当前位置:文档之家› VIBRO_1_DIRECT_simulations-ACTRAN振动声学直接频响分析理论

VIBRO_1_DIRECT_simulations-ACTRAN振动声学直接频响分析理论

Vibro-Acoustic Simulations
ACTRAN Training – VIBRO
Copyright Free Field Technologies

Introduction
Pre-requisites - before going through this presentation, the reader should have read and understood the following presentations:
1_BASICS_General_Program_Organization.pdf; Workshop_BASICS_0_Edit_an_ACTRAN_input_file.pdf.
These slides present the basics materials, components and boundary conditions involved in a structural simulation in physical coordinates.
2
Copyright Free Field Technologies

Content
The structural Materials
The visco-elastic and shell Component
The equivalent beam Component and Material
The discrete Component and Material
The Boundary Conditions
Meshing Criteria
3
Copyright Free Field Technologies

Structural Materials
The solid materials are used for describing both viscous and non viscous solids with and without different structural properties along the different axis
Three different types solid materials are available:
Isotropic solid material Transverse isotropic solid material Orthotropic material
Composite materials can also be defined to model the different layers of a solid material using a homogenization option – See dedicated presentation
4
Copyright Free Field Technologies

The Isotropic Solid Material (1)
Isotropic materials are materials whose mechanical properties are uniform along all directions
The properties that define an Isotropic solid material can be given using 2 set of parameters:
Young modulus (E) Poisson ratio (ν) Solid density or First (λ) Lamé’s coefficient and Second (μ or G, the shear modulus) Lamé’s coefficient Solid density
All parameters are mandatory
5
Copyright Free Field Technologies

The Isotropic Solid Material (2)
Syntax in the ACTRAN input file:
BEGIN MATERIAL Id ISOTROPIC_SOLID YOUNG_MODULUS value POISSON_RATIO value SOLID_DENSITY value END MATERIAL Id
Or
Definition in ACTRAN/VI
BEGIN MATERIAL Id ISOTROPIC_SOLID LAME1 value LAME2 value SOLID_DENSITY value END MATERIAL Id
6
Copyright Free Field Technologies

The Transverse Isotropic Solid Material (1)
Transverse isotropic materials are materials whose mechanical properties are symmetric about an axis that is normal to a plane of isotropy.
Unidirectional fiber composite lamina; Honeycomb components, …
The properties that define a transverse isotropic solid material are:
5 mechanical properties En, νn, Et, νt and G; Solid density Axis of isotropy, oriented along the fibers
3 2 1 7
Copyright Free Field Technologies

The Transverse Isotropic Solid Material (2)
Their mechanical properties can be divided in different parts:
Young modulus (En) and Poisson ratio (νn) when sujected to normal (along the isotropy axis) load (also named normal_E and normal_ν) Young modulus (Et) and Poisson ratio (νt) when sujected to transverse (along the isotropy plane) load (also named inplane_E and inplane_ν) Shear modulus (G) characterizing inplane shear deformations due to shear loads The isotropy axis defining the direction of the fiber in the local coordinate system
8
Copyright Free Field Technologies

The Transverse Isotropic Solid Material (3)
Syntax in the ACTRAN input file: Definition in ACTRAN/VI
BEGIN MATERIAL Id TRANSVERSE_ISOTROPIC_SOLID NORMAL_E_MODULUS value INPLANE_E_MODULUS value NORMAL_POISSON_RATIO value INPLANE_POISSON_RATIO value NORMAL_S_MODULUS value ISOTROPIC_AXIS value SOLID_DENSITY value END MATERIAL Id
9
Copyright Free Field Technologies

The Orthotropic Solid Material (1)
Orthotropic materials are materials whose mechanical properties are different in all directions:
Honeycomb components; Wood,…
The properties that define an orthotropic solid material are:
9 Mechanical properties E1, E2, E3, ν12, ν13, ν23, G12, G13, G23; Solid density
10
Copyright Free Field Technologies

The Orthotropic Solid Material (2)
Ei corresponds to the Young modulus in the direction i expressed in the local coordinate system Gij corresponds to the shear modulus in direction i for which the shear load relies on the plane whose normal is in direction j in the local coordinate system (Gij =Gji) νij is the Poisson ratio that corresponds to a contraction in direction j when an extension is applied in direction I
x3
-ν12 N/E1
x3 x2 x1
-ν12 N/E1
N
x3
N/E1
S/G13
S
x2 x1
S/G13
S
S/G23
x2 x1
S/G23
The local coordinate system is defined by the element and the component that refers to an orthotropic material
11
Copyright Free Field Technologies

The Orthotropic Solid Material (3)
Syntax in the ACTRAN input file:
BEGIN MATERIAL Id ORTHOTROPIC_SOLID YOUNG_1 value YOUNG_2 value YOUNG_3 value POISSON_12 value POISSON_13 value POISSON_23 value SHEAR_12 value SHEAR_13 value SHEAR_23 value SOLID_DENSITY value END MATERIAL Id
Definition in ACTRAN/VI
12
Copyright Free Field Technologies

Damping Model
All properties in ACTRAN are defined using complex numbers Damping can be introduced using a complex Young modulus:
E = E '+ jE "
with E’ the Young modulus, image of the stiffness E” the Loss modulus, representing internal losses
The loss modulus is linked to the internal loss factor η (also called tg(δ)) by:
E = E '+ jE" = E '?(1 + jη )
13
Copyright Free Field Technologies

Content
The structural Materials
The visco-elastic and shell Components
The equivalent beam Component and Material
The discrete Component and Material
The Boundary Conditions
Meshing Criteria
14
Copyright Free Field Technologies

The Solid Component (1)
The Solid component is the standard component for modeling visco-elastic solid parts.
Supported topologies
Points to a valid Isotropic solid material
Unknowns: solid displacement in each direction – 3 dofs per node (no rotation)
15
Copyright Free Field Technologies

The Solid Component (2)
Syntax in the ACTRAN input file:
BEGIN COMPONENT Id SOLID MATERIAL material_id [POWER_EVALUATION 1] [INCOMPRESSIBLE 1] END COMPONENT Id
Definition in ACTRAN/VI
POWER_EVALUATION 1 activates the computation of the dissipated power in the component (optional) INCOMPRESSIBLE 1 allows to model visco-elastic parts with a Poisson ratio close to 0.5 (optional - check the ACTRAN Users’ Manual for more information)
Domain
Choose “Solid” as type
16
Copyright Free Field Technologies

The Solid Shell Component (1)
The solid shell component is used to model transverse solid element, with a thickness direction
One dimension of the structure should be small compared to the 2 others (roughly 1/15) Thickness (and thus compression effects) are accounted for using solid shells Its formulation converges faster for thin structures than a solid component Supported topologies
Can point to all solid materials (isotropic, transverse isotropic, orthotropic, composite)
Unknowns: solid displacement in each direction – 3 dofs per node (no rotation)
17
Copyright Free Field Technologies

The Solid Shell Component (2)
Syntax in the ACTRAN input file:
BEGIN COMPONENT Id SHELL [AUTO_ORIENT] MATERIAL material_id [POWER_EVALUATION 1] [REFERENCE_DIRECTION 1 0 0] END COMPONENT Id
Definition in ACTRAN/VI
POWER_EVALUATION 1 activates the computation of the dissipated power in the component (optional) REFERENCE_DIRECTION allows to orient the local material coordinate system for non isotropic solid materials (default 1,0,0) AUTO_ORIENT keyword allows to automatically reorient the transverse direction of the elements
Domain
Choose “Solid Shell” as type
18
Copyright Free Field Technologies

Elements Orientation (1)
Shell elements’ orientation is an important parameter (transverse direction)
BEGIN ELEMENT ... 212 12 1 ... END ELEMENT
30
Lower nodes 12 13 14 15
Upper Nodes 27 28 29 30
27 15
29 28
14 12 13
The transverse direction is dependent of the order of the nodes in the element description (input file, MESH > ELEMENT) :
19
Copyright Free Field Technologies

Elements Orientation (2)
Meshes obtained by normal extrusion or normal sweeping lead to a correct numbering (lower nodes then upper nodes)
Automatic detection is possible using the keyword AUTO_ORIENT.
AUTO_ORIENT should automatically detect the transverse direction of the shell element
Dimensions close to be the same… hazardous AUTO_ORIENT
This remark is valid for all transverse elements: Solid Shell, Viscothermal
20
Copyright Free Field Technologies

引风机振动的原因

首先应该判断出是引风机风机在振动,还是由于拖动它的电机震动引起风机共振。 如果是由于电动机震动引起的则要检查电机: (1 )机械磨擦(包括定子、转子扫膛)。 (2 )单相运行,可断电再合闸,如不能起动,则可能有一相断电。 (3 )滚动轴承缺油或损坏。 (4 )电动机接线错误。 (5 )绕线转子异步电动机转子线圈断路。 (6 )轴伸弯曲。 (7 )转子或传动带轮不平衡。 (8 )联轴器松动。 (9 )安装基础不平或有缺陷。 如果是由于风机震动引起的则应检查: ①风机轴与电机轴不同心,联轴器装歪 ②机壳或进风口与叶轮摩擦 ③基础的钢度不牢固 ④叶轮铆钉松动或叶轮变形 ⑤叶轮轴盘与轴松动,或联轴器螺栓松动 ⑥机壳与支架、轴承箱与支架、轴承箱盖于座等联接螺栓松动 ⑦风机进出气管道安装不良 ⑧转子不平衡,引风机叶片磨损 风机振动原因分析及防治 工艺和维护几方面分析了可能导致风机振动的因素,提出多种措施,改善了风机作业状况、工作环境,有效的解决了风机振动问题,延长了风机 目前,安阳钢铁集团公司烧结厂四台28m2烧结机所配备的抽风机型号为D2800—11。由于设备老化、漏风率高,导致设备故障频繁。随着厚料层烧结生产操作的推广,为提高风量,1995年底经过对风机局部改造,使其抽风能力由原来的2500m3/min提高到2800m3/min,但未对大烟道、水封、除尘器等配套设施实施同步扩容改造,没有达到整个抽风系统的优化配置。由于受设备系统现状、工艺操作水平、风机维修维护多种因素影响,由风机振动引起的非计划检修频度直线上升,影响了整个烧结生产;由风机振动造成轴瓦、转子的频繁损坏,导致生产成本的增加。价值21万元(修旧转子10万元)的转子使用寿命仅为3-4个月,1998年最严重时4台风机一年更换了28个转子18对轴瓦。为此,从改善风机作业环境到风机本身的维护、安装多方面入手查找振动原因并进行了有效防治。 2 风机振动原因分析 根据风机的结构和作业特点,从理论上建立风机振动原因分解图,见图1。 通过对检修备案记录的分析并对照上面的原因分解图,不难得出造成风机振动的五个主要因素有:进入风机人口的粉尘量大、风温低、磨损、安装精度低、风机进入喘振区域。 2.1 风机入口的粉尘量大

风机产生振动的原因及处理方法

风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是中国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,风力发电机。那么风机会出现振动的原因和解决办法有哪些呢? 风机产生振动的原因及解决方法 1.叶轮与主轴配合间隙过大引起的振动,其主要原因是叶轮在制作加工过程中加工精度有误差,轴头出现椭圆,导致配合接触面减少,有原来的面接触变成了点接触。还有在修复过程中检修人员用细砂纸打磨轴头,多次修复后,导致主轴头与叶轮配合间隙过大。 解决方法:叶轮与主轴配合间隙过大引起的振动,对于新轴要依据图纸进行校核,确保达到叶轮与轴的配合间隙,叶轮轴孔与轴之间为过盈配合,紧力为0.01-0.05mm。另外风机正常运行期间尽量减少检修次数,由于每次检修对于风机主轴都存在一定的磨修,这样一来多次的修复会造成主轴的累积磨损,使主轴轴颈明显变细,达不到

孔与轴的过盈配合要求。还有叶轮与主轴安装完毕后,轴头用于锁紧叶轮的锁母必须紧固到位,一旦出现松动会造成风机振动加剧上升。 2.叶轮本身不平衡所引起的振动,其产生的原因有:叶轮上的零部件松动、变化、变形或产生不均匀的腐蚀、磨损;工作介质中的固体颗粒沉积在转子上;检修中更换的新零部件重量不均匀;制造中叶轮的材质不绝对匀称;加工精度有误差、装配有偏差等。叶轮本身不平衡,叶轮不平衡可分为动不平衡(力偶不平衡)和静不平衡(力矩不平衡)两种。 解决方法:消除动不平衡的方法是:拆除风机转子,利用动平衡机对转子进行平衡找平,通过平衡机找平的转子,动、静不平衡基本可以得到根除。静不平衡可在现场利用三点平衡法进行找平。 3.主轴发生弯曲,其主要原因是风机长期处于停用状态,主轴叶轮在自重的作用下,发生弯曲变形。这种情况经常出现在正常运转的风机停用后,,再次启机时,出现风机振动超标的现象。再者主轴局

教科版科学四上《声音是怎样产生的》参考教案1

教科版科学四上《声音是怎样产生的》参考教案1教学目标 科学概念: 声音是由物体的振动产生的。 过程与方法: 能观看、比较、描述物体发生和不发生时的不同现象;能从多个物体发生的观看事实中对缘故进行假设性说明;能够借助其他物体来观看不容易观看到的现象。 情感、态度、价值观: 在探究的过程中,积极大胆地阐述自己的发觉;乐于与他人合作,养成细致观看的适应和态度。 教学重点 认识声音是由物体的振动产生的。 教学难点 如何引导学生从实验中分析得出声音是由物体的振动产生的。 教学预备 1面鼓、1把钢尺、2根皮筋、1个音叉、装水的水槽 教学过程 一、引入: 上节课中,我们差不多明白通过不同力量的击打,对不同物体的击打都能产生各种各样的声音。那么声音怎么说是如何产生的呢?这节课我们将作连续的研究。 二、使物体发出声音 1.分组活动:出示鼓、钢尺、皮筋,你能想方法使这些物体发出声音吗? 2.记录并交流我们的方法:

什么缘故我们对物体用力(按压、弯曲、拉伸)后,物体没有发出声音,然而我们对物体进行击打、拨动却使物体发生了声音呢? 三、观看发声物体 1.分组实验1:在水槽里盛约2/3的清水,用轻而短促的力打音叉和用较大的力击打音叉,观看音叉的振动。用一个手指轻轻地接近振动着的音叉,感受一下音叉的振动。 观看:手指有什么感受呢?水面有什么变化?水面的变化是如何产生的? 交流反馈:手指有麻麻的振动感,水面产生了花纹,花纹确实是由音叉的振动而产生的。 2.分组实验2:木板上拴着两个皮筋。拨动一个皮筋使它发出声音,另一个皮筋保持不动,不发出声音。 观看:发声的皮筋和不发声的皮筋的不同?假如抓住皮筋,使之不振动,还会发出声音吗?皮筋的振动与发出的声音有关吗? 交流反馈: 3.小组交流: 击打鼓时,我们看到了什么?这种现象与声音的产生有关吗?拨动钢尺时,我们看到了什么?这种现象与声音的产生有关吗? 4.小结:当一个物体(如音叉、鼓、钢尺、皮筋、铁钉等)在力的作用下,能不断重复地做往返运动,那个物体确实是一个振动物体。声音确实是由物体振动而产生的。

风机振动原因分析

电站风机振动故障的几种简易诊断 2009-11-18 11:20:44 来源:中国化工仪器网 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风 机和排粉机。1 轴承座振动 1.1 转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2 动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装置之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3 滚动轴承异常引起的振动 1.3.1 轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成 局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2 滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位置和损坏程度,在此不加阐述。表1列出滚动轴承异常现象的检测,可以看出各种缺陷所对应的异常现象中,振动是最普遍的现象,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机

振动大实例与原因分析

1倍频振动大除了动平衡还应检查什么? 750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。 检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。 据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。 重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。再试车振动比原来还大了点,频谱和原来一样。 我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。 请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了? 除了动平衡还要检查其他什么? 可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz 动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减 请注意:动平衡的速度不是工频,平衡本身可能是合格的 联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固 有频率下降较多,更接近工频。所以振动愈发的大 其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

船舶机械振动及控制

船舶机械振动及控制 对船舶的机械有害振动的控制措施主要有防振和减振两个方面,防振是指在船舶设计阶段就考虑到振动的容许标准而采取降低振动的措施,减振则是指使营运船舶的振动下降到容许的标准。 防振措施和减振措施仅仅是对象的差异及处理的角度有些不同,其基本原理是一样的,即: (1)避免共振。改变结构的固有频率或激励频率防止共振的产生。 (2)减小激励力。进行动平衡或结构改型减小激励幅值。 (3)减小振动或激励力的传递。增加阻尼以防止吸收振动能量,装设减振装置以达到减小幅值的目的。 一柴油机振动控制 柴油机时引起船体振动的主要激励源之一,因此在船舶设计初期,选择什么样的机型是至关重要的。在满足功率等指标的情况下,应注意选择具有较小不平衡力和不平衡力矩的柴油机做主机。柴油机的缸数越多,其一般平衡性就越好。 (一)防止共振 选择主机时应配合螺旋桨考虑是否与船体发生低阶共振的可能性,尤其应避免在主机常用转速下的低阶共振问题。在设计阶段,先计算船体总振动的几个主要谐次的固有频率,以避免与柴油机和螺旋桨的各阶激励力共振。主机的选型应与减速齿轮箱、螺旋桨在一起考虑,在改变主机营运转速较困难时,也可改变变齿轮箱减速比或改变螺旋桨页数以达到改变激励频率的目的。 (二)减小激励力 对于存在外部不平衡力或者不平衡力矩柴油机,可以通过安装平衡补偿装置来减小振动激励力。这是一种普遍应用的防止有害振动的措施。 平衡补偿装置是使偏心质量以与主机激励频率相同的转速旋转,产生补偿力或者力矩以抵消柴油机的不平衡力,减少他们对振动的影响。按运转驱动方式可将平衡器分为

两大类:一是由电动机驱动,或称电动平衡器;二是由曲轴驱动直接附装在主机上。按被平衡激励的形式又可以分为一次力矩平衡器、二次力矩平衡器和组合平衡器。 电动平衡器一般安装在船体垂向振动振幅相当大的舵机底甲板上。 (三)减小振动传递 1,隔振器 对于不平衡的主机或辅机可以在机座下装设隔振器,以减小主机激励力对船体的传递。 所要求的减震器应该柔软些,这通常只有对高速柴油机才能实现。 目前国内常用的减震器主要有橡胶减震器和金属弹簧减震器。 另外,钢丝网隔减震器在工程上的应用也得以发展。 2 防振支撑 近代船用大型柴油机因采用长冲程和超长冲程,其机架横向振动是一个突出问题,成为船体激励源振动之一。当横向振动比较大时,可在主机上部与船舷左右侧间设横向防振支撑于船体连接。它通常能使机架横向振动减小50%以上,固有频率提高5%~50%。 目前常用的防振支撑主要有机械式、摩擦式、液压式三种。 (1)机械式支撑 机械式支撑使主机的刚性得到明显的增加,机架的固有频率上升,下降。但另一方面,机架的部分振动能量讲通过支撑传递至全体,有可能加剧船体的振动。(2)摩擦式支撑 摩擦式支撑的断面形状为U 型。 3)液压式支撑 它由一个充满氮气的蓄能器,一个装压力表的节流阀,哥哥固定在船体上装有差动活塞的减压缸及一根压杆组成。

大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取 代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴 露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。

3.1需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。 加载Adams/vibration模块:Tools/ plugin Manager. 仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。 关掉重力:Settings——Gravity ; 仿真:tool面板——simulation ,设置仿真时间是15s,步长为500;点击,将停在仿真后mode 返回最初的模型状态:点击,把重力打开,这时模型回到振动分析准确的发射状态。

声音是怎样产生的教学设计

《声音是怎样产生的》教学设计 教材分析: 《声音的产生》是教科版第三单元第二课,它属于“科学探究”的目标系列,通过实验和观察理解声音是由物体振动产生的,培养学生的实验观察水平和分析概括、创新水平。主要通过让学生使用多种方法和常见材料来“制造声音”,并对发声的物体与不发声的物体实行观察、比较,就观察到的现象实行积极思考,建立起“声音是由物体振动产生的”的初步感性理解。最后从正反取证,验证假设,培养了学生多方面的水平,特别是让学生经历了整个探索求知的过程。 学情分析: 每个学生对声音都有一定的了解,有着不同的生活经验。对于每个人来说,我们无时不刻生活在声音的世界之中,对声音有着最直观的感受,有些学生还通过不同的信息渠道获得了一些声音的知识。但是熟悉的现象并不一定引起学生的注重,学生并不会花很多时间去探究声音的更多奥秘。这恰是我们教学有价值的地方。 教学方法的分析: “声音是怎样产生的”属于探索性实验,从教学进程来分析,对于四年级的学生的认知水平来说,这种实验并不适合大步子教学,四年级的学生从接触科学到现在,他们经历的观察活动比较多,验证性实验比较多,而对探索性实验在三年级下册学生有了初步涉及,但教学期望与实际效果有一定距离,为此,本课宜采用层层推动的方式设计教学。 教学目标: 1、使用多种方法和常见材料来“制造声音”。 2、通过观察比较物体发声时的状态,知道声音是由物体振动产生的。 3、通过探究活动体验合作学习的乐趣,体会到各种自然现象都是有规律的。 教学重难点:

重点:从多种事实中概括出物体发声的规律。 难点:通过观察、比较,将声音的产生与物体振动建立起联系。 教学准备: 1、教师准备:实验记录表、队鼓、盐、、泡沫小球、水、烧杯(两只,其中一只装水)饮料瓶(两个,其中一个装入一些泡沫碎粒) 2、学生准备:保鲜袋、尺子、橡皮筋、铅笔盒等 教学过程: 课前活动,激发兴趣。 1、上课之前,让我们一起唱首歌,好不好? (播放《假如幸福你就拍拍手》,鼓励学生跟着做动作)。 2、接下来做一个抢答题,看谁说得多,说得快:从走进教室到现在你都听到了那些声音? 一、激情导课 1、导入课题 1)、同学们,在我们周围,每天,都有各种各样的声音伴随着我们,轰隆隆的雷声提醒我们下雨了,叮铃铃的铃声告诉我们上课了,吵闹声使人烦躁,音乐声让人舒畅,声音向我们传递了各种信息,对我们的生活有着重要的作用, 2)关于声音,你最想知道什么? (我想知道:为什么会有声音?人为什么会听到声音?声音为什么有好多种?声音是怎样产生的?……) 问:这些问题中,你们觉得应该最先解决哪一个问题呢? 这个节课就让我们一起走进奇妙的声音王国,去探索相关声音产生的奥秘。(板书课题:2、声音是怎样产生的)

关于引风机振动的分析

关于引风机振动的分析 摘要:本文作者对造成火力发电厂引风机振动故障的原因及其基本特征进行了分析,介绍了如何运用这些振动故障的基本特征对引风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:引风机振动;分析 火力发电厂引风机的振动问题是很复杂的,但只要掌握各种振动的原因和基本特征,加上在平时工作中多积累经验,就能迅速和准确地判断引风机振动故障的根源所在,进而采取有效的措施,提高引风机在火力发电中的安全可靠性。引风机是一种将原动机的机械能转化为输送气体、给予气体能量的机械,它是火力发电厂中不可少的机械设备。在火力发电厂的实际运行中,引风机由于运行条件比较恶劣,发生故障率较高,特别是引风机的振动是一类对生产和运行产生很大影响的故障。一方面振动故障的诊断比较复杂,处理时间也比较长;另一方面振动故障一旦发生并酿成事故,所造成的影响和后果是十分严重的。 1 引风机振动原因分析 1.1 叶轮不平衡引起的振动 叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损和叶轮的结垢。造成这两种情况和引风机前接的除尘装置有关,这在平时的工作中深有体会,开滦林西电厂2#、3#、4#锅炉采用的电除尘为干法除尘装置引起的叶轮不平衡的原因以磨损为主,而1# 锅炉采用的文丘里水膜除尘为湿法除尘装置影响叶轮不平衡的原因以结垢为主。 1.1.1 引风机叶轮磨损及处理对策。干式除尘装置虽然可以除掉烟气中绝大部分颗粒的粉尘,但少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过引风机,使叶片遭受连续不断地冲刷。长此以往,在叶片出口处形成刀刃状磨损。由于这种磨损是不规则的,因此造成了叶轮的不平衡。此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。 1.1.2 引风机叶轮结垢及处理对策。经湿法除尘装置(文丘里水膜除尘器)净化过的烟气湿度很大,未除净的粉尘颗粒虽然很小,但粘度很大。当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进口处与出口处形成比较严重的粉尘结垢,并且逐渐增厚。当部分灰垢在离心力和振动的共同作用下脱落时,叶轮的平衡遭到破坏,整个引风机都会产生振动。 解决叶轮结垢的方法很多,其中有喷水除垢方法,将喷水系统装在引风机的

风机振动原因分析

1 轴承座振动 转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈) ;机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50% 工作转速。 动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 滚动轴承异常引起的振动 轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 | 轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交#

三年级下册科学教案 - 9.声音的产生 苏教版

9.声音的产生 【教学目标】 科学知识: 1.通过感受丰富的声音,理解声音可以传递信息。 2.通过观察比较物体发声时的状态,知道声音是由物体振动产生的,振动停止,声音消失。3.通过聆听不同动物的发声,认识动物不同的发声方式。 4.知道摩擦、弹拨、敲击、吹气可以使物体产生振动而发出声音。 科学探究: 1.通过自主探究,能够运用多种方法和常见材料来“制造声音”。 2.通过探究实验,能够对实验现象进行观察、比较和分析,并能用自己的语言、画图的方式表达实验结论。 3.能够运用“声音是由物体振动产生”的研究结论,解释音叉激水和水鼓的现象。 4.能够通过反证法,说明“发声的物体都在振动”。 科学态度: 1.能在好奇心的驱使下,探究声音产生的原因。 2.能够参与到探究实验中,与同学合作交流。 科学、技术、社会与环境: 1.通过探究活动体验合作学习的乐趣,体会到各种自然现象都是有规律的。 【教学重点】 观察发声物体发声的共同特征,分析归纳物体发声与振动的关系。 【教学难点】 将物体发声时的振动现象可视化。 【教学准备】 教师材料:实验记录表、教学ppt。 学生材料:塑料袋、钢尺、音箱、气球、音钹、塑料瓶、泡沫屑、水、水槽、音叉、水鼓。【教学时间】 1课时 【教学过程设计】

一、声音游戏“听和说”,感知声音可以传递信息,引入新课 1.谈话:同学们,在我们周围,每天,都有各种各样的声音伴随着我们,(适时播放上课铃声和读书声)叮铃铃的铃声告诉我们上课了,琅琅的读书声告诉我们正在读书,校园大课间活动时也有许多不同的声音,闭上眼睛,仔细听…… 2.播放音频:学生活动声、大课间跑步声、学生篮球落地声、体育老师口哨音乐 3.思考:你能听到哪些声音?从这些声音中你能获得什么信息? 4.学生汇报所听到的声音,以及从中获取的信息。 5.小结:声音给我们提供了各种各样的信息,说明声音可以传递信息,不同的声音代表了不同的意义。因此,声音对我们的生活是非常重要的。 6.谈话:我们生活在充满声音的世界,每一个声音都向我们传递着不同的信息,今天这节课就让我们一起走进奇妙的声音王国,去探索有关声音产生的奥秘。 7.板书课题:9.声音的产生 [设计意图:通过播放大课间丰富的声音,让学生运用“听和说”表达从这些声音中所获得的信息,帮助学生认识到声音可以传递信息,以及从学生最想研究的声音问题中追溯本源“声音是怎样产生的”,为本课的展开奠定基础。] 二、探究声音是如何产生的 (一)通过让塑料袋发出声音,初步认识声音的产生与物体运动有关 1.提问:请大家想一想,你觉得声音产生的原因到底是什么呢? 2.学生交流汇报。 3.交流:以上都是同学们的看法,是一种猜测。要知道,世界上许多伟大的发现都原于猜测。要想知道声音究竟是不是因为刚才大家提到的原因产生的,就要通过我们今天的观察与实验才能知道。 4.思考:这里有一个塑料袋,你有什么办法让它发出声音呢? 5.(示范)学生代表说一说:准备用什么方法让塑料袋发出声音?用一个动词概括是什么? 6.全班活动,要求:看谁的发现最多;制造声音时注意声音的大小。 7.教师控制:开始!——停! 8.提问:谁能把你使用的方法展示给大家看?用一个“动词”概括使塑料袋发出声音的动作方式,是什么? 9.学生汇报,教师板书“动词”。 10.交流:通过敲、打、拍、吹、摩擦等动作方式都可以使塑料袋发出声音,不同的方式都

机械振动控制和隔振

世源科技工程有限公司 (中国电子工程设计院) 技术规格书 章号:15240 标题:机械振动控制和隔振 版次:B 建设单位:合肥京东方光电科技有限公司 项目名称:第六代薄膜晶体管液晶显示器件项目编制人审核审定批准人 二○○九

第1部份总论 1.1工作范围 A.本章规定对振动控制系统(主设备、配件和技术)的要求。主要应用于建筑、 机械、制程、电力以及结构的设计和建造。 B.本规格提供必要的设计﹐以避免建筑物内, 由机器或设备运转或是管件 中流体所引发的过度振动。 因为本厂房的高技术性﹐所以本规范的重要性超过了一般的建筑要求。因 此, 必须高度重视有关噪音和振动控制系统的采购和安装的所有规范和 细节。没有经过业主审核,不得使用替代产品。 C.本规范包括相关设备﹐风管和管件的隔振约束悬挂构件和支承的设计。用 于风管﹐管件和隔振设备的隔振约束措施只是补充而不是替代本章规定 的隔振系统。 1.2相关工作 A.本章及下列规格书与相关合同文件, 应结合成为机械振动控制之要求。 1. 15010——机械总则 2.表15240:隔振一览表﹐附在本章结尾。 3.15120 –膨胀补偿器 4.15140 -管道和风管吊架、支架、锚栓、导向支架和密封 5.15840 –HVAC风管板金. 6.15843 –工业排气管道. B.注意事项﹕在使用本规格书时, 如未包含上述罗列的全部条款, 将导致 对基本要求的忽略。 C.在考虑振动控制要求时﹐如果本规格书与任何其它规范有冲突﹐以本规 格书为准。 D.参考法规与规章 1.有关的法规与规章

2.工业金属管道设计规范GB50316-2000 3.现场设备、工业管道焊接工程施工及验收规范GB50236-98 4.工业金属管道工程施工及验收规范GB50235-97 5.洁净厂房设计规范GB50073-2001 6.建筑设计防火规范GB50016-2006 7.采暖通风与空气调节设计规范(2001年版)GB50119-2003 8.隔振设计规范GB50463-2008 9.通风与空调工程质量验收规范GB50243-2002 E. 1.3承包商的一般责任 A- 在安装设备前,递交文件予业主批准。递交文件应包括上文第1.4段所述的项目。 B- 提供本文所述的用于隔振的装置、结构支架、指南、材料等。 C- 除非经本技术规格或经业主批准,否则请勿安装与结构物进行刚性接触的任何旋转机械设备、相关管道、风管系统等。结构物包括板材、横梁、立柱、 墙壁、支柱、板条等。 D- 与其它同行协调工作,以免与建筑物产生刚性接触。承包商应告知其它同行遵循其工作进度(例如粉刷或电气工作),以免产生降低隔振系统效率的任何 接触。 E- 安装前,应提醒业主留意与其它同行的冲突是否会因空间不足等原因而造成不可避免地与本文所述设备、管道等接触。安装后必须纠正冲突造成的工作 量所产生的合理费用,应由承包商承担。 F- 安装前,应提醒业主留意技术规格与现场状况是否不符、是否由于特定设备选择而需要做出更改等。安装后必须纠正不符造成的工作量所产生的费用, 应由承包商承担。 G- 征求业主在封闭前检查及征求业主批准是否给任何设备安装的覆盖和遮蔽。 H- 就隔振装置的适当安装及调节,征求隔振制造商的书面及/或口头指示。 I- 纠正业主认为存在产品或材料缺陷的任何设备,而不得产生额外开支。 J-承包商应负责适当运作根据本部份提供的所有系统、辅助子系统及设施。 承包商应与所有相关分包商协调试运转程序、校准及系统检验。各个相关 分包商应诊断系统操作问题及实施纠正程序,以使系统符合设计要求。在 纠正工作完成后,应重新检查问题,确认系统能否正常运作。任何保留待 解决的难题应提醒业主留意。 1.4设计指标 本部份描述将在机械、电气及结构工作所有使用阶段的隔振控制系统。 A 除非本技术规格允许,否则设备、管路系统、管道及导管的安装不得与 结构物进行刚性接触。 B 机械设备:除非设备附表表格15240另有注明,否则所有机械设备均 应安装在隔振物体上,防止振动及噪音传送至建筑物结构上

大机组振动原因分析与处理

大机组振动原因分析与处理 摘要简述了引起大型机组振动的几种原因,并对部分原因以现场实际工作经验为例进行了剖析,附以解决方案,对从事该类型工作的设备管理人员解决现场振动问题,具有一定的借鉴意义。 关键词大型机组;振动;轴承;底脚 1 引言 大型压缩机组因其单位效率高,在石油化工行业被越来越多的用户使用,而且朝着大型化,模块化的趋势发展。与此同时,因化工行业连续生产的特殊性,大型机组必须满足长周期、安全、稳定运行的条件。保证大型机组安全稳定的首要条件则是对大型机组的运行状态进行跟踪监控,并实时做好记录,分析机组的状态是否正常,以此来判断机组是否能够继续运行或者确定机组的检修时间等。其中,机组状态检测中首要跟踪的参数便是机组的振动、温度等,很多情况下,振动与温度是有关联的。因此,在测得振动参数后,对比温度参数需要进行深入的分析才能准确判断出原因。 大型机组的振动问题是比较复杂的一个课题,涉及到许多方面。比如,转子动静平衡不好,联轴器不对中,地脚螺栓存在虚脚,轴承间隙不合适,管线应力等其它非机组本身的附加振动源等。一个机组振动超标后,首先要找出振动源,并分析排除可能的情况。有些时候引起振动的原因并不是唯一的,可能存在多项引起振动的原因,这个时候判断问题就比较困难一些,但是只要我们仔细排查,便能最终找到问题所在。 2 引起振动的几种原因 现以某厂5台大型制冷压缩机组为例简要分析一下振动产生的原因以及在现场实际排查的过程和最终解决方案。该厂有汽轮机驱动的离心式制冷压缩机1台,6000V高压电机驱动的喷油双螺杆压缩机4台。这些制冷压缩机组为聚合反应提供冷媒,鉴于生产的连续性,这五台机组必须同时保持高效稳定的运行。监测振动对跟踪与分析机组的运行状态至关重要。振动分为三个方向的振动,水平,垂直,轴向。这三个方向的振动分别能反应机组的不同状态。水平方向振动大,一般反应的是机组转子不平衡或者是联轴器对中不好。垂直振动大则一般反应机组有虚脚,找正不好。轴向振动大从通俗的解释上是存在较大的轴向波动力,如果是压缩机轴向振动大,则可能是由于平衡组件存在问

教科版四年级科学上册《声音是怎样产生的》教案

第二课声音是怎样产生的 【教学目标】 科学概念: 声音是由物体的振动产生的。 过程与方法: 能观察、比较、描述物体发生和不发生时的例外现象;能从多个物体发生的观察事实中对原因进行假设性解释;可以借助其他物体来观察不简易观察到的现象。 情感、态度、价值观: 在探究的过程中,积极大胆地阐述自己的发现;乐于与他人合作,养成细密观察的习惯和态度 【教学重点】认识声音是由物体的振动产生的。 【教学难点】如何引导学生从实验中分析得出声音是由物体的振动产生的。 【教学准备】 1面鼓、1把钢尺、2根皮筋、1个音叉、装水的水槽 【教学过程】 一、引入: 上节课中,我们已经知道通过例外力量的击打,对例外物体的击打都能产生各种各样的声音。那么声音究竟是怎么产生的呢?这节课我们将作继续的研究。 二、使物体发出声音

1、分组活动:出示鼓、钢尺、皮筋,你能想办法使这些物体发出声音吗? 2、记录并交流我们的想法: 为什么我们对物体用力(按压、弯曲、拉伸)后,物体没有发出声音,但是我们对物体进行击打、拨动却使物体发生了声音呢? 三、观察发声物体 1、分组实验1:在水槽里盛约的清水,用轻而短暂的力打音叉和用较大的力击打音叉,观察音叉的振动。用一个手指轻轻地接近振动着的音叉,感觉一下音叉的振动。观察:手指有什么感觉呢?水面有什么变化?水面的变化是怎么产生的?交流反馈:手指有麻麻的振动感,水面产生了花纹,花纹就是由音叉的振动而产生的。 2、分组实验2:木板上拴着两个皮筋。拨动一个皮筋使它发出声音,另一个皮筋保持不动,不发出声音。 观察:发声的皮筋和不发声的皮筋的例外?如果抓住皮筋,使之不振动,还会发出声音吗?皮筋的振动与发出的声音有关吗? 交流反馈: 3、小组交流: 击打鼓时,我们看到了什么?这种现象与声音的产生有关吗?拨动钢尺时,我们看到了什么?这种现象与声音的产生有关吗? 4、小结:当一个物体(如音叉、鼓、钢尺、皮筋、铁钉等)在力的作用下,能不断重复地做往返运动,这个物体就是一个振动物体。声音就是由物体振动而产生的。

风机震动原因分析

电站风机振动故障简易诊断 摘要:分析了风机运行中几种振动故障的原因及其基本特征,介绍了如何运用这些振动故障的基本特征对风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:风机;振动;诊断 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风机和排粉机。 1轴承座振动 1.1转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承

处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3滚动轴承异常引起的振动 1.3.1轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,在此不

风机振动原因分析(终审稿)

风机振动原因分析 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

1轴承座振动1.1转子质量不平衡引起的振动在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2动静部分之间碰摩引起的振动如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3滚动轴承异常引起的振动 1.3.1轴承装配不良的振动如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。

1.3.2滚动轴承表面损坏的振动滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,抓住振动监测就可以判断出绝大多数故障,再辅以声音、温度、磨耗金属的监测,以及定期测定轴承间隙,就可在早期预查出滚动轴承的一切缺陷。 1.4轴承座基础刚度不够引起的振动 基础灌浆不良,地脚螺栓松动,垫片松动,机座连接不牢固,都将引起剧烈的强迫共振现象。这种振动的特征:①有问题的地脚螺栓处的轴承座的振动最大,且以径向分量最大;②振动频率为转速的1、3、5、7等奇数倍频率组合,其中3倍的分量值最高为其频域特征。 1.5联轴器异常引起的振动 联轴器安装不正,风机和电机轴不同心,风机与电机轴在找正时,未考虑运行时轴向位移的补偿量,这些都会引起风机、电机振动。其振动特征为:①振动为不定性的,随负荷变化剧烈,空转时轻,满载时大,振动稳定性较好;②轴心偏差越大,振动越大;③电机单独运行,振动消失;④如果径向振动大则为两轴心线平行,轴向振动大则为两轴心线相交

相关主题
文本预览
相关文档 最新文档