当前位置:文档之家› 淬火介质、淬火加热温度及冷却方法介绍

淬火介质、淬火加热温度及冷却方法介绍

淬火介质、淬火加热温度及冷却方法介绍
淬火介质、淬火加热温度及冷却方法介绍

淬火介质、淬火加热温度及冷却方法介绍

淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。

淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。淬火工艺应用最为广泛,如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。

(1)淬火加热温度

淬火加热温度根据钢的成分、组织和不同的性能要求来确定。亚共析钢是AC3+(30~50℃);共析钢和过共析钢是AC1+(30~50℃)。

亚共析钢淬火加热温度若选用低于AC3的温度,则此时钢尚未完全奥氏体化,存在有部分未转变的铁素体,淬火后铁素体仍保留在淬火组织中。铁素体的硬度较低,从而使淬火后的硬度达不到要求,同时也会影响其他力学性能。若将亚共析钢加热到远高于AC3温度淬火,则奥氏体晶粒回显著粗大,而破坏淬火后的性能。所以亚共析钢淬火加热温度选用AC3+(30~50℃),这样既保证充分奥氏体化,又保持奥氏体晶粒的细小。

过共析钢的淬火加热温度一般推荐为AC1+(30~50℃)。在实际生产中还根据情况适当提高20℃左右。在此温度范围内加热,其组织为细小晶粒的奥氏体和部分细小均匀分布的未溶碳化物。淬火后除极少数残余奥氏体外,其组织为片状马氏体基体上均匀分布的细小的碳化物质点。这样的组织硬度高、耐磨性号,并且脆性相对较少。

过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。

因此过共析钢的淬火加热温度高于AC1太多是不合适的,加热到完全奥氏体化的ACm或以上温度就更不合适。

在生产实践中选择工件的淬火加热温度时,除了遵守上述一般原则外,还要考虑工件的化学成分、技术要求、尺寸形状、原始组织以及加热设备、冷却介质等诸多因素的影响,对加热温度予以适当调整。如合金钢零件,通常取上限,对于形状复杂零件取下限。

强韧化新工艺选用的淬火加热温度与常用淬火温度有所区别。如亚温淬火是亚共析钢在略低于AC3的温度奥氏体化后淬火,这样可提高韧性,降低脆性转折温度,并可消除回火脆性。如45、40Cr、60Si2等材料制成的工件亚温淬火加热温度为AC3-(5~10℃)。

采用高温淬火可获得较多的板条状马氏体或使全部板条马氏体提高强度和韧性。如16Mn钢在940℃淬火,5CrMnMo钢在890℃淬火,20CrMnMo钢在920℃淬火,效果较好。

高碳钢低温、快速、短时加热淬火,适当降低高碳钢的淬火加热温度,或采用快速加热及缩短保温时间的办法,可减少奥氏体的碳含量,提高钢的韧性。(2)保温时间

为了使工件内外各部分均完成组织转变、碳化物溶解及奥氏体的成分均匀化,就必须在淬火加热温度保温一定时间,既保温时间。

(3)淬火介质

工件进行淬火冷却所使用的介质称为淬火冷却介质(或淬火介质)。理想的淬火介质应具备的条件是使工件既能淬成马氏体,又不致引起太大的淬火应力。这就要求在 C曲线的“鼻子”以上温度缓冷,以减小急冷所产生的热应力;在“鼻子”处冷却速度要大于临界冷却速度,以保证过冷奥氏体不发生非马氏体转变;在“鼻子”下方,特别使Ms点一下温度时,冷却速度应尽量小,以减小组织转变的应力。

恒进科技,专业生产感应淬火成套设备,QQ:2502249701。如果您的产品需要感应加热,恒进科技将为您提供完善的解决方案与周到的服务!我们生产的设

备属于全自动化淬火成套设备,包括各种数控淬火机床、IGBT中高频电源、冷却机组、变压器等。

淬火介质的冷却特性曲线究竟说明了什么

第28卷第2期2007年4月热处理技术与装备 RECHUL I J I SHU Y U ZHUANG BE I Vol .28,No .2Ap r,2007 收稿日期:2006-11-28 作者简介:张克俭(1945-),男,工学博士,主要从事淬火介质产品开发及其应用技术的研究工作 ?试验研究? 淬火介质的冷却特性曲线究竟说明了什么 张克俭 (北京华立精细化工公司 北京 102200) 摘 要:在用标准测试仪检测淬火介质冷却特性的同时,用摄像机摄录了探棒周围的状况。对比发 现,按测得的冷却特性曲线的形状划分的冷却阶段,与探棒表面实际发生的冷却情况大不相同。说明了产生这种差异的原因。通过分析和推理,得出了结论:不能从淬火介质的冷却特性曲线去划分探棒所处的冷却阶段;凭测出的冷却特性曲线不可能准确推算实际工件可能获得的冷却情况;淬火介质的冷却特性曲线只宜用在介质冷却特性的相互对比中。 关键词:淬火介质;冷却特性曲线;冷却特性检测;冷却过程计算;热处理工艺中图分类号: TG154.4 文献标识码: B 文章编号: 1673-4971(2007)02-0025-04 W ha t Cooli n g Ra te Curve of Quench i n g M ed i a I m pli es Zhang Ke 2jian (Beijing Huali Fine Che m ical Company L td .Beijing 102200,China ) Abstract:The visual phenomena occurred ar ound the quench p r obe were recorded with digital video ca 2mera during standard test of quenching media .It was found that partiti on of cooling p r ocess according t o the measured cooling rate curve is not t otally corres ponding t o what were visually observed .The reas ons of this discrepancy are discussed .It is concluded the cooling p r ocess of actual quenched parts can not be ac 2curately p redicted by merely using the measured cooling rate curves of quenching media,which are only app licable f or comparis on of characteristics of different quenching media . Key words:quenchant;cooling curve;cooling curve test;si m ulati on of quenching p r ocess;heat treat m ent technol ogy 1 淬火介质冷却特性曲线的应用情况与存在的疑问 近二十年来,淬火介质冷却特性曲线的应用给热处理行业带来了不小的技术进步。现在,淬火介质的开发研究,介质的比较和选择,热处理生产中的产品质量控制,甚至分析和解决生产中遇到的热处理质量和技术问题,都已离不开淬火介质的冷却特性曲线了。但是,这些冷却特性曲线究竟能告诉我们些什么?对这个问题,行业内已经有了基本一致 的答案。极具权威性的美国金属手册[1] 上,以及行 业内知名专家G .E .T otten 的专著[2] 上提供的解释很具代表性,如图1所示。图中阶段A 通称冷却的 蒸汽膜阶段(也称膜沸腾阶段),阶段B 通称沸腾阶段(也称泡沸腾阶段),阶段C 称为对流阶段。在蒸汽膜阶段,整个试块被蒸汽膜包围着。图中,在沸腾冷却阶段,整个试块表面都在发生沸腾。而到了对流冷却阶段,则通过对流传热使试块冷却。曲线上的点,都可以通过时间或者温度坐标找到另一曲线上的对应点。一般的书刊资料上,液态淬火介质的冷却特性曲线,不管采用什么样的检测标准,都按图1所示的方式划分冷却的阶段和解释各阶段的冷却机理。 在淬火介质的研究和评价中,通常用图1所示的

常用淬火介质分析

常用淬火介质分析 2006-12-30 关键字:淬火介质 1.水 水是应用最早、最广泛、最经济的淬火介质,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力强。通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场作用等,均可以改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果。但由于这些方法需增加专门设备,且工件淬火后性能不是很稳定,所以没有能得到广泛推广应用。所以说。纯水只适合于少数含碳量不高、淬透性低且形状简单的钢件淬火之用。 2.淬火油 用于淬火的矿物油通常以精制程度较高的中性石蜡基油为基础油,它具有闪点高、粘度低、油烟少,抗氧化性与热稳定性较好,使用寿命长等优点,适合于作淬火油使用。淬火油只使用于淬透性好、工件壁厚不大、形状复杂、要求淬火变形小的工件。淬火油对周围环境的污染大,淬火时容易引起火灾。 影响淬火油冷却能力的主要因素是其粘度值,在常温下低粘度油比高粘度油冷却能力大,温度升高,油的流动性增加,冷却能力有所提高。适当提高淬火油的使用温度,也能使油的冷却能力提高。 3.熔盐,熔碱 这类淬火介质的特点是在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火变形小,基本无裂纹产生,但是对环境污染大,劳动条件差,耗能多,成本高,常用于形状复杂,截面尺寸变化悬殊的工件和工模具的淬火。熔盐有氯化钠,硝酸盐,亚硝酸盐等,工件在盐浴中淬火可以获得较高的硬度,而变形极小,不易开裂,通常用作等温淬火或分级淬火。其缺点是熔盐易老化,对工件有氧化及腐蚀的作用。熔碱有氢氧化钠,氢氧化钾等,它具有较大的冷却能力,工件加热时若未氧化,淬火后可获得银灰色的洁净表面,也有一定的应用。但熔碱蒸气具有腐蚀性,对皮肤有刺激作用,使用时要注意通风和采取防护措施。 4.新型淬火介质及其应用 有机聚合物淬火剂 近年来,新型淬火介质最引人注目的进展是有机聚合物淬火剂的研究和应用。这类淬火介质是将有机聚合物溶解于水中,并根据需要调整溶液的浓度和温度,配制成冷却性能能满足要求的水溶液,它在高温阶段冷却速度接近于水,在低温阶段冷却速度接近于油。其优点是无毒,无烟无臭,无腐蚀,不燃烧,抗老化,使用安全可靠,且冷却性能好,冷却速度可以调节,适用范围广,工件淬硬均匀,可明显减少变形和开裂倾向,因此,能提高工件的质量,改善工作环境和劳动条件,给工厂带来节能、环保、技术和经济效益。目前有机聚合物淬火剂在工件大批量、单一品种的热处理上用得较多,尤其对于水淬开裂,变形大,油淬不硬的工件,采用有机聚合物淬火剂比淬火油更经济、高效和节能。从提高工件质量、改善劳动条件、避免火灾和节能得角度考虑,有机聚合物淬火剂有逐步取代淬火油的趋势,是淬火介质的主要发展方向。 有机聚合物淬火剂的冷却速度受浓度,使用温度和搅拌程度3个基本参数的影响。一般来说,浓度越高,冷却速度越慢;使用温度越高,冷却速度越慢;搅拌程度越激烈,冷却速度越快。搅拌的作用很重要;1使溶液浓度均匀;2加强溶液的导热能力从而保证淬火后工

淬火介质的淬火冷却过程

淬火介质的淬火冷却过程 1 蒸汽膜冷却阶段 当红热的工件浸入淬火介质后,淬火介质会受热发生汽化并立即在其表面形成一层蒸汽膜,这层蒸汽膜的导热率很低,工件的热量主要通过蒸汽膜的辐射和传导作用来传递出去.因此工件在该阶段冷却速度比较缓慢. 蒸汽膜阶段持续时间的长短,主要取决于淬火介质的构成成份.淬火介质具有非常短的蒸汽膜阶段是非常重要和必需的.首先可以有效避免被处理零件发生不希望的组织转变(非马氏体组织);其次,可以实现零件上不同位置的均匀冷却,能够有效降低组织转变应力,从而减少变形. 2 沸腾冷却阶段 经过一段时间,零件表面上的蒸汽膜开始破裂(蒸汽膜维持的时间主要取决于淬火介质的构成成份及被处理零件的几何形状尺寸)并迅速进入沸腾冷却阶段.此时工件与淬火介质直接接触,淬火介质在工件表面产生强烈沸腾,工件的热量被介质汽化所吸收,散热速度加快,冷却速度很快达到最大值.工件表面温度迅速下降,而后液体沸腾逐渐减弱直至工件表面温度低于液体沸点,沸腾冷却阶段结束. 3 对流冷却阶段 当淬火工件的表面温度低于介质沸点时,进入对流冷却阶段,此时工件与介质之间的散热是以对流传导方式进行.介质本身由于温度差则产生自然对流及介质与工件之间的温差产生的热传导将工件的热量带走,这一阶段的冷却速度通常比较缓慢,但是搅拌速度的大小对其有着很大的影响. 淬火液的几个重要参数 a 蒸汽膜冷却阶段的持继时间 b 沸腾冷却阶段的温度范围 c 对流冷却阶段的冷却速度及其开始的温度 最大冷却速度并不能反映出淬火介质冷却性能的优劣, 因为它只是温度-时间曲线上的最大斜率值,而非对应于TTT转变相图上C 曲线的位置(特别是鼻尖温度位置). 淬火介质具有一个短暂的蒸汽膜阶段是相当重要和必需的,因为,当零件浸入淬火介质的最初几秒钟(有些情况下甚至在一秒钟之内)温度就会降低到500~600度左右的临界温度,此时如果蒸汽膜阶段过长,非马氏体的一些软组织如珠光体,贝氏体,托氏体等就会产生.对于合金含量较高的材料,其在TTT相图上的C曲线会右移,有时淬火介质蒸汽膜阶段较长也不会影响其最终淬火冷却效果,但是,蒸汽膜阶段的缩短有助于整个工件不同位置得到均匀冷却,能够减少应力,降低淬火变形.

淬火介质冷却曲线测定数据处理

淬火介质冷却曲线测定数据处理 一、三种介质在20℃模拟淬火冷却曲线 1、20度水淬火冷却 温度850 800 750 700 650 600 550 500 450 400 时间0.00 1.25 2.90 3.75 4.10 4.45 4.75 5.15 5.50 6.00 温度350 300 250 200 150 100 50 时间 6.55 7.25 8.25 9.70 11.60 14.90 19.95 2、20度油淬火冷却 温度850 800 750 700 650 600 550 500 450 400 时间0.00 2.00 3.65 4.50 4.95 5.30 5.85 6.40 7.15 8.15 温度350 300 250 200 150 100 50 时间10.15 12.65 17.60 27.65 44.30 69.30 119.30

3、20度10%硫酸钠溶液淬火冷却 二、20℃时三种介质冷却速度特性曲线 4、20℃水,油,10%42SO Na 冷却速度特性曲线 温度 850 800 750 700 650 600 550 500 450 400 时间 0.00 0.30 0.50 0.70 0.88 1.08 1.30 1.54 1.82 2.14 温度 350 300 250 200 150 100 50 时间 2.52 3.02 3.70 4.70 6.36 11.36 21.36 20 ℃冷却速度特性曲线 淬火介质 温度/℃ 850 800 750 700 650 600 550 500 450 水 速度/1 -?s m 10.00 10.00 12.58 24.82 55.70 88.46 91.67 87.12 81.17 油 25.00 27.65 44.56 84.97 126.98 116.88 90.91 78.79 58.33 10%42SO Na 166.67 208.33 250.00 263.89 263.89 238.64 217.80 193.45 167.41 淬火介质 温度/℃ 400 350 300 250 200 150 100 50 水 速度/1 -?s m 66.96 55.06 41.67 31.02 20.62 12.47 7.51 5.00 油 37.50 22.50 15.05 7.54 3.99 2.50 1.50 1.00 10%42SO Na 143.91 115.79 86.76 61.76 40.06 20.06 7.50 5.00

淬火冷却介质的种类及其优缺点

淬火冷却介质的种类及其优缺点 [发布人]恒鑫化工[时间]2011-3-14 20:09:11 浏览:136 次 淬火冷却介质的类型及其优缺点 烟台恒鑫化工专业生产PAG淬火液 自来水、盐水、碱水以及普通机油通常被称为传统的淬火介质;而把专门为热处理淬火冷却的需要才开发的各种专用淬火油,加上新型水性淬火剂合称为新型淬火介质。 1、自来水作为淬火介质的主要优缺点: 优点:水是应用最早、最广泛、最经济的淬火介质,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力强。通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场作用等,均可以改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果 缺点: ①、冷却能力对水温的变化极其敏感,水温升高,使最大冷速对应的温度移向低温; ②、在碳素钢过冷奥氏体的最不稳定区(500~600℃左右),水处在蒸汽膜阶段,冷速较低,奥氏体易发生高温转变。而在马氏体转变区的冷速太大,易使工件严重变形甚至开裂; ③、水处在蒸汽膜阶段不易破泡,使工件表面淬火硬度不均匀或产生软点; ④、参入不容物或微溶杂质时,会影响其冷却能力,也会使工件产生软点。 2、盐水作为淬火介质的主要优缺点: 优点:盐水在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火边形小,基本无裂纹产生 缺点:水中加入适量的盐,在500~600℃区间的冷却能力明显高于水,但在100~300℃区间冷速仍然很大,且对工件、设备有一定的腐蚀作用。 3、碱水作为淬火介质的主要缺点: 优点:盐水在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火边形小,基本无裂纹产生 缺点:水中加入适量的盐,在500~600℃区间的冷却能力明显高于水,但在100~300℃区间冷速仍然很大,且对工件、设备有一定的腐蚀作用。 缺点:碱水在高温区的冷却速比盐水高,而在低温区的冷速比盐水低。但碱水的缺点依然是在100~300℃区间冷速仍然很大,并极易使工件、设备产生锈蚀。

热处理工艺比较

退火 概念:将钢加热到低于或高于A c1 点温度,保持一定时间后随炉缓慢冷却,以获得接近于平衡状态的组织。 目的:降低钢的硬度、改善切削加工性能;消除应力或加工硬化、提高塑性,便于继续冷加工;消除组织缺陷,提高工艺性能和使用性能;细化晶粒、改善碳化物的分布和形态,为最终热处理作好组织准备。 常用退火工艺 扩散退火(均匀退火):为了改善或消除在冶金过程中形成的成分不均匀性及夹杂物偏聚而进行的退火。加热温度一般高于A c3 以上150~250℃,加热速度不宜过快,应控制在100~200℃,加热后随炉冷却至350℃左右出炉空冷。一般安排在钢锭开坯,锻轧之后进行。 完全退火:将钢加热到A c3 以上30~50℃,保持一定时间后缓慢冷却以获得接近于平衡状态组织的工艺。主要应用于消除亚共析钢中因停锻温度过高而引起粗大晶粒、铸件在浇注后冷却不当形成魏氏组织、轧制工艺不合要求而产生带状组织等缺陷。 等温退火:加热温度与完全退火大致相似,只是冷却方式不同,其冷却方式是使高温奥氏体以较快的速度冷却至A r1 以下某一温度等温一段时间,使奥氏体完全分解转变成珠光体,然后出炉空冷。 球化退火:将工件加热到A c1+30-50℃保温后缓冷或者加热后冷却到略低于A r1 的温度下保温。主要用于共析和过共析钢及合金工具钢,主要目 的在于降低硬度,改善切削加工系,为淬火处理作好组织准备。 低温退火(去应力退火):主要用于消除切削加工和铸件、锻件、焊接件中因快冷而引起的参与内应力以稳定尺寸,避免引起变形。碳钢和低合金钢为550~650℃,高合金钢为600~750℃,退火保温时间约1~2小时,退火后的冷却均应缓慢。 正火 定义:把钢加热到临界点A c3或A ccm 以上30~50℃或更高的温度,保温足够时间,然后再空气中冷却的工艺方法。

冷却特性曲线

淬火介质的冷却特性曲线究竟说明了什么 摘要:在标准测试仪检测淬火介质冷却特性的同时,用摄像机摄录了探棒四周的状况。对比发现,按测得的冷却特性曲线的外形划分的冷却阶段,与探棒表面实际发生的冷却情况大不相同。说明了产生这种差异的原因。通过分析和推理,得出了结论:不能从淬火介质的冷却特性曲线往划分探棒所处的冷却阶段;凭测出的冷却特性曲线不可能正确推算实际工件可能获得的冷却情况;淬火介质的冷却特性曲线只宜用在介质冷却特性的相互对比中。 关键词:淬火介质;冷却特性曲线;冷却特性检测;冷却过程计算;热处理工艺 一、淬火介质冷却特性曲线的应用情况与存在的疑问 近二十年来,淬火介质冷却特性曲线的应用给热处理行业带来了不小的技术进步。现在,淬火介质的开发研究,介质的比较和选择,热处理生产中的产品质量控制,甚至分析和解决生产中碰到的热处理质量和技术题目,都已离不开淬火介质的冷却特性曲线了。但是,这些冷却特性曲线究竟能告诉我们些什么对这个题目,行业内已经有了基本一致的答案。极具权威性的美国金属手册[1]上,以及行业内着名专家的专著[2]上提供的解释很具代表性,如图1所示。图中阶段A通称冷却的蒸汽膜阶段(也称膜沸腾阶段),阶段B通称沸腾阶段(也称泡沸腾阶段),阶段C称为对流阶段。在蒸汽膜阶段,整个试块被蒸汽膜包围着。在沸腾冷却阶段,整个试块表面都在发生沸腾。而到了对流冷却阶段,则通过对流传热使试块冷却。图中任一曲线上的点,都可以通过期间或者温度坐标找到另一曲线上的对应点。其它的书刊资料上,液态淬火介质的冷却特性曲线,不管采用什么样的检测标准,都按图1所示的方式划分冷却的阶段和解释各阶段的冷却机理。 在淬火介质的研究和评价中,通常用图1所示的两种曲线来表示和比较介质的冷却特性。从冷却速度曲线上,指出淬火介质的特性温度、出现最高冷却速度的温度和最高冷却速度值,以及对流开始温度。从冷却过程曲线上,通常指出从800℃冷却到400℃(或者300℃)所需的时间。有人还把冷却速度曲线上各温度对应的冷却速度值,直接或间接作为实际生产中工件在相同温度下获得的冷却速度值来加以利用。

淬火介质的知识总结的也这么全,拿走不谢!

淬火介质的知识总结的也这么全,拿走不谢! 工件进行淬火冷却所使用的介质称为淬火冷却介 质(或淬火介质)。理想的淬火介质应具备的条件是使工件既能淬成马氏体,又不致引起太大的淬火应力。这就要求在 C 曲线的“鼻子”以上温度缓冷,以减小急冷所产生的热应力;在“鼻子”处冷却速度要大于临界冷却速度,以保证过冷奥氏体不发生非马氏体转变;在“鼻子”下方,特别使Ms 点一下温度时,冷却速度应尽量小,以减小组织转变的应力。 常用的淬火介质有水、水溶液、矿物油、熔盐、熔碱等。 水是冷却能力较强的淬火介质。来源广、价格低、成分 稳定不易变质。缺点是在C曲线的“鼻子”区(500?600 C左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在马氏体转变温度区(300?100C),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷 却能力。因此水适用于截面尺寸不大、形状简单的碳素钢工 件的淬火冷却。? 盐水和碱水在水中加入适量的食 盐和碱,使高温工件浸入该冷却介质后,在蒸汽膜阶段析出盐和碱的晶体并立即爆裂,将蒸汽膜破坏,工件表面的氧化

皮也被炸碎,这样可以提高介质在高温区的冷却能力。其缺点是介质的腐蚀性大。 般情况下,盐水的浓度为10 %,苛性钠水溶液的浓度 为10 %?15 %。可用作碳钢及低合金结构钢工件的淬火介质,使用温度不应超过60 C,淬火后应及时清洗并进行防锈处理。 冷却介质一般采用矿物质油(矿物油)。如机油、变压 器油和柴油等。机油一般采用10 号、20 号、30 号机油,油 的号越大,黏度越大,闪点越高,冷却能力越低,使用温度 相应提高。目前使用的新型淬火油主要有高速淬火油、 光亮淬火油和真空淬火油三种。高速淬火油是在高 温区冷却速度得到提高的淬火油。获得高速淬火油的基本途径有两种,一种是选取不同类型和不同黏度的矿物油,以适当的配比相互混合,通过提高特性温度来提高高温区冷却能力;另一种是在普通淬火油中加入添加剂,在油中形成粉灰状浮游物。添加剂游磺酸的钡盐、钠盐、钙盐以及磷酸盐、硬脂酸盐等。生产实践表明,高速淬火油在过冷奥氏体不稳定区冷却速度明显高于普通淬火油,而在低温马氏体转变区冷速与普通淬火油相接近。这样既可得到较高的淬透性和淬硬性,又大大减少了变形,适用于形状复杂的合金钢工件的淬火。 光亮淬火油能使工件在淬火后保持光亮表面。在矿物油 中加入不同性质的高分子添加物,可获得不同冷却速度的光亮淬火油。这些添加物的主要成分是光亮剂,其作用是将不溶解于油的老化产物悬浮起来,防止在工件上积聚和沉淀。 另外,光亮淬火油添加剂中还含有抗氧化剂、表面活性剂和催冷剂等。 真空淬火油是用于真空热处理淬火的冷却介质。真空淬 火油必须具备低的饱和蒸汽压,较高而稳定的冷却能力以及良好的光亮性和热稳定性,否则会影响真空热处理的效果。 盐浴和碱浴淬火介质一般用在分级淬火和等温淬火中。

先进的淬火介质及冷却技术

先进的淬火介质及冷却技术 I 淬火介质 一、石油基淬火油 根据冷速分为常规淬火油、中速淬火油、快速淬火油,常规淬火油用于高淬透性钢的淬火冷却,而中等冷速的淬火油用于中高淬透性的钢淬火冷却,而快淬火油用于低淬透性钢。 钢中的Me 含量不仅影响到钢的淬透性,同时也因增加了相当的C 的当量,而改变了其Ms 。 /5/5/10/10eq C C Mn Mo Cr Ni =++++ 当C%变化时,Ms 也将发生变化: 0.2%~430℃;0.4%~360℃;1.0%~250℃ 另一类主要的石油基淬火油是分级淬火油,它可以被加热到(100~200℃)接近Ms 点的热油中均温以减少温差应力。它具有优异的热稳定性,(精制加高效的组合氧化剂),使用温度一般要低于其闪点50℃。 二、植物油基淬火油 石油基淬火油性能稳定,但它是不可再生的一次性资源,更是地下水的主要污染源。 而植物油淬火油基可以克服这些缺点,它有如下优点和不足。 1、优点:①容易生物降解;②低无毒性;③良好润滑性;④资源能再生;⑤供应充足;⑥闪点和燃点高。 2、缺点:①水解稳定性差;②氧化稳定性差;③表面粘附;④粘度范围窄;⑤有不同的气味;⑥价格偏高。 和矿物油的比较,植物油的稳定性差,但可利用现代添加剂技术可改善它的水解稳定性和氧化稳定性。比如好富顿公司开发的以Canola 植物油为基础油添加抗氧化剂的植物基淬火油①具有良好的抗氧化稳定性。②其降解性比石油基淬火油高5倍。③而且几乎没有蒸位膜阶段,在1300~110F 温度范围为V 冷↑(这对大多数钢而言正是要求快冷区)。④900~250F 温度范围内具有较慢的V 冷从而可减少淬火的变形。⑤闪点高达332℃(630F )而一般石油基淬火油的闪点为177~232℃(350~450F )燃点也比石油基的高约160℃。 三、聚合物淬火介质 它是有机聚合物和防锈添加剂,杀菌剂、消泡剂等组成水溶液,淬火时在热

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。

淬火介质相关知识汇总(☆☆☆☆☆)

淬火介质相关知识汇总 一、主要技术参数 1、冷却特性 1.1、冷却速度曲线 当前,国内外多以国际标准方法(ISO9950)测定,并用冷却速度曲线来表征淬火介质的冷却特性。但是,对特定工件(即在钢种、形状大小和热处理要求一定)的情况下,如何从冷却特性上去选择合适的淬火介质?在生产现场,一个淬火槽中往往要淬多种不同钢种、形状、大小和热处理要求的工件。在这种情况下,如何选定它们共同适用的一种淬火液? 从普通机油和自来水的冷却速度分布(如图1)可以看出,普通机油的冷却速度慢,因而不少工件在其中淬不硬;而自来水的冷却速度又太快,以致于多数钢种不能在其中淬火。如果将机油的冷却速度提高,该工件淬火硬度也会相应提高,当机油的冷却速度提高到图2中带齿线水平时,该工件刚好可以得到要求的淬火硬度,我们把它叫做允许的最低冷速分布线。 同时,研究表明,自来水引起淬裂和变形,是自来水冷却太快,尤其是钢件冷到其过冷奥氏体发生马氏体转变的温度范围时受到的冷却太快的缘故。于是又可以推知,如果能降低自来水的冷却速度,尤其是在工件冷到较低的温度以后的淬火冷却速度,就可以减小工件淬裂的危险。假定自来水冷却速度降到图3中带齿线所示的水平时,该类工件便不会再淬裂了,我们把这条线叫做此工件已确定条件下允许的最高冷速分布线。

把图2和图3 两条曲线之间的区域内,不管是快速淬火油还是水溶性淬火液,也不管这些淬火介质的冷却速度分布有何不同,上述工件在其中淬火都可以同时获得所希望的淬硬而又不裂的效果。 1.2淬火介质的冷却过程分三个阶段:蒸汽膜阶段、沸腾冷却阶段、对流冷却阶段(见下图所示) 用符合ISO9950标准的ivf冷却特性测试仪测出的冷却特性曲线(如下图)有几个特征值对淬火油的淬硬能力有重要影响。 第一个是油蒸汽膜冷却阶段向沸腾冷却阶段转变的温度,即图中A点对应的温度,叫做(上)特征温度; 第二个是出现最高冷却速度的温度,即图中B点对应的温度; 第三个是最高冷却速度值,即B点对应的冷却速度值;

淬火工艺

淬火工艺 钢的淬火是将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或在一定范围内发生马氏体不稳定组织结构转变的热处理工艺。 一. 淬火工件的工艺流程 一般工件:淬火→清洗→回火→喷砂(或喷丸等)表面清理→检验。 轴类零件及易变形工件:淬火→清洗→回火→校直→去应力处理→喷砂→检验。 二. 淬火前的准备 (1)核对工件数量、材质及尺寸,并检查工件有无裂纹、碰伤、缺边、锐边、尖角及锈蚀等影响淬火质量的缺陷。 (2)根据图样及工艺文件,明确淬火的具体要求,如硬度、局部淬火范围等。(3)根据淬火要求,设计选用合适的工夹具,有的工件进行适当的绑扎,在易产生裂纹的部位,采取相应的防护措施,如用铁皮或石棉绳包扎及堵孔等。(4)表面不允许氧化、脱碳的工件,应在盐浴炉或预抽真空保护气氛炉中加热,或采取以下防护措施: a. 涂料防护 b. 将工件装入盛有木炭或已使用过的铸铁屑的铁箱中,加盖密封。 (5)大批工件必须作单件或小批量试淬,制订工艺后方可进行批量淬火,并在生产过程中经常抽检。 三. 装炉 (1)允许不同材质但具有相同加热工艺的工件装入同一炉中加热。 (2)装炉工件均应干燥、不得有油污及其他脏物。 (3)截面大小不同的工件装入同一炉时,大件应放在炉膛后部,大、小工件分别计算保温时间。(4)装炉时必须将工件有规律摆放在装炉架或炉底板上,用钩子、钳子或专用工具堆放,不得将工件直接抛入炉内,以免碰伤工件或损坏炉衬。 (5)细长工件必须在井式炉或盐炉中垂直吊挂加热,以减少变形。 (6)在箱式炉中装工件加热时,一般为单层排列,工件间隙10~30mm。小件允许适当堆放,但保温时间应适当增加。

淬火冷却介质的特性曲线及应用

冷却特性曲线的说明 淬火介质的冷却过程分三个阶段:蒸汽膜阶段、沸腾冷却阶段、对流冷却阶段(见下图所示)。用符合ISO9950标准的ivf冷却特性测试仪测出的冷却特性曲线(如下图)有几个特征值对淬火油的淬硬能力有重要影响。第一个是油蒸汽膜冷却阶段向沸腾冷却阶段转变的温度,即图中A点对应的温度,叫做(上)特征温度;第二个是出现最高冷却速度的温度,即图中B点对应的温度;第三个是最高冷却速度值,即B点对应的冷却速度值;第四个是对流开始温度,即C点对应的温度。 如何从冷却特性选用淬火介质 热处理淬火介质,用的首先是它的冷却性能。因此,在确定介质的类别后,我们主张按介质的冷却特性来选择介质的品种。比如,当我们确定应当选用快速淬火油后,具体的品种就应当根据工件特点和热处理要求从油的冷却速度分布上去选。 不管选用何种淬火介质,大致都可以按以下五条原则进行选择。 一看钢的含碳量多少── 含碳量低的钢有可能在冷却的高温阶段析出先共析铁素体,其过冷奥氏体最易发生珠光体转变的温度(即所谓"鼻尖"位置的温度)较高,马氏体起点(Ms)也较高。因此,为了使这类钢制的工件充分淬硬,所用的淬火介质应当有较短的蒸汽膜阶段,且其出现最高冷却速度的温度应当较高。相反,对含碳量较高的钢,淬火介质的蒸汽膜阶段可以更长些,出现最高冷却速度的温度也应当低些。 二看钢的淬透性高低——淬透性差的钢要求用冷却速度快的淬火介质,淬透性好的钢则可以用冷却速度慢一些的介质。通常,随着钢的淬透性提高,过冷奥氏体分解转变的“C”曲线会向右下方移动。所以,对淬透性差的钢,选用的淬火介质出现最高冷却速度的温度应当高些;而淬透性好的钢则低些。有些淬透性好的

加热温度回火温度及冷却速度对碳钢性能的影响

淬火加热温度的选择:对于亚共析钢采用Ac3+30~50°,对于共析钢和过共析钢采用Ac1+20~40°。 对于亚共析钢如果淬火温度过高,奥氏体晶粒就会粗大,淬火后严重影响和降低塑性和韧性,如果淬火温度过低,奥氏体化就会不完全,淬火后会有铁素体,导致淬火硬度不够,强度降低。 对于共析钢和过共析钢,淬火温度高了,同样奥氏体晶粒就会粗大,同时碳化物溶入奥氏体过多,淬火后容易变形开裂,同时严重降低硬度和强度,如果温度低了,碳化物溶入奥氏体过少,大部分碳化物保留下来,淬火后也容易变形开裂,奥氏体化后奥氏体含碳量过低,导致淬不上火,导致淬火后马氏体硬度不够,强度降低。 (1)低温回火 工件在150~250℃进行的回火。 目的是保持淬火工件高的硬度和耐磨性,降低淬火残留应力和脆性回火后得到回火马氏体,指淬火马氏体低温回火时得到的组织。 力学性能:58~64HRC,高的硬度和耐磨性。 应用范围:刃具、量具、模具、滚动轴承、渗碳及表面淬火的零件等。 (2)中温回火 工件在350~500 ℃之间进行的回火。 目的是得到较高的弹性和屈服点,适当的韧性。回火后得到回火屈氏体,指马氏体回火时形成的铁素体基体内分布着极其细小球状碳化物(或渗碳体)的复相组织。 力学性能:35~50HRC,较高的弹性极限、屈服点和一定的韧性。 应用范围:弹簧、锻模、冲击工具等。 (3)高温回火 工件在500℃以上进行的回火。 目的是得到强度、塑性和韧性都较好的综合力学性能。回火后得到回火索氏体,指马氏体回火时形成的铁素体基体内分布着细小球状碳化物(包括渗碳体)的复相组织。 力学性能:200~350HBS,较好的综合力学性能。 应用范围:广泛用于各种较重要的受力结构件,如连杆、螺栓、齿轮及轴类零件等。工件淬火并高温回火的复合热处理工艺称为调质。调质不仅作最终热处理,也可作一些精密零件或感应淬火件预先热处理。

淬火工艺规程

淬火工艺规程 1主题内容与适用范围 本标准规定阀门零件、工具、模具等金属材料的淬火工艺。 本标准的淬火,除指在通常的冷却水、油、空气中淬火之外,还包括热浴中的分级和等温淬火。适用于阀门零件、工具、模具等金属材料在箱式电阻炉,盐浴炉中淬火。 2技术内容 2.1 淬火的定义 把钢加热到临界点(Ac3或Ac1)以上,使之奥氏体化,保温一定的时间,然后以大于临界冷却速度的冷却速度快速冷却,获得马氏体组织的工艺过程,称为淬火。 2.2 淬火的目的 2.2.1 对于优质结构钢工件,通过淬火与适当的回火配合来满足工件性能要求,如:强度、硬度、塑性及韧性等的不同配合。 2.2.2对于各种碳钢、合金钢及表面热处理或化学热处理的工件,通过淬火得到高硬度的马氏体组织,然后低温回火,用以提高其硬度及耐磨性。 2.3 淬火前的准备 2.3.1 检查工件表面有无裂纹、尖角及锈蚀等影响淬火质量的缺陷。2.3.2 根据图纸及工艺文件,明确工件淬火的具体要求,如硬度、局部淬火范围等。 1

2.3.3 检查淬火工具、冷却剂是否齐全,有不需要淬硬的孔眼、尖角或厚度变化 较大时,为了防止变形和开裂危险,应采用堵塞或缠绕石棉绳,使工件各部分加热和冷却均匀。 2.3.4 如果工件表面要求不允许有氧化皮和脱碳的现象时,可在盐炉或通有保护气体的炉中加热。 2.3.5 在箱式电炉中加热时,为防止氧化、脱碳现象发生,可将工件加热到200~350℃,然后撒上硼酸粉末,放入炉中加热(加热温度不得超过950℃),也可在工件表面敷以石棉板或生铁屑,使之与空气隔绝;或将工件装入盛有木碳或已用过的铸铁屑的铁箱内,加盖密封。 2.3.6 大批工件(或两件以上),应作首件或小批量试淬。认可后方可进行批量生产,并在生产过程中经常抽检。 2.3.7 工件淬火硬度不够而返修时,可重新淬火。重新淬火的原则如下:形状简单的工件,水淬者可不经退火而重新淬一次;油淬者可不经退火而重新淬火两次;形状复杂的工件和精度要求高的工件需进行退火、高温回火或正火处理;高速钢需经退火、消除残余应力后,方可重新淬火。 2.3.8 检查控温仪表是否准确,在连续生产中应经常定时校正温度。 2.4 装炉 2.4.1 允许不同材质,但具有相同加热温度的工件,装入同一炉中加热。 2

热处理常见介质及问题处理

工件进行淬火冷却所使用的介质称为淬火冷却介质(或淬火介质)。理想的淬火介质应具备的条件是使工件既能淬成马氏体,又不致引起太大的淬火应力。这就要求在C曲线的“鼻子”以上温度缓冷,以减小急冷所产生的热应力;在“鼻子”处冷却速度要大于临界冷却速度,以保证过冷奥氏体不发生非马氏体转变;在“鼻子”下方,特别使Ms点一下温度时,冷却速度应尽量小,以减小组织转变的应力。 常用的淬火介质有水、水溶液、矿物油、熔盐、熔碱等。 ● 水 水是冷却能力较强的淬火介质。来源广、价格低、成分稳定不易变质。缺点是在C曲线的“鼻子”区(500~600℃左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在马氏体转变温度区(300~100℃),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷却能力。因此水适用于截面尺寸不大、形状简单的碳素钢工件的淬火冷却。 ● 盐水和碱水 在水中加入适量的食盐和碱,使高温工件浸入该冷却介质后,在蒸汽膜阶段析出盐和碱的晶体并立即爆裂,将蒸汽膜破坏,工件表面的氧化皮也被炸碎,这样可以提高介质在高温区的冷却能力。其缺点是介质的腐蚀性大。 一般情况下,盐水的浓度为10%,苛性钠水溶液的浓度为10%~15%。可用作碳钢及低合金结构钢工件的淬火介质,使用温度不应超过60℃,淬火后应及时清洗并进行防锈处理。 ● 油 冷却介质一般采用矿物质油(矿物油)。如机油、变压器油和柴油等。机油一般采用10号、20号、30号机油,油的号越大,黏度越大,闪点越高,冷却能力越低,使用温度相应提高。 目前使用的新型淬火油主要有高速淬火油、光亮淬火油和真空淬火油三种。

淬火介质、淬火加热温度及冷却方法介绍

淬火介质、淬火加热温度及冷却方法介绍 淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。 淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。淬火工艺应用最为广泛,如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。 (1)淬火加热温度 淬火加热温度根据钢的成分、组织和不同的性能要求来确定。亚共析钢是AC3+(30~50℃);共析钢和过共析钢是AC1+(30~50℃)。 亚共析钢淬火加热温度若选用低于AC3的温度,则此时钢尚未完全奥氏体化,存在有部分未转变的铁素体,淬火后铁素体仍保留在淬火组织中。铁素体的硬度较低,从而使淬火后的硬度达不到要求,同时也会影响其他力学性能。若将亚共析钢加热到远高于AC3温度淬火,则奥氏体晶粒回显著粗大,而破坏淬火后的性能。所以亚共析钢淬火加热温度选用AC3+(30~50℃),这样既保证充分奥氏体化,又保持奥氏体晶粒的细小。 过共析钢的淬火加热温度一般推荐为AC1+(30~50℃)。在实际生产中还根据情况适当提高20℃左右。在此温度范围内加热,其组织为细小晶粒的奥氏体和部分细小均匀分布的未溶碳化物。淬火后除极少数残余奥氏体外,其组织为片状马氏体基体上均匀分布的细小的碳化物质点。这样的组织硬度高、耐磨性号,并且脆性相对较少。 过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。

热处理工艺淬火

热处理工艺-淬火 淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。 淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。淬火工艺应用最为广泛,如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。 (1)淬火加热温度 淬火加热温度根据钢的成分、组织和不同的性能要求来确定。亚共析钢是AC3 (30~50℃);共析钢和过共析钢是AC1 (30~50℃)。 亚共析钢淬火加热温度若选用低于AC3的温度,则此时钢尚未完全奥氏体化,存在有部分未转变的铁素体,淬火后铁素体仍保留在淬火组织中。铁素体的硬度较低,从而使淬火后的硬度达不到要求,同时也会影响其他力学性能。若将亚共析钢加热到远高于AC3温度淬火,则奥氏体晶粒回显著粗大,而破坏淬火后的性能。所以亚共析钢淬火加热温度选用AC3 (30~50℃),这样既保证充分奥氏体化,又保持奥氏体晶粒的细小。 过共析钢的淬火加热温度一般推荐为AC1 (30~50℃)。在实际生产中还根据情况适当提高20℃左右。在此温度范围内加热,其组织为细小晶粒的奥氏体和部分细小均匀分布的未溶碳化物。淬火后除极少数残余奥氏体外,其组织为片状马氏体基体上均匀分布的细小的碳化物质点。这样的组织硬度高、耐磨性号,并且脆性相对较少。 过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。因此过共析钢的淬火加热温度高于AC1太多是不合适的,加热到完全奥氏体化的ACm或以上温度就更不合适。 在生产实践中选择工件的淬火加热温度时,除了遵守上述一般原则外,还要考虑工件的化学成分、技术要求、尺寸形状、原始组织以及加热设备、冷却介质等诸多因素的影响,对加热温度予以适当调整。如合金钢零件,通常取上限,对于形状复杂零件取下限。

影响淬火介质冷却能力的因素

影响淬火介质冷却能力的因素 1.汽化热和蒸汽压:汽化热是单位质量的液体完全变成同温度气体所需要的热量。水的化 学稳定性很高,热容量较大,在室温时,为钢的8倍,水的沸点低,其汽化热随温度升高而降低,水随温度升高,冷却能力急剧下降。 2.比热容:介质比热容而终略小的越大,冷却能力超强。 3.热导率:介质的热志率十七大,冷却超强。 4.表面张力:表面张力小的介质与工件表面接触得好,因而散热性能好。 5.粘度:液体的粘度是液体流动时,液体分子间呈现出的内部摩擦力。粘度大的淬冷介质, 流动性差,不利于对流散热,其冷却能力差。但温度升高,流动性大,冷却能力强。6.添加剂:添加剂可以降低蒸汽膜的稳定性,如溶入水中的盐和碱可以改变消失物理特性, 水急剧激化时,盐碱微粒沉积工件表面,成为气泡核心,又使气膜提前开裂;水中加入聚乙烯醇,在工件表面形成极薄的塑料膜,它的导热性差,降低工件冷却速度。水中有油、肥皂形成悬浊液或乳浊液,会加速蒸汽民膜形成,增加蒸汽膜稳定性,使水冷却降低。另外,为了改变淬火介质的其他性能加入抗氧化剂,光亮剂,防锈剂,防腐剂等会影响介质的冷却能力。 7.搅动或介质流动,搅动会增大液体的热系数,尽早破坏蒸汽膜,提高冷速,并使工件冷 却均匀。最好采用介质流动和工件运动配合使用的冷却方法。用喷射介质的冷却方法,可使冷却“H”值提高4倍,因为喷射水冷不存在蒸汽膜阶段,工件冷却靠水的快速汽化来进行,使冷却显著提高。感应加热淬火常用喷射液体冷却的喷液淬火法,既提高硬度又可防止变形开裂。 8.温度:水和水为基的介质随温度升高冷却下降,油与水相反,随温度升高,流动性变 好,利于散热,提高冷却能力,粘度大的油更明显。 综上所述,最理想的淬火介质是汽化热小,液体与蒸汽的密度比大,液体的热导率大和表面张力小。

相关主题
文本预览
相关文档 最新文档