当前位置:文档之家› 微生物工程工艺原理

微生物工程工艺原理

微生物工程工艺原理
微生物工程工艺原理

微生物工程工艺原理

微生物工程工艺原理

绪论

一、名词解释

微生物工程:微生物工程是指利用微生物的特性和代谢活动,通过现代工程技术在生物反应器中生产有用物质的一门工程技术学科,其包括菌种选育、菌种生产、生物产品的发酵和分离提取以及微生物机能的利用。

发酵工程:是研究生物技术工业生产过程中各单元操作的工艺和设备的一门学科,是生物技术产业化的重要环节。也叫微生物工程。

二、问答题

2、微生物工业生产主要有哪些优点和缺点?

←优点:

←1、微生物种类繁多,繁殖速度快,代谢能力强,容易通过人工诱变获得有益的突变株,使生产产率提高。

←2、微生物酶的种类很多,能催化各种生物化学反应,发酵过程以生命体的自动调节方式进行,数十个反应过程能够象单一反应一样在反应设备内一次完成。

←3、反应通常在常温常压下进行,条件温和,能耗少,可以用简易的设备来生产多种多样的产品。

←4、原料通常以糖蜜,淀粉等碳水化合物为主,可以是农副产品,工业废水或可再生资源,微生物能有选择地吸收所需物质。

←5、容易生产复杂的高分子化合物,能高度选择性地在复杂化合物的特定部位进行氧化、还原、转化等反应。

←6、发酵过程需要防止杂菌污染,培养基需要进行灭菌,设备也需要进行严格的冲洗、灭菌,空气需要过滤等。

←缺点:

←1、底物不可能完全转化成目的产物,副产物的产生不可避免,造成提取和精制的困难。

←2、微生物反应是活细胞反应,除受环境因素影响外,也受细胞内因素影响,且菌体易变异,实际控制难。

←3、原料是农副产品,虽然价廉,但质量和价格波动大。

←4、生产前准备工作量大,花费高,反应器效率低。

←5、因过高的底物或产物浓度导致酶和细胞的抑制作用。因此底物浓度不能很高,导致使用大体积的反应器,并

←要在无杂菌污染情况下进行操作。

←6、发酵废水常具有较高的COD和BOD,需要进行处理后才能排放,生产门槛高,资金投入较大。

3、一般发酵过程主要有哪几部分组成?

典型的发酵过程可以划分成以下六个基本组成部分:

(1)生产菌种选育和扩大培养,培养基的配制;

(2)培养基、发酵罐及其附属设备的灭菌;

(3)生产菌种接种入生物反应器中,无菌空气的制备与通风;

(4)控制生产菌种最适生长和代谢条件,进行发酵生产;

(5)产物提取和精制;

(6)过程中排出的废弃物的处理。

6、微生物工程的发展历史可分为哪几个阶段?

1.自然发酵时期

2.纯培养技术时期(阶段以显微镜的诞生和微生物学的问世为标志。)

3.通气搅拌的好气性发酵工程技术时期(一阶段以青霉素的工业开发获得成功为标志。)

4.人工诱变育种与代谢控制发酵工程技术时期

5. 发酵动力学和连续化、自动化发酵工程技术时期

6.微生物酶反应合成与化学合成相结合工程技术时期

第1章菌种与种子扩大培养

*一、名词解释:

种子扩大培养:就是将保藏菌种经过试管斜面活化和

逐级扩大培养,而获得一定数量和质量的纯种的

过程称为种子扩大培养。这些纯种培养物称为种

子。

菌种选育、

菌种退化:菌种经过长期人工培养或保藏,由于自发突变的作用,而引起某些优良特性变弱或消失的现象称为菌种退化。

菌种保藏

OD值:是细胞个数,菌体大小和发酵液色泽深浅的综合反应,可用比色计或分

光光度计进行测定。

*二、问答题

*1、微生物工业对生产菌种的要求是什么?

1、料制成的培养基上迅速生长和大量合成目的产物

----价值高

2、要求不高、易控制的培养条件下迅速生长和发酵,发酵周期短。

----可操作性强

3、代谢调控要求选择高产菌株,如营养缺陷型菌株或调节突变型菌株

4、菌体能力强,以防止感染噬菌体而造成“倒罐”现象的发生。

5、纯粹,不易退化,可保证发酵生产和产品质量的稳定性。

----遗传稳定性强

6、非病原菌,不产生任何有害的物质和毒素,以保证产品的安全。

----安全性强

*2、菌种退化的表现有哪些?原因是什么?预防方法有哪些?

菌种退化表现:菌种发酵力、繁殖力、代谢能力、生产性能、产物得率

等下降,发酵周期延长,抗不良环境条件的性能减弱。

菌种退化的原因:内因主要是有关基因的负突变

外因:1、菌种保藏不妥(染菌等)

2、菌种生长的要求没有得到满足(培养条件不良)

3、传代接种次数过多

*防止菌种退化的方法:

1.定期进行分离复壮。

2.提供合适的培养条件,满足其生长要求。

3.尽量控制减少接种传代次数。

4.做好菌种的保藏工作。

5.采用幼龄菌接种培养

*5、菌种保藏的原理和目的分别是什么?常用的菌种保藏的方法有哪些?*目的:保证菌种在长时间内要尽可能保持菌株优良生产性能的稳定性,不污染杂菌,不死亡。

*基本原理:根据菌种的生理生化特点,人工创造条件使菌种的代谢活动处于不活泼的休眠状态。

*工业微生物菌种保藏技术

*(1) 斜面保藏:3-6个月

*(2)沙土管干燥保藏:2年

*(3)液氮保藏:2-3年

*(4) 悬液保藏:常温或低温

*(5) 超低温保藏:1年以上

*(6) 冷冻干燥保藏:5-10年

第2章培养基制备与灭菌

*一、名词解释:

*葡萄糖值 DE值:也称葡萄糖值,用于表示淀粉水解程度及糖化程度,是指葡萄糖(把所有还原糖都当成葡萄糖算)占干物质的百分数。

*微生物热阻:是指微生物在一定条件(主要是温度和加热方式)下的致死时间,表示微生物对热的抵抗能力。

*二、问答题:

*2、淀粉水解糖的制备方法主要有哪些?各有什么优缺点?

*1、酸解法:

*定义:以酸(无机酸或有机酸)为催化剂,在高温高压下将淀粉水解为葡萄糖的方法。

*是一种常用的,传统的水解方法。

*优点:设备要求简单,水解时间短(20min),设备生产能力大

*缺点:高温高压下进行,设备要求耐腐蚀、耐高温、耐高压,副反应多,对原料要求严格,淀粉颗粒不宜过大,淀粉乳浓度不能过高。

*2、酶解法:(双酶水解法)

*定义:用淀粉酶将淀粉水解为葡萄糖的过程。一般分为两步:第一步是利用α-淀粉酶将淀粉液化转为糊精及低聚糖,使淀粉的可溶性增加,这个过程称为液化。第二步是利用淀粉糖化酶将糊精或低聚糖进一步水解,转变为葡萄糖的过程,称为糖化。也称双酶法α-淀粉酶(液化)*葡萄糖淀粉酶(糖化)

*优点:1、反应条件温和。

* 2、酶的专一性强,副反应少

* 3、可在较高的淀粉乳浓度下水解

* 4、糖液的营养物质丰富

* 5、糖液色泽浅,无苦味,有利于糖液的精制

*缺点:时间长(2~3)天,要求的设备多,糖液过滤困难。

*3、酸酶结合法

*酸酶法

*酶酸法

*3、微生物灭菌的方法主要有哪些?为什么培养基采用湿热灭菌的方法?*常用灭菌方法:干热灭菌、湿热灭菌、物理灭菌(射线、微波等)、化学灭菌(各种化学药品)

*6、分批灭菌和连续灭菌在操作上有何不同?各有什么特点?

不同之处为:分批时,这三个阶段在时间上错开(在同一设备,不同时间内完成);连续时,这三个阶段在空间上错开(同一时间,不同设备内完成),故连续灭菌需分别设置加热设备、保温维持设备和冷却设备

*分批灭菌的优点:1.对于含有固体颗粒或含

有较多泡沫的培养基,杀菌更彻底。 2.适用于小容积发酵罐,节约资金和能源。缺点:1.灭菌时间长,培养基营养成分破坏较大。 2.发酵罐利用率低。 3.不适用自动控制,劳动强度大。

*连续灭菌优点:1)可以采用高温短时灭菌(HTST);2)发酵罐利用率高;

3)蒸汽负荷均衡;4)热效率高;5)可采用自动控制,降低劳动强度;

缺点:不适合含有固体颗粒或含有较多泡沫的培养基灭菌,连续灭菌适合大批量培养基灭菌,对容量小的培养基灭菌体现不出其优势,有些浪费

*10、如何对培养基进行灭菌?

第3章糖嫌气性发酵产物积累机制

*一、名词解释

*发酵机制:微生物通过其代谢活动,利用基质(底物)合成人们所需要的代谢产物的内在规律。

*代谢控制发酵:人为地改变微生物的代谢调控机制,过量积累中间产物。

EMP型发酵:

*二、问答题

*2、糖酵解途径有哪些特点?调节糖酵解的因素主要有哪些?(酶、能荷、化合物)

*糖酵解途径的特点

*1、广泛存在于各种细胞中,每个反应都不需要氧参与。

*2、分为两个阶段:

* 6C(葡萄糖) 3C(3-磷酸甘油醛):消耗2ATP

* 3C(3-磷酸甘油醛)丙酮酸:生成4ATP

*3、糖酵解有10多个反应组成,每个反应都在酶的作用下完成。

*4、其他糖类作为碳源和能源时,是通过葡萄糖或其他中间产物并入糖酵解途径的。

*5、在不同的有机体和不同条件下,H的受体不同,丙酮酸的去路也不同。

调节糖酵解的因素主要有:

*1、酶:主要是通过己糖激酶、磷酸果糖激酶和丙酮酸激酶等三个激酶完成

*2、能荷

*3、化合物:无机磷、柠檬酸、脂肪酸和乙酰CoA

*3、说明糖酵解生成的产物的去向分别如何?

*4、什么是酵母的第一型、第二型、第三型发酵?有什么不同?说明酒精发酵生产过程中产生甘油的原因?

*酵母一型发酵:在酵母体内,葡萄糖经酵解途径生成丙酮酸,在无氧条件下,由丙酮酸脱羧酶催化使丙酮酸脱羧生成乙醛,生成的乙醛在乙醇脱氢酶的作用下成为受氢体被还原成乙醇。

*酵母Ⅱ型发酵:磷酸二羟丙酮代替乙醛作为氢受体形成甘油,这样酵母酒精发酵转为甘油发酵称为酵母Ⅱ型发酵。

*酵母Ⅲ型发酵:酵母菌在碱性条件(pH7.6)下,由于乙醛生成等量的乙酸和乙醇,因此乙醛作为氢受体的作用被抑制,这时磷酸二羟丙酮成为氢受体,发酵总产物为甘油、乙酸、乙醇。

2C

6H

12

O

6

+ H

2

O 2甘油 + 乙

酸 + 乙醇 + 2CO

2

*酒精发酵生产过程中产生甘油的原因:

当环境渗透压升高,酿酒酵母将合成并在胞内积累甘油以维持细胞内外的渗透压平衡;当在缺氧条件下生长时,酿酒酵母将合成并在胞内积累甘油以维持细胞的氧化还原平衡。存在于胞浆中的3-磷酸甘油脱氢酶,以NAD+为辅酶,催化磷酸二羟丙酮生成3-磷酸甘油,然后3-磷酸甘油磷酸酶催化3-磷酸甘油生成甘油。*第4章柠檬酸发酵机制

* 1.好养发酵的机制是什么?

*好氧发酵机制:

*糖的有氧氧化过程(也称EMP-TCA途径)可分为三个阶段:

*一、葡萄糖经EMP途径转化为丙酮酸;

*二、在有氧条件下,丙酮酸进入线粒体,在丙酮酸脱氢酶的作用下氧化脱羧,与辅酶A结合生成乙酰辅酶A;

*乙酰辅酶A中,乙酰基与辅酶之间以高能硫酯键结合,其活性大大提高,通过它丙酮酸才能进入TCA循环进行彻底分解,因而此步反应视为EMP 和TCA之间的连接桥梁。

*三、三羧酸循环( TCA循环)也称柠檬酸循环,经过TCA循环,乙酰辅

酶A中的乙酰基被氧化分解成CO

2和H

2

O,放出大量能量(ATP)。

*在TCA循环中看不到有氧分子的直接参与,只是有还原型辅酶NADH2,FADH2形成,在有氧条件下,它们将所带的氢交给终受体氧形成水,并放出大量能量,这种氧化作用称为生物氧化或氧化呼吸或细胞呼吸。

*总反应式为:

*C6H12O6 + 6O2 +38 ADP 6H2O + 6CO2 +38 ATP

* 5.简述二氧化碳固定反应对提高柠檬酸产率的意义。

第5章氨基酸发酵机制

*一、解释名词:

*初级代谢产物:微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质。

*次级代谢产物:微生物生长到一定阶段才产生的化学结构十分复杂、对该微生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质。

*反馈抑制:反应途径中当反应产物达到一定浓度时,会对该途径中有关催化生成该产物的酶的活力起到抑制的作用,这种调节方式称为反馈抑制。

*反馈阻遏:代谢终产物达到一定浓度时,反馈阻遏该代谢途径有关的一种或几种酶的生物合成的调节方式。

*分解代谢物阻遏:细胞内同时有两种分解底物(如碳源)或其分解产物存在时,被菌体迅速利用的那种分解底物会阻遏利用慢的底物的有关酶合成的现象。

*营养缺陷型突变株:人为选育的,先天丧失合成某一种或几种必须生长因子能力的菌株。

抗结构类似物菌株:在培养基内人为的加

入某种氨基酸结构类似物,迫使微生物发生基因突变,从遗传学角度改变了这种氨基酸对代谢途径的反馈抑制作用的菌株。

二、问答题:

*1、谷氨酸的生物合成途径是什么?包含哪些生化过程?

*生物合成途径:葡萄糖经EMP和HMP途径生成丙酮酸,一方面丙酮酸氧化脱羧生成乙酰-CoA;另一方面经CO2固定作用生成草酰乙酸,两者合成柠檬酸进入TCA循环,由TCA 循环的中间产物α-酮戊二酸在谷氨酸脱氢酶催化下生成谷氨酸。

*3、说明谷氨酸生产菌细胞膜渗透性改变方法及其机理。

*作用机理:改变细胞膜结构,通过使磷脂合成量为正常的1/2或1/3,使细胞膜不完整,有破损,而达到改变通透性的目的。

*改变方法:1.从生物素入手,选育生物素缺陷型菌株限制外源性生物素供应。 2.选育油酸缺陷型。 3.选育甘油缺陷型。 4.选育温度敏感型突变株。 5.其他,如营养缺陷型;药物抗性突变株;敏感型突变株等。

6.添加表面活性剂与饱和脂肪酸,它们是生物素拮抗剂,阻碍磷脂的合成,使细胞膜合成不正常。

7.添加青霉素等抗生素,使细

胞壁合成不正常,使细胞膜易破损。(控制方法:在长期进入产酸期时添加)

第6章核酸类物质的发酵机制

*一、名词解释:

*全合成途径:从磷酸核糖开始,逐步加上必要的成分,最后闭合成环(嘌呤或嘧啶环)合成核苷酸的途径。

*补救合成途径:从培养基中吸取嘌呤或嘧啶碱基、戊糖、磷酸,通过一系列酶的催化作用合成核苷酸的途径。

*二、问答题:

*2、核苷酸微生物生物合成主要有哪几条途径?

*全合成途径:从磷酸核糖开始,逐步加上必要的成分,最后闭合成环(嘌呤或嘧啶环)合成核苷酸的途径。

*补救合成途径:从培养基中吸取嘌呤或嘧啶碱基、戊糖、磷酸,通过一系列酶的催化作用合成核苷酸的途径。

第7章抗生素的发酵机制

*一、名词解释:

*初级代谢:是指微生物合成它们生长所必需的物质的代谢。

*次级代谢:是指微生物在生长后期进行的与他们的生长无明显关系的代谢

*分叉中间体:糖代谢中既能用来合成初级代谢产物,又能合成次级代谢产物的中间体。*分解代谢产物阻遏(葡萄糖效应):葡萄糖的分解和利用减少了抗生素的生物合成,即青霉素发酵受葡萄糖的抑制的现象。

*二、问答题:

*2、说明抗生素生物合成的代谢调节机制有哪些?

*①细胞生长期到抗生素产生期的过渡调节:有关酶被激活或合成后开始合成抗生素。

②酶的诱导作用:添加诱导剂,去除阻遏力。

③分解代谢产物的调节控制:采用不易快速

利用的C源和N源;流程工艺中间补料控制

糖浓度在低水平范围;采用抗结构类似物突

变菌株等方法消除分解代谢阻遏。④磷酸

盐的调节:高浓度有利于细胞生长繁殖,抑

制抗生素合成;控制磷酸盐适量有利于抗生

素合成。⑤NH4+的抑制作用。⑥初级代

谢调节对次级代谢的作用。⑦次级代谢的

反馈抑制。⑧次级代谢的能荷调节。

第8章_发酵动力学

*一、名词解释:

*发酵动力学:是研究发酵过程中菌体生长、基质消耗、产物生成的动态平衡及其内在规律。

*稀释率:指单位时间内流过单位体积发酵罐

培养液的体积数

比生长速率:在对数生长期,单位质量菌体在单位时间内的增殖菌数为常数,称为比生长速率

*二、问答题:

*2、分批培养的微生物细胞的生长规律是什么?二次生长在哪个时期?*微生物生长规律:1.迟滞期,细胞数量很少

增加,但细胞的个体长大并合成新的酶系和

细胞物质 2.对数期:细胞活力很强,生长速率达到最大值并保持稳定,而生长速率的大小取决于培养基的营养情况和环境条件 3.稳定期:微生物的生长速率下降到等于死亡速率,活细胞数量基本稳定 4.衰亡期:由于自溶作用和有害物质的影响,细胞破裂,死亡加速。

* 二次生长在

* 3、什么是莫诺方程?其建立的条件是什么?

* 单位质量干菌体在单位时间内生成菌体的量:

* * 莫诺方程是在如下假设基础上建立起来的:

* 1)菌体生长为均衡型非结构式生长,因此,细胞成分只需要一个参数即菌体浓度表示即可。

* 2)培养基中只有一种底物是生长限制性底物,其他营养成分不影响微生物生长。

* 3)将微生物生长视为简单反应,并假设菌体得率为常数,没有动态滞后。 * 4、什么是分批发酵和补料分批发酵?各有什么特点?

← 分批发酵又称分批培养,即在一个密闭系统内一次性投入有限数量营养物进行的间歇式培养方法。特点:

← (1)一次性,一次投料,一次接种,一次收获。

← (2)非恒态培养法,所有工艺参数都随时[][]

S K S S +?=max μμ

间而变化。

←(3)是封闭系统,操作方式简单。

←(4)微生物培养过程中营养成分不断降低,为限制性条件下的生长,但培养液体积为常数。

←补料分批培养:是指在分批培养过程中,间歇或连续地补加新鲜培养基的培养方法。也称半连续培养或半连续发酵。

←特点:

←(1)是介于分批培养和连续培养之间的一种技术

←(2)发酵罐内的培养液体积不再是常数,而是随时间和补料流速而变的变量。

←(3)为非封闭系统,但不连续流出发酵液。←(4)操作灵活方便,适应范围更广,生产效率高。

*5、什么是连续发酵?连续发酵有什么优缺点?

*连续培养,又称连续发酵:是培养过程中连续等量地加入新鲜培养液并以同样流量连续排出发酵液,使细胞保持稳定的生长环境和生长状态的培养方法。

*连续发酵优点(相对于分批发酵而言) :1、高效,简化;2、便于自动控制;3、产品质量稳定;4、设备利用率高,节约成本,生产均衡;

*缺点:1、菌种易变异退化;2、易污染杂菌;3、营养物利用率低;4、不易混合均匀;5、状体细胞输送存在问题。

6、补料分批发酵准稳态和连续发酵的恒态有什么不同?

当补料速度足够低时,将会出现μ=D 的稳态现象,称为准稳态状态。准稳态时,μ=D,但两者不是定值,而是以相同的速率下降。恒定状态μ=D=常数。

晶体材料制备原理与技术

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 晶体材料制备原理与技术是综合应用物理、化学、物理化学、晶体化学、材料测试与表征等先修课程所学知识的应用型专业课程,主要讲授晶体材料制备过程的基本原理和典型的晶体材料制备技术,为学生从事晶体材料制备工作提供理论基础和技术基础。 2.设计思路: 晶体材料是高新技术不可或缺的重要材料,晶体材料制备是材料科学与工程专业相关的重要生产领域。作为一门以拓展学生知识面为目的的选修课程,本课程分为三大部分:首先介绍典型的晶体材料制备方法和技术,通过课下查阅资料和课堂讨论加深学生对常见方法和技术的理解。此部分教师讲解和学生课堂讨论并重。然后介绍晶体材料制备过程中的一般原理,此部分主要由教师进行课堂讲授。最后,由学生自主查阅晶体材料制备最新文献,了解晶体材料制备技术最新进展,通过课下研读、课上汇报、讨论、教师点评等教学活动,加深学生对本课程中所学知识的理解及相关知识的综合运用。 - 3 -

3. 课程与其他课程的关系: 晶体材料制备原理与技术是综合应用物理、化学、物理化学、晶体化学、材料测试与表征等先修课程所学知识的应用型专业课程,是材料制备与合成工艺课程相关内容的细化和深入。 二、课程目标 本课程的目标是拓宽材料科学与工程专业学生的知识面,掌握晶体材料制备一般原理,了解晶体材料制备常见技术,加深对物理、化学、晶体化学以及材料表征等先修课程知识的理解,加强文献检索能力,学会分析晶体材料制备中遇到的问题,提高解决生产问题的能力,为毕业后从事晶体材料制备等生产和研究工作打下基础。 三、学习要求 晶体材料制备原理与技术是一门综合了物理、化学、物理化学、晶体化学、材料测试与表征等多学科知识的综合性课程。为达到良好的学习效果,要求学生:及时复习先修课程相关内容,按时上课,上课认真听讲,积极查阅资料,积极参与课堂讨论。本课程将包含较多的资料查阅、汇报、讨论等课堂活动。 四、教学进度 - 3 -

《发酵工程原理与技术》课程复习提纲及习题集

《发酵工程原理与技术》课程复习提纲及部分知识点 [复习提纲] 什么是发酵?发酵工程的发展历程? 发酵的定义在合适的条件下利用生物细胞内特定的代谢途径转变外界底物生成人类所需目标产物或菌体的过程 自然发酵时期 1.发酵工程的诞生 2.通气搅拌液体深层发酵的建立 3.大规模连续发酵以及代谢调控发酵技术的建立 4.现代发酵工程时期 发酵工业常用的微生物及其特点。 ①细菌:枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等②放线菌:链霉菌属、小单胞菌属和诺卡均属③酵母菌:啤酒酵母、假丝酵母、类酵母 4.霉菌 菌种的分离及保藏 一稀释涂布和划线分离法二利用平皿中的生化反应进行分离三组织分离法四通过控制营养和培养条件进行分离 一斜面保藏方法二液体石蜡油保藏法三冷冻干燥保藏法四真空干燥法五液氮超低温保藏法六工程菌的保藏 菌种的退化及复壮 菌种退化是指生产菌种或选育过程中筛选出来的较优良菌株,由于进行转移传代或包藏之后,群体中某些生理特征和形态特征逐渐减退或完全丧失的现象退化的原因主要有基因突变连续传代以及不当的培养和保藏条件 菌种的复壮通过人工选择法从中分离筛选出那些具有优良性状的个体使菌种获得纯化服装的方法一纯种分离二淘汰法三宿主体内复壮法 微生物育种的方法有哪些? 自然育种、诱变育种 培养基的主要成分。 水、碳源、氮源、无机盐、生长因子、 碳源及氮源的种类。 碳源种类:1、糖类2、醇类3、有机酸类4、脂肪类5、烃类6、气体 氮源种类:1、无机氮源 2、有机氮源 培养基的设计的基本原则? 一根据生产菌株的营养特性配制培养基二营养成分的配比恰当三渗透压 4ph 值 发酵工业原料的选择原则 一因地制宜就地取材原料产地离工厂要近,便于运输节省费用 二营养物质的组成比较丰富浓度恰当能满足菌种发育和生长繁殖成大量有生理功能菌丝体的需要更重要的是能显示出产物合成的潜力 三原料资源要丰富容易收集

材料连接原理复习大纲

材料连接原理与工艺复习大纲 一、熔化焊连接原理 1、熔化焊是最基本的焊接方法,根据焊接能源的不同,熔化焊可分为电弧焊、气焊、电渣焊、电子束焊、激光焊和等离子焊等。 2、获得良好接头的条件:合适的热源、良好的熔池保护、焊缝填充金属。 3、理想的焊接热源应具有:加热面积小、功率密度高、加热温度高等特点。 4、焊件所吸收的热量分为两部分:一部分用于熔化金属而形成焊缝;另一部分使母材近缝区温度升高,形成热影响区。 5、热能传递的基本方式是传导、对流和辐射,焊接温度场的研究是以热传导为主,适当考虑对流和辐射的作用。熔化焊温度场中热能作用有集中性和瞬时性。 6、当恒定功率的热源作用在一定尺寸的焊件上并作匀速直线运动时,经过一段时间后,焊件传热达到饱和状态,温度场会达到暂时稳定状态,并可随热源以同样速度移动,这样的温度场称为准温度场。 7、在焊接热源的作用下,焊件上某点的温度随时间的变化过程称为焊接热循环。决定焊接热循环的基本参数有四个:加热速度、最高加热温度、在相变温度以上的停留时间和冷却速度。常用某温度范围内的冷却时间来表示冷却速度,冷却速度是决定热影响区组织和性能的最重要参数。 8、焊接热循环的影响因素:材质、接头形状尺寸、焊道长度、预热温度和线能量。 9、正常焊接时,焊条金属的平均熔化速度与焊接电流成正比。 10、熔滴:焊条端部熔化形成滴状液态金属。药皮焊条焊接时熔滴过渡有三种形式:短路过渡、颗粒过渡和附壁过渡。其中碱性焊条:短路过渡和大颗粒过渡;酸性焊条:细颗粒过渡和附壁过渡。 11、药皮溶化后的熔渣向熔池过渡形式:①薄膜形式,包在熔滴外面或夹在熔滴内;②直接从焊条端部流入熔池或滴状落入。 12、熔池形成: ①熔池为半椭球,焊接电流I、焊接电压U与熔池宽度B和熔池深度H的关系:I↑,H↑,B↓;U↑,H↓,B ↑。 ②熔池温度不均匀,熔池中部温度最高,其次为头部和尾部。 ③焊接工艺参数、焊接材料的成分、电极直径及其倾斜角度等都对熔 池中的运动状态有很大的影响。 ④为提高焊缝金属质量,必须尽量减少焊缝金属中有害杂质的含量和 有益合金元素的损失,因此要对熔池进行保护。保护方式:熔渣保护、 气体保护、熔渣气体联合保护、真空保护和自保护。 13、熔化焊焊接接头的形成过程:焊接热过程、焊接化学冶金过程和 熔池凝固和相变过程。 14、在一定范围内发生组织和性能变化的区域称为热影响区或近缝区。故焊接接头主要由焊缝和热影响区构成,其间窄的过渡区称为熔合区。如下图所示: 1——焊缝区(熔化区) 2——熔合区(半熔化区) 3——热影响区 4——母材 15、熔化焊接头形式:对接、角接、丁字接和搭接接头等。待焊部位预先加工成一定形状,称为坡口加工。 16、熔合比:局部熔化母材在焊缝金属中的比例。用来计算焊缝的化学成分。 17、金属的可焊性属于工艺性能,是指被焊金属材料在一定条件下获得优质焊接接头的难易程度。包括接合性能和使用性能。金属的可焊性主要与下列因素有关:①材料本身的成分组织;②焊接方法;③焊接工艺条件。 18、焊接热过程贯穿整个焊接过程,对焊接接头的形成过程(化学冶金、熔池凝固、固态相变、缺陷)以及接头性能具有重要的影响。 19、焊接材料的类型:焊条、焊剂、焊丝、保护气。焊条由焊芯和药皮组成,焊芯起到导电和填充金属的作用,药皮作用为①机械保护作用;②冶金处理作用;③工艺性能良好。药皮的组成分为稳弧剂、造渣剂、造气剂、

生物制药工艺学题库

第一章生物药物概述 1、生物药物(biopharmaceuticals) 指运用生物学、医学、生物化学等的研究成果,从生物体、生物组织、细胞、体液或其代谢产物,综合利用化学、生物技术、分离纯化工程和药学等学科的原理和方法加工、制成的一类用于预防、治疗和诊断疾病的物质。 2、抗生素(antibiotics): 抗生素是生物,包括微生物,植物和动物在内,在其生命活动过程中所产生的(或由其它方法获得的),能在低微浓度下有选择地抑制或影响它种生物机能的化学物质”。 3、生化药品 从生物体分离纯化得到的一类结构上十分接近人体内的正常生理活性物质,具有调节人体生理功能,达到预防和治疗疾病的物质 4、生物制品(biological products) 是指用微生物(包括细菌、噬菌体、立克次体、病毒等)、微生物代谢产物、动物毒素、人或动物的血液或组织等直接加工制成,或用现代生物技术方法制成,作为预防、治疗、诊断特定传染病或其他有关疾病的免疫制剂。 5、基因工程药物 采用新的生物技术方法,利用细菌、酵母或哺乳动物细胞作为活性宿主,进行生产的作为治疗、诊断等用途的多肽和蛋白质类药物 6、生物药物分类 按生理功能和用途分类 (1)治疗药物:对疑难杂症如肿瘤、爱滋病、免疫性疾病、内分泌障碍等具有特殊的作用;(2)预防药物:对传染病的预防; (3)诊断药物:免疫诊断试剂、单克隆抗体诊断试剂、酶诊断试剂、放射性诊断药物和基因诊断药物等;某些生物活性物质亦是检测疾病的指标,如谷草转氨酶等; (4)其它生物医药用品:生物药物在其他方面应用也很广泛:如生化试剂、保健品、化妆品、食品、医用材料等。 按原料的来源分类 (1)人体组织来源的生物药物:主要有人血液制品类、人胎盘制品类、人尿制品类;(2)动物组织来源的生物药物:动物的脏器、其他小动物制得的药物如蛇毒、蜂毒等。(3)植物组织来源的生物药物:中草药、有效成分; (4)微生物来源的药物:抗生素、酶、氨基酸、维生素等; (5)海洋生物来源的药物; 7、生物药物的特性 (1)药理学特性 (2)在生产、制备中的特殊性 (3)检验上的特殊性 (4)剂型要求的特殊性 (5)保藏及运输的特殊性 第二章生物药物的质量管理与控制 1、生物药物质量检验的程序与方法 基本程序:取样、鉴别、检查、含量测定、写出检验报告 2、药物的ADME A: absorption,药物在生物体内的吸收; D: distribution, 药物在生物体内的分布; M: metabolism,药物在体内的代谢转化; E: excretion,药物及其代谢产物自体内的排除。 3、药物的三级质量标准 1. 国家药典:凡例、正文、附录三大部分; 2. 部颁药品标准:性质与药典相同,具有法律的约束力。收载《中国药典》未收载的,但常用的药品及制剂。 3. 地方药品标准:对药典以外的某地区常用的药品、制剂的规格和标准,常制定地区性的

材料制备方法

高活性氧化镁的制备与应用 The preparation and application of highly active magnesium oxide Zhao xian tang (College of Science and Metallurgical Engineering,Wuhan University of Science and Technology,Hubei,, Wuhan,,430081) 摘要:本文论述了高活性氧化镁的特性、制备方法、活性测定及活性影响因素,主要就制备方法进行探讨,了解熟悉高活性氧化镁的生产过程,思考寻求制备更好的高活性氧化镁。 关键词:高活性氧化镁制备 Abstract:This paper discusses the characteristics of the high-activity magnesium oxide, preparation methods, determination of activity and active factors affecting, which mainly discusses the preparation methods, in order to familiar with the production process of highly active magnesium oxide and think for the preparation of highly active magnesium oxide. Keywords: high-activity magnesium oxide preparation method 引言 活性氧化镁的比外表积较大,是制备高功用精密无机材料、电子元件、油墨、有害气体吸附剂的重要质料。这种氧化镁因为其颗粒微细化,外表原子与体相原子数的份额较大而具有极高的化学活性和物理吸附才能。因为具有杰出的烧结功能,

铆接技术原理与工艺特点

关于铆接技术 一、 铆接技术原理与工艺特点 常见的铆接技术分为冷铆接和热铆接,冷铆接是用铆杆对铆钉局部加压,并绕中心连续摆动或者铆钉受力膨胀,直到铆钉成形的铆接方法。冷铆常见的有摆碾铆接法及径向铆接法。摆碾铆接法较易理解,该铆头仅沿着圆周方向摆动碾压。 而径向铆接原理较为复杂,它的铆头运动轨迹是梅花状或者说是以圆为中心向外扩展的,铆头每次都通过铆钉中心点。冷铆接最常见的铆接工具有铆接机,压铆机,铆钉枪和铆螺母枪,铆钉枪和铆螺母枪是最常见单面冷铆接所用的工具。这是冷铆接工艺中最具代表性的冷铆接方法,因为使用方便,也只需在工件的一侧进行铆接,相对双面铆接的铆钉锤来说更方便。 就两种铆接法比较而言,径向铆接面所铆零件的质量较好,效率略高,并且铆接更为稳定,铆件无须夹持,即使铆钉中心相对主轴中心略有偏移也能顺利完成铆接工作。而摆碾铆接机必须将工件准确定位,最好夹持铆件。然而径向铆接机因结构复杂,造价高,维修不方便,非特殊场合一般不采用。相反地,摆碾铆接机结构简单,成本低,维修方便,可靠性好,能够满足90%以上零件的铆接要求,因而受到从多人士的亲睐。此外,利用摆碾铆接的原理,还可以制造适宜于多点铆接的多头铆接机,在现代工业生产中有其独特的优势。 热铆接是将铆钉加热到一定温度后进行的铆接。由于加热后铆钉的塑性提高、硬度降低,钉头成型容易,所以热铆时所需的外力比冷铆要小的多;另外,在铆钉冷却过程中,钉杆长度方向的收缩会增加板料间的正压力,当板料受力后可产生更大的摩擦阻力,提高了铆接强度。热铆常用在铆钉材质塑性较差、铆钉直径较大或铆力不足的情况下。

冷铆接法是以连续的局部变形便铆钉成形,其所施压力离铆钉中心越远越大,这恰恰符合材料变形的自然规律。因此,采用冷铆接技术所需设备小,节省费用。能提高铆钉的承载能力,强度高于传统铆接的80%。铆钉材料具有特别好的形变性能,铆杆不会出现质量问题,寿命较高,同时,只要改变铆头(不同的接杆和不同的铆接配件铆螺母铆钉等)的形状,就可以铆接多种形状。 二、 按工作方式分,铆接可分为手工铆接和自动钻铆。手工铆接由于受工人熟练程度和体力等因素的限制,难以保证稳定的高质量连接。而自动钻铆是航空航天制造领域应自动化装配需要而发展起来的一项先进制造技术。自动钻铆技术即利用其代替手工,自动完成钻孔、送钉及铆接等工序,是集电气、液压、气动、自动控制为一体的,在装配过程中不仅可以实现组件溅部件)的自动定位,同时还可以一次完成夹紧、钻孔、送钉、铆接/安装等一系列工作。它可以代替传统的手工铆接技术,提高生产速率、保证质量稳定、大大减少人为因素造成的缺陷。随着我国航空航天产业在性能、水平等方面的不断提高,在铆接装配中发展、应用自动钻铆技术,己经势在必行。具体原因如下: (1)自动钻铆技术减少操作时间。 ①减少成孔次数,一次钻孔完成; ②自动夹紧,消除了结构件之间的毛刺,节约了分解、去毛刺和重新安装工序; ③制孔后在孔边缘的毛刺可以得到控制: ④送钉、定位、铆接。 (2)自动钻铆机提高制孔质量。 ①制孔孔径公差控制在士0.015mm之内; ②内孔表面粗糙度最低为Ra3.2urn; ③制孔垂直度在士0.50以内; ④制孔时结构件之间无毛刺,背部毛刺控制在0.12ram之内; ⑤孔壁无裂纹。 (3)与手工铆接相比,在成本上有大幅度降低,通过比较人工与自动钻铆机安装相同数量的紧固件,所耗费的工时上,可以看出,对于大量同种类的紧固件的安装,自动钻铆机可以节约的工时成倍数增长。

最新生物制药工艺学思考题及答案

抗生素发酵生产工艺 1. 青霉素发酵工艺的建立对抗生素工业有何意义? 青霉素是发现最早,最卓越的一种B-内酰胺类抗生素,它是抗生素工业的首要产品,青霉素是各种半合成抗生素的原料。青霉素的缺点是对酸不稳定,不能口服,排泄快,对革兰氏阴性菌无效。青霉素经过扩环后,形成头孢菌素母核,成为半合成头孢菌素的原料。 2. 如何根据青霉素生产菌特性进行发酵过程控制? 青霉素在深层培养条件下,经历7个不同的时期,每个时期有其菌体形态特性,在规定时间取样,通过显镜检查这些形态变化,用于工程控制。 第一期:分生孢子萌发,形成芽管,原生质未分化,具有小泡。 第二期:菌丝繁殖,原生质体具有嗜碱性,类脂肪小颗粒。 第三期:形成脂肪包含体,积累储蓄物,没有空洞,嗜碱性很强。 第四期:脂肪包含体形成小滴并减少,中小空泡,原生质体嗜碱性减弱,开始产生抗生素。 第五期:形成大空泡,有中性染色大颗粒,菌丝呈桶状。脂肪包含体消失,青霉素产量提高。 第六期:出现个别自溶细胞,细胞内无颗粒,仍然桶状,释放游离氨,pH上升。 第七期:菌丝完全自溶,仅有空细胞壁。一到四期为菌丝生长期,三期的菌体适宜为种子。 四到五期为生产期,生产能力最强,通过工艺措施,延长此期,获得高产。在第六期到来之前发束发酵。 3. 青霉素发酵工程的控制原理及其关键点是什么? 控制原理:发酵过程需连续流加葡萄糖,硫酸铵以及前提物质苯乙酸盐,补糖率是最关键的控制指标,不同时期分段控制。在青霉素的生产中,及时调节各个因素减少对产量的影响,如培养基,补充碳源,氮源,无机盐流加控制,添加前体等;控制适宜的温度和ph,菌体浓度。最后要注意消沫,影响呼吸代谢。 4. 青霉素提炼工艺中采用了哪些单元操作? 青霉素不稳定,发酵液预处理、提取和精制过程要条件温和、快速,防止降解。提炼工艺包括如下单元操作: ①预处理与过滤:在于浓缩青霉素,除去大部分杂质,改变发酵液的流变学特征,便于后续的分离纯化过程。 ②萃取:其原理是青霉素游离酸易溶于有机溶剂,而青霉素易溶于水。 ③脱色:萃取液中添加活性炭,除去色素,热源,过滤,除去活性炭。 ④结晶:青霉素钾盐在乙酸丁酯中溶解度很小,在乙酸丁酯萃取液中加入乙酸钾-乙醇溶液,青霉素钾盐可直接结晶析出。 氨基酸发酵工艺 1. 如何对谷氨酸发酵工艺过程进行调控? 发酵过程流加铵盐、尿素、氨水等氮源,补充NH4+;生物素适量控制在2-5μg/L;pH 控制在中性或微碱性;供氧充足;磷酸盐适量。 2. 氨基酸生产菌有什么特性,为什么? L-谷氨酸发酵微生物的优良菌株多在棒状杆菌属、小短杆菌属、节杆菌属和短杆菌属中。具有下述共同特性:①细胞形态为短杆至棒状;②无鞭毛,不运动;③不形成芽孢;④革兰氏阳性;⑤生物素缺陷型;⑥三羧酸循环、戊糖磷酸途径突变;⑦在通气培养条件下产生大量L-谷氨酸。 3. 生物素在谷氨酸发酵过程中的作用是什么?

发酵工程原理期末复习

发酵工程原理期末复习 一 1、微生物的无氧呼吸称发酵 2、现代发酵工程:是将现代DNA重组及细胞融合技术、酶工程技术、组学及代谢网络调控技术、过程工程优化技术等新技术与传统发酵工程融合,大大提高传统发酵技术水平,拓展传统发酵应用领域和产品范围的一种现代工业生物技术体系。强调现代生物技术、控制技术和装备技术在发酵工业领域的集成应用。 3、发酵工程在生物技术中的地位:发酵工程是生物技术的基础,是生物技术产业的核心。 4、广义发酵工程对生物学和工程学的要求: 上游技术:优良种株的选育和保藏(包括菌种筛选、改造,菌种代谢路径改造等), 中游技术:发酵过程控制,主要包括发酵条件的调控,无菌环境的控制,过程分 析和控制等 下游技术: 分离和纯化产品。包括固液分离技术、细胞破壁技术、产物纯化 技术,以及产品检验和包装技术等 5、日常发酵产品:酒、酒精、醋、啤酒、干酪、酸乳等 6、以高产量、高转化率和高效率及低成本为目标的发酵过程优化技术: 高产量:微生物生理、遗传、营养及环境因素 高转化率:微生物代谢途径和过程条件 高效率:微生物反应动力学和系统优化 低成本:技术综合及产业化技术集成 7.发酵工程技术:分子层次,生物催化→催化剂发现/改造 细胞层次,细胞工厂→代谢工程 过程层次,过程优化→单元放大/耦合/集成/优化 8.发酵工业的范围:①微生物菌体 ②酶制剂 ③代谢产物 ④生物转化 ⑤微生物特殊机能的利用 利用微生物消除环境污染 利用微生物发酵保持生态平衡 微生物湿法冶金 利用基因工程菌株开拓发酵工程新领域 9、新的菌体发酵产品: 茯苓菌→茯苓 担子真菌→灵芝、香菇类 虫草头孢菌 密环菌 二、1.发酵工业对菌种的要求:1)能在价廉原料制备的培养基上迅速生长并生成所需代谢产物,且产量高2).培养条件易于控制, 3)生长迅速,发酵周期短, 4)满足代谢控制的要求 5)抗噬菌体和杂菌的能力强 6)遗传性状稳定,菌种不易变异退化 7)在发酵过程中产生的泡沫少,这对装料系数,提高单罐产量,降低成本有重要意义

生物制药工艺学

附件六:吉林大学珠海学院本科插班生招生考试大纲 吉林大学珠海学院2017年本科插班生招生入学考试 《制药工程》专业课程考试大纲 考试科目名称:生物制药工艺学 一、考试的内容、要求和目的 1、考试内容: 第一章生物药物概述 一、学习目的与要求 1、掌握生物药物概念、性质、特点与研究范围。 2、熟悉现代生物药物的分类和用途。 3、了解生物制药工业的历史、现状和发展前景。 二、考核知识点 1、识记:生物药物,基因工程药物,基因药物,生化药物,微生物药物,生物制品等的 概念;生物药物的类别。 2、理解:生物药物的性质和作用特点;基因工程药物与基因药物的区别;生物药物的发 展前景与方向。 3、应用:生物药物的应用范围;DNA重组药物的应用范围;生物药物的发展与药学发展 的关系。 第二章生物制药工艺技术基础 一、学习目的与要求 1、掌握生物活性物质的特点。 2、掌握生物活性物质制备的步骤及提取、浓缩与干燥方法。 3、了解中试放大工艺设计特点方法和内容。 二、考核知识点 1、识记:生物活性物质的存在特点;微生物纯培养,诱变育种,核酸疫苗等概念; 2、理解:各种方法的异同及诸多因素对生化物质溶解度的影响;以及提取的方法和工艺 要点;基因工程制药的基本内容;微生物菌种保藏和防止菌种退化的方法;生物药物分

离纯化的原理。 3、应用:DNA重组体的几种主要表达系统和特点; 第三章生物材料的预处理和液固分离 一、学习目的与要求 1、掌握常用细胞破碎的方法,各种方法的优缺点和适用范围。 2、熟悉生物材料预处理的目的,去除杂蛋白、多糖和金属离子的方法和原理。 3、了解液固分离的方法和设备。 二、考核知识点 1、识记:常用细胞破碎的方法;凝聚作用和絮凝作用;过滤和离心分离的概念。 2、理解:细胞破碎的方法和各自特点、适用范围。细胞培养液的预处理方法和原理;去除杂蛋白、多糖和金属离子的方法和原理;影响液固分离的因素。 3、应用:举例说明不同生物材料的细胞破碎方法;错流过滤的使用特点。 第四章萃取法分离原理 一、学习目的与要求 1、掌握溶剂萃取的基本原理,萃取方式,破乳化方法。 2、掌握双水相萃取原理、影响因素及其应用。 3、掌握超临界萃取的原理,影响因素。 4、熟悉反胶束萃取原理及其在生化药物分离纯化中的应用。 5、了解萃取设备和溶媒回收方法。 6、了解超临界萃取方式及流程。 二、考核知识点 1、识记:溶剂萃取法,反萃取,萃取比(萃取因素),分配比,萃取率,双水相萃取法,反胶束萃取,超临界萃取的概念;乳化和破乳化的概念; 2、理解:各种萃取方法的特点;影响溶剂萃取的因素;超临界萃取的原理和影响因素,超临界萃取剂的特点。 3、应用:举例说明不同萃取法的应用;破坏乳状液的方法;超临界萃取方式,萃取流程及应用。 第五章固相析出分离法 一、学习目的与要求 1、掌握盐析、有机溶剂沉淀、等电点沉淀法等固相析出分离法的基本原理、影响因素和优缺点。 2、熟悉结晶的方法,影响因素,以及提高晶体质量的方法。 3、了解成盐沉淀法、亲和沉淀法、高分子聚合物沉淀法的特点。 二、考核知识点 1、识记:盐析,有机溶剂沉淀,等电点沉淀法等的概念;Ks盐析,β盐析,盐析分布曲

材料制备与合成

《材料制备与合成[料]》课程简介 课程编号:02034916 课程名称:材料制备与合成/Preparation and Synthesis of Materials 学分: 2.5 学时:40 (课内实验(践):0 上机:0 课外实践:0 ) 适用专业:材料科学与工程 建议修读学期:6 开课单位:材料科学与工程学院材料物理与化学系 课程负责人:方道来 先修课程:材料化学基础、物理化学、材料科学基础、金属材料学 考核方式与成绩评定标准:期末开卷考试成绩(占80%)与平时考核成绩(占20%)相结合。 教材与主要参考书目: 教材:《材料合成与制备》. 乔英杰主编.国防工业出版社,2010年. 主要参考书目:1. 《新型功能材料制备工艺》, 李垚主编. 化学工业出版社,2011年. 2. 《新型功能复合材料制备新技术》.童忠良主编. 化学工业出版社,2010年. 3. 《无机合成与制备化学》. 徐如人编著. 高等教育出版社, 2009年. 4. 《材料合成与制备方法》. 曹茂盛主编. 哈尔滨工业大学出版社,2008年. 内容概述: 本课程是材料科学与工程专业本科生最重要的专业选修课之一。其主要内容包括:溶胶-凝胶合成法、水热与溶剂热合成法、化学气相沉积法、定向凝固技术、低热固相合成法、热压烧结技术、自蔓延高温合成法和等离子体烧结技术等。其目的是使学生掌握材料制备与合成的基本原理与方法,熟悉材料制备的新技术、新工艺和新设备,理解材料的合成、结构与性能、材料应用之间的相互关系,为将来研发新材料以及材料制备新工艺奠定坚实的理论基础。 The course of preparation and synthesis of materials is one of the most important specialized elective courses for the undergraduate students majoring in materials science and engineering. It includes the following parts: sol-gel method, hydrothermal/solvothermal reaction method, CVD method, directional solidification technique, low-heating solid-state reaction method, hot-pressing sintering technique, self-propagating high-temperature synthesis, and SPS technique. Its purpose is to enable students to master the basic principles and methods of preparation and synthesis of materials, and grasp the new techniques, new processes and new equipments, and further understand the relationship among the synthesis, structure, properties and the applications of materials. The course can lay a firm theoretical foundation for the research and development of new materials and new processes in the future for students.

发酵工程原理知识点总结

1、发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程。 2、发酵工程:利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系,它是生物工程和生物技术学科的重要组成部分,又叫微生物工程 3、发酵工程技术的发展史: ①1900年以前——自然发酵阶段 ②1900—1940——纯培养技术的建立(第一个转折点) ③1940—1950——通气搅拌纯培养发酵技术的建立(第二个转折点) ④1950—1960——代谢控制发酵技术的建立(第三个转折点) ⑤1960—1970——开发发酵原料时期(石油发酵时期) ⑥1970年以后——进入基因工程菌发酵时期以及细胞大规模培养技术的全面发展 4、工业发酵的类型: ①按微生物对氧的不同需求:厌氧发酵、需氧发酵、兼性厌氧发酵 ②按培养基的物理性状:固体发酵、液体发酵 ③按发酵工艺流程:分批发酵、补料发酵、连续发酵5、发酵生产的流程:(重要) ①用作种子扩大培养及发酵生产的各 种培养基的制备 ②培养基、发酵罐及其附属设备的灭菌 ③扩大培养有活性的适量纯种,以一 定比例将菌种接入发酵罐中 ④控制最适的发酵条件使微生物生长并 形成大料的代谢产物 ⑤将产物提取并精制,以得到合格的产 品 ⑥回收或处理发酵过程中所产生的三废 物质 6、常用的工业微生物: ①细菌:枯草芽孢杆菌、醋酸杆菌、 棒状杆菌、短杆菌等 ②放线菌:链霉菌属、小单胞菌属和 诺卡均属 ③酵母菌:啤酒酵母、假丝酵母、类 酵母 7、未培养微生物:指迄今所采用的微生 物纯培养分离及培养方法还未获得纯培 养的微生物 8、rRNA序列分析:通过比较各类原核生 物的16S和真核生物的18S的基因序列, 从序列差异计算它们之间的进化距离,从 而绘制进化树。 选用16S和18S的原因是:它们为原 核和真核所特有,其功能同源且较为古 老,既含有保守序列又含有可变序列,分 子大小适合操作,它的序列变化与进化距 离相适应。 9、菌种选育改良的具体目标: ①提高目标产物的产量 ②提高目标产物的纯度 ③改良菌种性状,改善发酵过程 ④改变生物合成途径,以获得高产的 新产品 10、发酵工业菌种改良方法: ①常规育种:诱变和筛选,最常用。 关键是用物理、化学或生物的方法修改目 的微生物的基因组,产生突变。 ②细胞工程育种:杂交育种和原生质 体融合育种 ③代谢工程育种:组成型突变株的选 育、抗分解调节突变株的选育、营养缺陷 型在代谢调节育种中的应用、抗反馈调节 突变株的选育、细胞膜透性突变株的选育 ④基因工程育种:原核表达系统、真 核表达系统 ⑤蛋白质工程育种:定点突变技术、 定向进化技术 ⑥代谢工程育种:改变代谢途径、扩 展代谢途径 ⑦组成生物合成育种:通过合成化合 物库进行高效率的筛选 ⑧反向生物工程育种:希望表型的确

微生物与发酵工程

微生物与发酵工程 13101002 朱梦雪发酵工程是生物工程的重要组成部分,也是现代微生物学的核心内容;任何产品的发酵生产都必须通过微生物发酵或细胞扩大培养才能实现。因此,微生物与发酵是紧紧联系在一起的。微生物发酵工程是加快发酵工程研究成果转化为生产力,取得最佳效益的重要手段。微生物科学工作者应不失时机地积极而科学地运用这种手段为社会社会主义市场经济服务。 根据文献的调查,微生物的发酵工程主要应用于以下几点: 首先是在农业生产上,巴西全国土壤生物研究中心的研究人员发现一种新固氮菌,即固氮醋杆菌(Aeetobaeterdiazotrophyeus)。这是人类发现的第一个有固氮能力的醋杆菌,生活在甘蔗根部,具有很强的抗酸性。由于它的高效固氮能力,可使甘蔗年产量提高2倍(由60吨/公顷提高到180吨/公顷)。在固氮菌的研究方面,我国作物茎瘤固氮根瘤菌的高效固氮活性,以及小麦、玉米、陆生水稻固氮根瘤菌研究取得重要进展;英国诺丁汉大学一个研究小组也获得田著根瘤菌进入小麦、水稻、玉米和油菜等非豆科植物侧根中形成小根瘤,且有固氮作用的类似结果。今年拟在埃及、印度、墨西哥分别进行小麦、水稻、玉米的田间试验。这些非豆科专性共生固氮菌尚处在试验研究阶段。而我国联合固氮微生物早已产业化生产,其产品推广应用于农业生产实践,获得了增产的效果。近又发现一些新的联合固氮菌如产酸克氏杆菌、植皮克氏杆菌(Klebsiellaplantieola)等,为扩大联合固

氮菌AIJ新品种的研制做出了新贡献。 其次是在生物材料方面。有很多生物材料都是应用微生物发酵来生产的。我了解到的有生物可降塑料、建筑用生物材料和壳聚糖材料。 生物可降解塑料:微生物合成塑料物质:加拿大蒙特利尔生物技 术研究所以甲醇为原料利用从土壤中选育的嗜甲基细菌生产聚件轻 基丁酸(PHB),在我国,武汉大学生物工程研究中心用圆褐固氮菌发酵生产PHB;中国科学院微生物研究所用真养产碱杆菌生产PHB,在培养基中累积的量达细胞干重的63%(W/W);山东大学微生物研究所用该菌生产PHB的研究取得类似结果。 建筑用生物材料:某些微生物及其代谢产物如橡胶物质、弹力纤维、高分子多糖等作为混凝土添加剂,制造富有弹性的牢固的生物混凝土材料是有可能的,提供生物建筑材料的另一种可能性是某些微生物—蓝细菌或微型藻类,它们有分泌石灰石(碳酸钙)能力。 多用途的壳聚糖材料:壳聚糖又叫脱乙酞基多糖,用途极其广泛,几乎各个行业都用得着它。从微生物发酵生产,如真菌细胞壁含几丁质成分20%一22%,毛霉细胞壁中几丁质含量高达30写一40%,利用黑曲霉或其他真菌来生产壳聚糖是完全可能的。 还有就是利用微生物发酵生产两类重要有机酸这里着重介绍两 类重要有机酸,都有可能通过微生物发酵途径索取。 衣康酸(itaconicac记)进人规模生产:衣康酸又称甲叉丁二酸,系一种不饱和的二梭酸,用途广、需求量大,它是制造合成树脂、合成纤维、塑料、橡胶、表面活性剂、去垢剂、润滑油添加剂等的原料,

生物制药工艺学(含答案)

1.简述生物制药工艺学的性质与任务。 答:性质:生物制药工艺学是一门生命科学与工程技术理论和实践紧密结合的崭新的综合性制药工程学科。 任务:1)生物制药的来源及其原料药物生产的主要途径和工艺工程。2)生物药物的一般提取、分离、纯化、制造原理和生产方法。3)各类生物药物的结构、性质、用途及其工艺和质量控制。 2.简述糖类药物的分类、生理功能 答:糖类的分类方法有很多种,根据其分子构成一般分为单糖、双糖、多糖。 糖类的生理功能 (1)供给能量 这是糖类最重要的生理功能。糖类产热快,供能及时,价格最便宜。每克糖类能提供16.7kJ(4.0kcal)的能量,而脑神经及神经组织只能靠血液中的葡萄糖供给能量,如果血糖过低,可出现昏迷、休克和死亡。 (2)构成机体的重要物质 所有的神经组织和细胞中都含有糖类,作为控制和代替遗传物质的基础,脱氧核糖核酸和核糖核酸都含有核糖。 (3)节约蛋白质 当机体供能不足时,可动用蛋白质和脂肪代谢产生的能量来弥补,如果膳食镇南关提供了足够能量的糖类,这样就可以节省蛋白质,而且摄入蛋白质的同时摄入糖类,有利于氨基酸的活化和三磷腺甘的形成,从而有利于蛋白质的合成,增加体内氨储留。营养学上称此为糖类对蛋白质的节约作用。(4)抗生酮作用 脂肪在体内氧化要靠糖类供给能量,当糖类供给不足或因疾病(糖尿病)不能利用糖类时,机体所需要的热能大部分由脂肪供给,而脂肪在缺少糖类是,氧化不完全,会产生酮体。酮体是一种酸性物质,在体内积存过多可引起身体疲劳、促进衰老,甚至引起酸中毒,所以酮体对人体的危害是非常大的,如果糖类供应充足,脂肪完全可进行氧化,不会产生酮体。 (5)保肝解毒 当肝糖原及葡萄糖充足时,肝对某些化学物质如四氧化碳、砷及酒精等多种有毒物质有较强的解毒能力,对各种细菌感染引起的毒血症也有较强的解毒作用。 3.谈谈生物药物的特性与分类 答:(1)在化学构成上十分接近于体内的正常生理物质,容易为机体吸收利用; (2)在药理上具有更高的生化机制合理性和特异治疗有效性; (3)在医疗上具有药理活性高、针对性强、毒性低、副作用小、疗效可靠; (4)原材料中浓度较低; (5)常为生物大分子,组成、结构复杂,空间构象严格。 (6)化学与生物学性质不稳定,对各种理化因素敏感,生物活性易受影响。 分类:天然生化药物、微生物药物、基因工程药物、基因药物、生物制品 4.简述生物药物的研究发展趋势 答:资源的综合利用与扩大开发;大力发展现代生物技术医药产品;应用化学方法和蛋白工程技术创制新结构药物;中西结合创制新型生物药物 5.简述生物材料的来源

发酵工程原理课程标准

发酵工程原理课程标准 濮阳职业技术学院刘殿锋 一、课程的基本要素 1、课程性质 本课程是应用生物技术专业的必修专业课之一;是一门综合性学科,涉及的知识面广,同时又是一门基础理论与生产实际相结合的课程;本课程是在《微生物学》、《生物化学》、、《分子生物学与基因工程》等课程基础上开设的;对于同时开设的《生物技术概论》、《生物工程设备》等课程与本课程有着密切的联系,同时又有适当的分工,本课程以讲授发酵工艺的基本原理为主;在本课程基础上使学生更好地理解和掌握《发酵分析》、《发酵工厂设计概论》、《发酵工艺》、《生物分离与纯化技术》等后续课程。 2、课程的基本理念 该课程面向应用生物技术专业,使学生掌握各种发酵工艺的基本原理,重点突出生产工艺操作及过程控制等方面的实际问题,并了解发酵工程技术前沿动态。 3、课程的设计思路 本课程在设计过程中,注重工学结合教学模式的改革,校企专家共同参与教学过程与评价过程,以“四个结合”作保障,即教学内容――校企结合、教师队伍――专兼结合、教学环境――工学结合、教学方法――理实结合,从根本上改变本课程教学从“理论到理论、从课堂到课堂、从知识到知识”的陈旧的教学模式。 二、课程的目标 1、知识目标 通过本课程的学习,使学生掌握发酵工程的典型过程及其基本原理、基本技术以及基本实验操作技能,了解该学科的发展方向。 2、能力目标 通过本课程的学习,使学生能够理论联系实际去分析和解决有关发酵工程中的具体问题。 3、素质目标

通过本课程的学习,培养出的学生能够理论联系实际地在发酵企业分析实际技术问题,并能因地制宜处理这些问题的能力,可以胜任生物技术产业中新产品和新工艺的开发,生产工艺过程技术管理和高技术生产岗位的实际技术工作。 三、课程内容的组织 课程内容的组织以就业为导向,以能力为本位,以发酵工艺项目为驱动,结合发酵企业生产实际,以发酵工程中的典型单元操作为中心构建课程内容,其理论知识的选取紧紧围绕发酵企业生产实际的需要来进行。 四、课程实施意见 1、学时安排 第一章绪论(2学时): 了解生物技术的知识和生物产品生产的基本过程;了解发酵的一般概念;了解发酵工程的应用范围、特点、发展简史及发展趋势;发酵工艺的一般培养方法及过程。 第二章生产菌种的选育(10学时): 了解生物活性物质产生菌的筛选方法与过程,掌握自然育种、诱变育种、杂交育种、原生质体融合技术育种及基因重组技术育种的原理与方法。 第三章培养基(8学时): 了解发酵生产培养基的组成成份及其在发酵中的作用;掌握影响培养基质量的因素及控制措施。 第四章灭菌(6学时): 了解灭菌的概念及方法;掌握微生物热死动力学;掌握影响灭菌效果的因素及控制方法;重点掌握分批灭菌和连续灭菌的工艺过程及操作要点。 了解无菌空气质量标准、制备方法;掌握空气介质过滤除菌的工艺过程及影响无菌空气质量的因素。 第五章生产菌种的扩大培养与保藏(6学时): 了解生产菌种制备的一般流程;掌握各生产菌种制备的工艺流程及操作要点;掌握影响种子质量的因素及其控制方法;掌握菌种保藏的原理及方法。 第六章发酵动力学(8学时): 掌握分批培养、补料分批培养和连续培养的基础理论、操作特点、动力学模

生物制药工艺学

《生物制药工艺学》课程教学大纲

teaching methods include lecture, reading, analysis, discussion, presentation, and so on. The aims of the course are to enable students to understand the development trend of biological drug, be familiar with the process of biological pharmacy, and master the important technology. The course is also to cultivate their ability of analyzing problems and independent learning, motivate their qualities of thinking and cooperation. 课程教学大纲(course syllabus) *学习目标(Learning Outcomes)本课程的具体学习目标如下: 1.使学生了解生物制药的概念、国内外现状及发展趋势(A6.3) 2.使学生掌握生物制药的上游工艺过程和下游工艺过程(A6.3 3.使学生掌握生物制药的基本技术以及应用(A6.3 4.使学生熟悉和了解主要生物药物,如抗生素、氨基酸类药物、维生素、核酸类药物、多肽与蛋白质类药物、药物生物转化、基因工程药物,菌苗和疫苗的工艺流程和控制(A6.3) 5. 培养学生分析问题的能力和自主学习的能力(B2) 6.培养学生乐于思考和团队合作的素养(C4) *教学内容、进度安排及 要求 (Class Schedule & Requirements) 教学内容学时 教学 方式 作业及要求 基本要 求 考查方 式 生物药物的概念、种 类和发展趋势,生物 制药的工艺过程和 培养技术的发展 2 讲授/ 讨论 什么是生物药 物?生物药物的 种类有哪些?生 物药物的发展趋 势如何? 掌握基 本概念, 了解工 艺过程 课堂检 查掌握 情况 现场参观:生物制药 工艺流程和设备 2 讲授/ 演示/ 讨论 动物细胞培养和 微生物细胞培养 有何异同? 基本了 解发酵 罐和生 物反应 器的部 件结构 展示和 讨论 生物药物产生菌和 细胞株的种类、来 源、保藏和培养特性 2 讲授/ 讨论 列举常用的产生 菌和细胞株 熟悉生 物药物 产生菌 和细胞 株的培 养特性 讨论 微生物药物的生物 合成途径和代谢调 控;基因工程药物的 表达;菌种改良和细 胞株筛选 2 讲授/ 讨论 归纳菌种改良和 细胞株筛选的技 术方法 掌握各 种不同 技术方 法的应 用 批阅作 业 微生物药物生产培 养基和动物细胞培 养基的组成特点,微 生物发酵和动物细 胞培养的操作方式, 2 讲授/ 讨论/ 阅读 培养基组成和培 养方式对生物药 物产量的影响有 哪些?空气是如 何除菌的? 掌握培 养基组 成对产 量的影 响因素, 批阅作 业

最新原理以及制备工艺的资料

原理以及制备工艺的 资料

1.2 有机电致发光二极管结构及其发光原理 有机电致发光二极管是将电能转化成光能的器件,属于电荷注入型发光器件。其基本结构如上文所述为夹心结构[Error! Bookmark not defined.],最简单的结构是一个发光层薄膜(EML)加在正负两个电极之间,正负电荷分别从两个电极注入到发光层中并进行复合发光。发光的过程大致可以总结为下面5个步骤: 1.载流子的注入; 2.载流子的传输; 3.激子的产生; 4.激子的迁移和衰减(辐射衰减); 5.激子的出射(光的耦合输出) 1.载流子的注入:在正向偏压的作用下,空穴从金属阳极费米能级(φa)注入到发光层的最高未占有轨道(HOMO),而电子从金属阴极费米能级(φc)注入到发光层的最低未占有轨道(LUMO)。形成PLED的正向和负向两种载流子。 载流子注入时,空穴要克服阳极与发光层HOMO之间的能量势垒,而电子要克服阴极与发光层LUMO能级之间的能量势垒,势垒越小,载流子越容易注入,因此金属电极的功函数要与发光层的HOMO和LUMO相匹配。当势垒高度小于0.3-0.4eV时可认为该接触为欧姆接触[i],此时可以认为载流子的注入是没有势垒的。电致发光器件要求两个电极至少一段是透明,光可以由此段出射。作为底端出射结构,氧化铟锡(ITO)由于具有较高的透光率和优良的导电率以基脚高的功函数,通过溅射的方法,制备成ITO玻璃被广泛用作阳极。

而阴极则常用一些具有较高发射率的低功函数金属,例如钡,钙,镁,铯等[ii,iii,iv]。图1-1给出了典型器件结构的相应能级示意图。[v]但是一般的聚合物发光材料的HOMO和LUMO与阳极和阴极的能级匹配并不是最理想的状态,存在载流子的注入势垒,导致器件高的起亮电压,高的能耗和低的器件性能。 图1-1 器件的能级结构示意图[14] Fig.1-1 The sketch of PLED’s energy level[14] 载流子的注入有两种理论机制,分别是隧穿机制[vi,vii,viii ]和空间电荷限制效应机制[ix,x,xi]。一般情况下,当载流子的注入都不存在势垒时的载流子注入机制符合空间电荷限制效应理论。即此时的注入情况取决于发光层材料的载流子迁移率,低的载流迁移率会导致电荷在界面层的积累,阻止载流子的进一步注入[xii,xiii,xiv]。当界面的接触不是欧姆接触时,要将加在器件上的电场增大到一定的程度才能使载流子注入,载流子开始注入时的电压称为阈值电压,阈值电场的大小取决于注入的能量势垒的高低,此时的载流子注入机制符合隧道贯穿机制。但是,实际情况下这两种载流子注入情况并不是孤立存在的。 2.载流子的传输:诸如的载流子在电场作用下,在器件中向对面的电极迁移。

相关主题
文本预览
相关文档 最新文档