压力特性作了实验,图5.12是实验曲线,该曲线表示在某一电压下器件伸长量(不包括器件因受力而产生的压缩量)与压力的关系,△S表示在某一压力下的伸长量,S0表示空载时的伸长量,303所也做了这一实验,其结果相同。从图中可以看出:压力对位移量的影响不大。 四、刚度特性 刚度是指器件本身抵抗外力而产生变形的能力。哈尔滨工业大学机械系对WTDS-IB型电致伸缩微位移器件作了这方面的实验。图5.13是刚度特性曲线,在不加电压的情况下,得到的器件压缩量与压力的关系。压缩量—力回归关系式为: S = 0.155F + 2.96 其中S—器件的压缩量(μm) , F—施加外力 (N) 其相关系数为:r = 0.988 刚度为: 6.45(N/μm) 从图5.13中可以看出:在载荷较小时压缩量随载荷的加大而增加较快,而在载荷较大时压缩量随载荷的加大而增加较慢,且基本呈直线关系增加。这主要是 由于器件的叠堆结构造成的,叠堆是由多 片压电陶瓷薄片粘接而成,各薄片间的接 触刚度较差,随外力的增加,由于接触变 形使接触面积增大,刚度提高,因而出现 了如图5.13所示的压缩量与载荷的关系曲 线。 图5.14为在不同压力下的电压—位移曲线。从图中可以看出,微位器的位移随载荷的增加而减小,但电压—位移关系曲线的基本形状不变。

压电陶瓷材料及应用

压电陶瓷材料及应用 一、概述 1.1电介质 电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。美国MIT建立了以Hippel教授为首的绝缘研究室。苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。 我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。80年代初中国电工技术学会又建立了工程电介质专业委员会。 近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。主要有: (1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。 (2)、化学功能陶瓷如各种传感器、化学泵等。 (3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。(电介质物理——邓宏)

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨 率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力 通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。 关键词:压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)

迟滞比较器

迟滞比较器单门限电压比较器虽然有电路简 单、灵敏度高等特点,但其抗干 扰能力差。例如,在单门限电压v中含XX_01中,当比较器的图I有噪声或干扰电压时,其输入和所示,输出电压波形如图XX_01VvV附近出现干扰,由于在==REFthI VvV,导致将时而为,时而为OLOOH比较器输出不稳定。如果用这个v去控制电机,将出现输出电压O频繁的起停现象,这种情况是不允许的。提高抗干扰能力的一种方案是采用迟滞比较器。.电路组成1迟滞比较器是一个具有迟滞回环所示为特性的比较器。图XX_02aXX_01 图反相输入迟滞比较器原理电路,它是在反相输入单门限电压比较 器的基础上引入了正反馈网络,如其传输特性如图XX_02b所示。Vv位置互换,就可组成将与REFI同相输入迟滞比较器。 (a) 2.门限电压的估算 由于比较器中的运放处于开环状态或正反馈状态,因此一般情况vv不下,输出电压与输入电压IO成线性关系,只有在输出电压发生跳变瞬间,集成运放两个输入(b) 端之间的电压才可近似认为等于图XX_02 零,即 (1)或

设运放是理想的并利用叠加原理,则有 (2) word 编辑版. vVVVV和下门限电压的不同值(根据输出电压),可求出上门限电压或TOLOT+–OH分别为 (3) (4) 门限宽度或回差电压为 (5) ,则由式(3)~(5)XX_02a所示,且可求得设电路参数如图 ,和。 3.传输特性 开始讨论。设从,和 vvv增加当由零向正方向增加到接近前,不变。当一直保持IOI

vVvVV下跳到下跳到,到略大于。再增加,,则同时使由POLOHOI v保持不变。O vv不变,将始终保持只有当,则若减小,只要oI V。其传输特性如图XX_02b跳到所示。时,才由OH v的变化而改变的。由以上分析可以看出,迟滞比较器的门限电压是随输出电压o它的灵敏度低一些,但抗干扰能力却大大提高了 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持) word 编辑版. word 编辑版.

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电陶瓷的特性及应用举例

. 压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应正压电效应是指压电陶瓷受到特定方向外力压电效应可分为正压电效应和逆压电效应。又缓慢恢复到不带电的的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,压电陶瓷会随之发生形变位移,逆压电效应是指在对压电陶瓷的极化方向上施加电压,状态;电场撤去后,形变会随之消失。'. .

Δ纳米级分辨率,虽然形变量非常小,但可通过改变电场强1%压电陶瓷的形变量非常小,一般都小于度非常精确地控制形变量。压电陶瓷的分辨它的分辨率可达原子尺度。压电陶瓷是高精度致动器,在实际使用中,率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力出力对于小尺寸的压电陶瓷,压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。'. . Δ响应时间快

电的时间,。达毫秒至亚毫秒量级。最快响应时间取决于压电陶瓷的谐振频率,一般为谐振时间的1/3 压电陶瓷被广泛应用于阀门与快门技术中。 Δ迟滞即压电陶瓷升压曲线和降尽管压电陶瓷具有非常高的分辨率,但它也表现出迟滞现象,上升曲线和下降曲线上的位移值有明显的位移在同一个电压值下,压曲线之间存在位移差。驱动电压越小则位移差也会相应越小,差,且这个位移差会随着电压变化范围的改变而改变,15%10%压电陶瓷的迟滞一般在给定电压对应位移值的-左右。'. . Δ蠕变而是位移值不是稳定在一固定值上,蠕变是指当施加在压电陶瓷的电压值不再变化时,内蠕变量约为10s随着时间缓慢变化,在一定时间之后才会达到稳定值,如右图所示。一般 1%~2%。伸长量的

压电陶瓷的测试 -

第二章压电陶瓷测试 2.4 NBT基陶瓷的极化与压电性能测试 2.4.1 NBT基陶瓷的极化 1. 试样的制备 为对压电陶瓷进行极化和性能测试,烧结后的陶瓷需要进行烧银处理。烧银就是在陶瓷的表面上涂覆一层具有高导电率,结合牢固的银薄膜作为电极。电极的作用有两点:(1)为极化创造条件,因为陶瓷本身为强绝缘体,而极化时要施加高压电场,若无电极,则极化不充分;(2)起到传递电荷的作用,若无电极则在性能测试时不能在陶瓷表面积聚电荷,显示不出压电效应。 首先将烧结后的圆片状样品磨平、抛光,使两个平面保持干净平整。然后在样品的表面涂覆高温银浆(武汉优乐光电科技有限公司生产,型号:SA-8021),并在一定温度干燥。将表面涂覆高温银浆的样品放入马弗炉进行处理,慢速升温到320~350℃,保温15min以排除银浆中的有机物,快速升温到820℃并保温15min后随炉冷却,最后将涂覆的银电极表面抛光。 2. NBT基压电材料的极化 利用压电材料正负电荷中心不重合,对烧成后的压电陶瓷在一定温度、一定直流电场作用下保持一定的时间,随着晶粒中的电畴沿着电场的择优取向定向排列,使压电陶瓷在沿电场方向显示一定的净极化强度,这一过程称为极化[70]。极化是多晶铁电、压电陶瓷材料制造工艺中的重要工序,压电陶瓷在烧结后是各向同性的多晶体,电畴在陶瓷体中的排列是杂乱无章的,对陶瓷整体来说不显示压电性。经过极化处理后,陶瓷转变为各向异性的多晶体,即宏观上具有了极性,也就显示了压电性。 对于不同类型的压电陶瓷,进行合适的极化处理才能充分发挥它们最佳的压电特征。决定极化条件的三个因素为极化电压、极化温度和极化时间。为了确定NBT基压电材料的最佳极化条件,本文采用硅油浴高压极化装置(华仪电子股份有限公司生产,型号:7462)详细研究了样品的极化行为,并确定了最佳的极化条件。 2.4.2 NBT基陶瓷的压电性能测试 1.压电振子及其等效电路

压电陶瓷特性分析(一) 压电效应

压电陶瓷特性分析(一) 压电效应 压电效应是1880年由居里兄弟在α石英晶体上首先发现的。它是反映压电晶体的弹性和介电性相互耦合作用的,当压电晶体在外力作用下发生形变时,在它的某些相对应的面上产生异号电荷,这种没有电场作用,只是由于形变产生的现象称为正压电效应。当压电晶体施加一电场时,不仅产生了极化,同时还产生了形变,这种由电场产生形变的现象称为逆压电效应,逆压电效应的产生是由于压电晶体受到电场作用时,在晶体内部产生了应力,这应力称为压电应力,通过它的作用产生压电应变,实验证明凡是具有正压电效应的晶体,也一定具有逆压电效应,两者一一对应[92]。 任何介质在电场中,由于诱导极化的作用,都会引起介质的形变,这种形变与逆压电效应所产生的形变是有区别的。电介质可能在外力作用下而引起弹性形变,也可能受外电场的极化作用而产生形变,由于诱导极化作用而产生的形变与外电场的平方成正比,这是电致伸缩效应。它所产生的形变与外电场的方向无关。逆压电效应所产生的形变与外电场成正比例关系,而且当电场反向时,形变也发生变化(如原来伸长可变为缩短,或者原来缩短可变为伸长)。此外,电致伸缩效应在所有的电介质中都具有,不论是非压电晶体还是压电晶体;只是不同结构的电介质晶体的电致伸缩效应的强弱不一样。而逆压电效应只有在压电晶体中才具有。 能产生压电效应的晶体叫压电晶体。一类压电晶体是单晶,如石英(SiO2),酒石酸钾钠(又称洛瑟盐,NaKC4H4O6?H2O),锗酸铋(Bi12GeO20)等。另一类压电晶体 称为压电陶瓷,如钛酸钡(BaTiO3),锆钛酸铅[Pb(Zr x Ti rx)O3,代号PZT],日本制成的铌镁锆钛酸铅[Pb(Mg1/3Nb2/3)O3加入PZT,代号PCM],中国制成的锑锰锆钛酸铅[Pb(Mn1/2Sb2/3)O3加入PIT代号PMS]等。 电介质的极化 压电晶体都是电介质,而且是各向异性电介质,因此压电晶体的介电性质与各向同性电介质的介电性质是不同的。 电介质在电场作用下要产生极化,极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间的相互吸引力的暂时平衡统一的状态。电场是极化的外因,极化的内因在于介质的内部,随着介质内部的微观过程的不同,极化的主要机理有三种[97]。 (1) 组成电介质的原子或离子,在电场 作用下,带正电荷的原子核与其壳层电子 的负电中心出现不重合,从而产生电偶极 矩,这种极化称为电子位移极化。 (2) 组成电介质的正负离子,在电场 作用下发生相对位移,从而产生电偶极 矩,这种极化称为离子位移极化。 (3) 组成电介质的分子是有极分子,具有一定的本征电矩,但由于热运动,取向是无序的,整个电介质的总电矩为零(图5.1)。当外电场作用时,这些电偶极矩将

迟滞比较器

迟滞比较器 单门限电压比较器虽然有电路简单、灵敏度高等特点,但其抗干扰能力差。例如,在单门限电压比较器的图XX_01中,当v I 中含有噪声或干扰电压时,其输入和输出电压波形如图XX_01所示,由于在v I =V th =V REF 附近出现干扰,v O 将时而为V OH ,时而为V OL ,导致比较器输出不稳定。如果用这个输出电压v O 去控制电机,将出现频繁的起停现象,这种情况是不允许的。提高抗干扰能力的一种方案是采用迟滞比较器。 1.电路组成 迟滞比较器是一个具有迟滞回环特性的比较器。图XX_02a 所示为反相输入迟滞比较器原理电路,它是在反相输入单门限电压比较器的基础上引入了正反馈网络,其传输特性如图XX_02b 所示。如将v I 与V REF 位置互换,就可组成同相输入迟滞比较器。 2.门限电压的估算 由于比较器中的运放处于开环状态或正反馈状态,因此一般情况下,输出电压v O 与输入电压v I 不成线性关系,只有在输出电压发生跳变瞬间,集成运放两个输入端之间的电压才可近似认为等于零,即 或 (1) 设运放是理想的并利用叠加原理,则有 (2) 图 XX_01 (a) (b) 图XX_02

根据输出电压v O的不同值(V OH或V OL),可求出上门限电压V T+和下门限电压V T–分别为 (3) (4) 门限宽度或回差电压为 (5) 设电路参数如图XX_02a所示,且,则由式(3)~(5)可求得 ,和。 3.传输特性 设从,和开始讨论。 当v I由零向正方向增加到接近前,v O一直保持不变。当v I增加 到略大于,则v O由V OH下跳到V OL,同时使v P下跳到。V I再增加, v 保持不变。 O 若减小v I,只要,则v o将始终保持不变,只有当 时,才由跳到V OH。其传输特性如图XX_02b所示。 由以上分析可以看出,迟滞比较器的门限电压是随输出电压v o的变化而改变的。它的灵敏度低一些,但抗干扰能力却大大提高了

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷测试方法国标

1. GB/T 15750-1995 压电陶瓷材料老化性能试验规程 GB/T 15750-1995 压电陶瓷材料老化性能试验规程 Test program for the ageing properties of piezoelectric ceramics 本标准由国营七二一厂负责起草,715所、726所、999厂、799厂、山东淄博无线电瓷件厂等单位参加... 2. GB 11311-1989 压电陶瓷材料性能测试方法泊松比σ**E的测试 GB 11311-1989 压电陶瓷材料性能测试方法泊松比σ**E的测试 Test methods for the properties of piezoelectric ceramics test for poisson's Ratio σ**E 电子工业 部标准化研究所中国科学院武汉物理研究所... 3. GB 11387-1989 压电陶瓷材料静态弯曲强度试验方法 GB 11387-1989 压电陶瓷材料静态弯曲强度试验方法 Testing methods for static flexural strength of piezoelectric ceramics 721厂... 4. GB/T 2414.2-1998 压电陶瓷材料性能试验方法长条横向长度伸缩振动模式 GB/T 2414.2-1998 压电陶瓷材料性能试验方法长条横向长度伸缩振动模式 Test methods for the properties of piezoelectric ceramics. Transverse length extension vibration mode for bar 全国铁电压电陶瓷标准化技术委员会七二一厂... 5. GB 11309-1989 压电陶瓷材料性能测试方法纵向压电应变常数d33的准静态测试 GB 11309-1989 压电陶瓷材料性能测试方法纵向压电应变常数d33的准静态测试 Test methods for the properties of piezoelectric ceramics--Quasi-static test for piezoelectric strain constant d33 机械电子工业部电子标准化研究所中国科学院声学研 究所... 6. GB 3389.4-1982 压电陶瓷材料性能测试方法柱体纵向长度伸缩振动模式 GB 3389.4-1982 压电陶瓷材料性能测试方法柱体纵向长度伸缩振动模式 Test methods for the properties of piezoelectric ceramics--Longitudinal length extension vibration mode for rod 六机部第七研究院706所... 7. GB 11320-1989 压电陶瓷材料性能测试方法低机械品质因数压电陶瓷材料性能的测试 GB 11320-1989 压电陶瓷材料性能测试方法低机械品质因数压电陶瓷材料性能的测试 Test methods for the properties of piezoelectric ceramics material with the low mechanical quality factor 全国铁电压电陶瓷测试专业标准化工作组中国科学院上海硅酸盐研究所... 8. GB/T 3389.3-2001 压电陶瓷材料性能试验方法居里温度TC的测试 GB/T 3389.3-2001 压电陶瓷材料性能试验方法居里温度TC的测试 Test methods for the properties of piezoelectric ceramics test for Curie temperature TC 国营第七二一厂... 9. GB 3389.3-1982 压电陶瓷材料性能测试方法居里温度Tc的测试

压电陶瓷参数整理

压电材料的主要性能参数 (1) 介电常数ε 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为 ε=C ·t/A 式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距 当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。由于所需的检测频率较低,所以ε应大一些。因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。 (2)压电应变常数 压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U = 式中 U ——施加在压电晶片两面的压电; △t ——晶片在厚度方向的变形。 压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。其值大,发射性能好,发射灵敏度越高。 (3)压电电压常数33g 压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小: 31(m/N)P U g V P =? 式中 P ——施加在压电晶片两面的应力; P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。 压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。其值大,接收性能好,接收灵敏度高。 (4)机械品质因数 机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。产生损耗的原因在于内摩擦。

m E E θ=储损 m θ值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持 续振动时间长,脉冲宽度大,分辨率低。 (5)频率常数 由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 0 22L L C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。 则: 02 L t C N tf == 这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。 (6)机电耦合系数K 机电耦合系数K 是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为 K =转换的能量输入的能力 探头晶片振动时,同时产生厚度方向和径向两个方向的伸缩变形,因此机电耦合系数分为厚度方向t K 和和径向p K 。t K 大,检测灵敏度高;p K 大,低频谐振波增多,发射脉冲变宽,导致分辨率降低,盲区增大。 (7)居里温度C T 压电材料与磁性材料一样,其压电效应与温度有关。它只能在一定的温度范围内产生,超过一定温度,压电效应就会消失。使压电材料的压电效应消失的温度称为压电材料的居里温度,用C T 表示。 探头对晶片的一般要求: (1) 机电耦合系数K 较大,以便获得较高的转换效率。

压电陶瓷

压电陶瓷 学院: 长春理工大学光电信息学院班级: 无机非金属材料工程 姓名: 张瑞君 学号: 0914119 日期: 2012-9-24

压电陶瓷 引言 压电陶瓷能够自适应环境的变化实现机械能和电能之间的相互转化,具有集传感、执行和控制于一体的特有属性。近几年关于压电陶瓷的研究越来越受人们的关注,同时也发现了它的许多优越性,但是也存在缺陷。比如含铅压电陶瓷中就含有对环境有污染的铅,而环境是人类生存和发展的基础。因此,保护环境和发展环境协调型材料及制备技术是二十一世纪材料科学发展的必然趋势。 1.1压电陶瓷 压电陶瓷的概念,所谓压电陶瓷是一种能够将机械能和电能相互转换的功能陶瓷,属于无机非金属材料。它是指把氧化物混合(氧化锆、氧化铅、氧化钛等)高温烧结固相反应后而成的多晶体并通过直流高压极化处理使其具有压电效应的铁电陶瓷的统称这是一种具有压电效应的材料。在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。用压电陶瓷把电能转换成超声振动。可以用来探寻水下鱼群的位置和形状对金属进行无损探伤以及超声清洗、超声医疗还可以做成各种超声切割器、焊接装置及烙铁对塑料甚至金属进行加工。 1.2 压电陶瓷的分类以及特性 压电材料是指一种具有压电效应的材料其按物理结构分类:石英、酒石酸钾钠、磷酸二氢铵、铌酸锂、硫酸锂、钽酸锂、锗酸锂、钛酸钡、钛酸铅、铌酸钾钠、偏铌酸铅、锆钛酸铅、偏铌酸铅钡、铌镁-锆-钛酸铅、铌钴-锆-钛酸铅、铌锌-锆-钛酸铅、铌锑-锆-钛酸铅铌锰-锆-钛酸铅、压电高分子聚合物、聚偏二氟乙烯、PVDF 复合压电材料等压电材料。 压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。这不能不说是压电陶瓷的一大奇功。 压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。 谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。它频率稳定性好,精度高及适用频率范围宽,而且体积小、

振动与压电陶瓷实验

压电陶瓷特性及振动的干涉测量 具有压电效应的材料叫压电材料,可将电能转换成机械能,也能将机械能转换成电能,它包括压电单晶、压电陶瓷、压电薄膜和压电高分子材料等。压电陶瓷制造工艺简单,成本低,而且具有较高的力学性能和稳定的压电性能,是当前市场上最主要的压电材料,可实现能量转换、传感、驱动、频率控制等功能。由压电陶瓷制成的各种压电振子、压电电声器件、压电超声换能器、压电点火器、压电马达、压电变压器、压电传感器等在信息、激光、导航和生物等高技术领域得到了非常广泛的应用。本实验通过迈克尔逊干涉方法测量压电陶瓷的压电常数及其振动的频率响应特性。 【实验目的】 1.了解压电材料的压电特性; 2.掌握用迈克尔逊干涉方法测量微小位移。 3. 测量压电陶瓷的压电常数。 4. 观察研究压电陶瓷的振动的频率响应特性。 【实验原理】 1. 压电效应 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释。晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象,因此压电陶瓷的压电性与极化、形变等有密切关系。 (1)正压电效应 压电晶体在外力作用下发生形变时,正、负电荷中心发生相对位移,在某些相对应的面上产生异号电荷,出现极化强度。对于各向异性晶体,对晶体施加应力j T 时,晶体将在X ,Y ,Z 三个方向出现与j T 成正比的极化强度, 即: j mj m T d P =, 式中mj d 称为压电陶瓷的 压电应力常数。 (2)逆压电效应 当给压电晶体施加一电场E 时,不仅产生了极化,同时还产生形变S ,这种由电场产生形变的现象称为逆压电效应,又称电致伸缩效应。这是由于晶体受电场作用时,在晶体内部产生了应力(压电应力),通过应力作用产生压电应变。存在如下关系n ni i E d S =,式中ni d 称为压电应变常数 ,对于正和逆压电效应来讲,d 在数值上是相同的。压电晶体的压电形变有厚度变形型、长度变形型、厚度切变型等基本形式。当对压电晶体施加交变电场时,晶体将随之在某个方向发生机械振动。在不同频率区间压电陶瓷阻抗性质(阻性、感性、容性)不同,对某一特定形状的压电陶瓷元件,在某一频率处(谐振频率),呈现出阻抗最小值,当外电场频率等于谐振频率时,陶瓷片产生机械谐振,振幅最大;而在另一频率处(反谐振频率),呈现出阻抗最大值。

压电陶瓷电特性测试与分析

压电陶瓷电特性测试与 分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

摘 ?要:?通过对器件进行阻抗测试可得到压电振子参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和指标较好。 关键词:?压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对

无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT 陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试) GB 11312-89 压电陶瓷材料和压电晶体声表面波性能测试方法 GB 11310-89 压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 压电陶瓷蜂鸣片由一块两面印刷有电极的压电陶瓷板和一块金属板(黄铜或不锈钢等)组成。当在压电振动板的两个电极间施加直流电压

压电陶瓷特性

压电陶瓷正压电效应:当压电陶瓷在外力作用下发生形变时,在它的某些相对应的面上产生导号电荷,这种没有电场的作用。只是由于形变而产生电荷的现象称为正压电效应。压电陶瓷逆压电效应:当压电陶瓷施加电场时,不仅产生了极化。同时还产生了形变,这种由电场产生的形变的现象称为逆压电效应。 压电陶瓷迟滞特性:压电陶瓷的开压和降升曲线之间存在移差值称为迟滞特性现象。压电陶瓷蠕变特性:在一定电压下,压电陶瓷的位移快速达到一定值后。位移继续随时间变化而缓慢变化,在一定时间后达到稳定的特性称为蠕变特性。 压电陶瓷温度特性:压电陶瓷受温度的影响而产生的变化的特性,就叫做温度特性。 压电陶瓷工作电压:压电陶瓷在达到标称位移量时所需要的电压,叫做工作电压,又称额定电压。 压电陶瓷最大电压:压电陶瓷最大能承受的电压,叫做最大电压。 压电陶瓷标称位移:压电陶瓷在工作电压下而产生的位移变化范围。叫做标称位移。 压电陶瓷最大位移:压电陶瓷在最大电压下而产生的位移变化范围。叫做最大位移。 压电陶瓷最大推力:压电陶瓷轴向的最大输出力。叫做最大推力。我们可以通过机械封装式压电陶瓷来了解最大推力。 压电陶瓷刚度:压电陶瓷力与位移的关系。叫做刚度。我们可以通过低压驱动OEM式压电陶瓷来了解刚度。 压电陶瓷静电容量:压电陶瓷本身的电容量。叫做静电容量我们可以通过XP-84X 系列机械封装式压电陶瓷来了解静电容量参数。 压电陶瓷响应频率:压电陶瓷最快的变化速度。叫做响应频率我们可以通过查看机械封装式压电陶瓷来知道压电陶瓷的响应频率。 压电陶瓷叠层型陶瓷:将同一规格的压电陶瓷片粘贴在一起,实现机械上串联,电气上并联的压电陶瓷。特点是在输出力不损失的情况下,增大位移输出,这就是叠层型陶瓷,单路电源就可控制。 压电陶瓷封装陶瓷:将压电陶瓷固化在机械结构内,从而提高压电陶瓷的可靠性和稳定性和可安装性。 压电陶瓷开环陶瓷:无位置传感器的封装压电陶瓷。 压电陶瓷闭环陶瓷:有位置传感器的封装压电陶瓷。 压电陶瓷预载力:通过机械结构预先给压电陶瓷施加的固定压力。叫做预载力。 压电陶瓷位移分辨率:压电陶瓷的灵敏度。叫做位移分辨率。 压电陶瓷响应速度:是压电陶瓷位移的变化速度.叫做响应速度。 压电陶瓷标准配置:对于封装开环/闭环压电陶瓷在出厂时,对它的机械封装接口、电缆、连接器类型和长度的默认配置。 标准配置机械接口:封装陶瓷的机械接口或称为移动端部分。该部分可由用户选择或定制。 压电陶瓷电连接:封装陶瓷的电极和位置传感器的引出线缆和连接器类型 压电陶瓷扩展功能:封装陶瓷在不改变外形的情况下,增加的位置传感器、低温修正等技术。 压电陶瓷特殊定制:用户可根据自己的需要向我公司提出要求,包括压电陶瓷的技术指标、机械封装、安装方式、电气接口等,我公司会尽量在最短的时间内向用户提供最优质的产品,保证产品使用性能和产品的稳定性。

相关主题
文本预览
相关文档 最新文档