当前位置:文档之家› 串并联可靠性模型的应用及举例

串并联可靠性模型的应用及举例

串并联可靠性模型的应用及举例
串并联可靠性模型的应用及举例

上海电力学院

选修课大型作业

课程名称:机电系统可靠性与安全性设计报告名称:串并联可靠性模型的应用及举例院系:能源与机械工程学院

专业年级:动力机械140101

学生姓名:潘广德

学号:14101055

任课教师:张建平教授

2015年4月28日

浅谈串并联可靠性模型的应用并举例

摘要

详细阐述了机械可靠性工程中串并联可靠性模型的应用,并详细的举例说明。系统可靠性与组成单元的数量、单元可靠性以及单元之间的相互联接关系有关。以便于可靠性检测,首先讨论了各单元在系统中的相互关系。在可靠性工程中,常用可靠性系统逻辑图表示系统各单元之间的功能可靠性关系。在可靠性预测中串并联的应用及其广泛。必须指出,这里所说的组件相互关系主要是指功能关系,而不是组件之间的结构装配关系。

关键词:机械可靠性串联并联混联应用举例

0前言

学技术的发展,产品质量的含义也在不断的扩充。以前产品的质量主要是指产品的性能,即产品出厂时的性能质量,而现在产品的质量已不仅仅局限于产品的性能这一指标。目前,产品质量的定义是:满足使用要求所具备的特性,即适用性。这表明产品的质量首先是指产品的某种特性,这种特性反应这用户的某种需求。概括起来,产品质量特性包括:性能、可靠性、经济性和安全性四个方面。性能是产品的技术指标,是出厂时产品应具有的质量属性,显然能出厂的产品就赢具备性能指标;可靠性是产品出厂后所表现出来的一种质量特性,是产品性能的延伸和扩展;经济性是在确定的性能和可靠性水平下的总成本,包括购置成本和使用成本两部分;安全性则是产品在流通和使用过程中保证安全的程度。在上述产品特性所包含的四个方面中,可靠性占主导地位。性能差,产品实际上是废品;性能好,也并不能保证产品可靠性水平高。反之,可靠性水平高的产品在使用中不但能保证其性能实现,而且故障发生的次数少,维修费用及因故障造成的损失也少,安全性也随之提高。由此可见,产品的可靠性是产品质量的核心,是生产厂家和广大用户所努力追求的目标。

1串联系统可靠性模型的工作原理

如果一个系统中的单元中只要有一个失效该系统就失效,则这种系统成为串联系统。或者说,只有当所有单元都正常工作时,系统才能正常工作的系统称为串联系统。

设系统正常工作时间(寿命)这一随机变量为t,则在串联系统中,要使系统能正常工作运行,就必须要求每一个单元都能正常工作,且要求每一单元的正常工作时间都大于系统正常工作时间t。假设各个单元的失效时间是相互独立的,按照概率的乘法定理和可靠性定

义:系统的失效概率是各个单元失效概率的乘积。所以,串联系统的可靠度与单元数量及单元的可靠度有关。

串联系统的失效率是各单元失效率的总和。由于可靠性预测主要是系统正常工作期或者偶然失效期,一般可以认为系统的失效率和个单元的失效率均为常量。串联系统由各单元之间串联组成,串联单元越多则系统可靠度越低,系统可靠度低于系统中最薄弱单元的可靠度。因此,如果最薄弱单元的环节能承受的最大载荷或者最危险环境,就认为系统是成功了。

电子系统经常由许多许多电子组件串联组成,已完成一些职能,研究这些模型的可靠性有重要意义,本例中首先建立串联系统可靠性的数学模型,在寻找最佳参数组合的过程中运用了遗传算法(Genetic Algorithm以下简称GA),并进行了计算机仿真,仿真结果表明,使用GA求解串联系统的可靠性具有良好的性能。

2 串联系统的可靠性问题的数学模型

考虑一个由N级串联组成的系统,系统的可靠性可以认为是系统成功运行的概率,进一步假设N级之间彼此独立,则此概率可取为N级中每级可靠性分析中的乘积,系统每一级均由一特殊组件构成,组件可能受到损坏,为提供系统可靠性,通常每级引入一个或几个组件备份,但在工程实际中,通常对成本,重量等有所考虑,故需确定每一级组件的备份数,才能使系统整体可靠性为最大,且满足约束条件限制,下面将给串联系统可靠性问题的数学模型[1]。

假设每级至少使用一个组件,对于,令1+X是第j级组件数,假设每级至少使用一个组件,对于j=1,…… ,N,令1+X j是第j级组件数,又令P j(X j)是使用(1+X j)个组件时第j级成功运行的概率即第j级的可靠性,令C j是第j级组件的单位成本,W j是第j 级组件单位重量,C是最大允许成本W是允许重量。故串联系统的可靠性问题即为寻找每级组件[2] 。

备份数目的最优值X1,X2,…… ,X n,使由P1(X1)P2(X2)……P n(X n)所表示的串联系统的可靠性为最大,且满足成本约束C1X1+C2X2+ …… +C n X n≤C和重量约束

W1X1+W2X2+ …… +W n X n≤W。因此,串联系统可靠性的数学模型为max Z′= Π

NJ=1Pj(xj)s.t N j=1C j X j≤C∑N j=1W j X j≤W其中X j且X j为整(j=1,2,…… ,N)。记Z Δln Z′=lnπN J=1P j(x j)=N。

j=1 lnP j(X J)ΔN j=1φj(X j)由于y=ln x(x>0)是单调递增函数,故上述数学模型等价于

maxZ′=N j=1φj(X j) s.tN j=1C j X j≤CN j=1W j X j≤W其中X j≥0且X j为整数(j=1,2,…… ,N)。此模型较前述模型的计算量要小,故应考虑它为所表示的串联系统可靠性的数学模型。

3遗传算法

遗传算法(GA)是本世纪60年代后期和70年代初期由美国密歇根大学的约翰·霍兰(John.Holland)教授.根据模拟自然系统中基本规律“适者生存,子承父性”所提出的一种智能化方法,可以解决非线性反演问题。该方法的主要特点是使用二进制编码技术,对点群进行搜索,利用遗传因子保证寻找速度和避免陷入局部最优。构造遗传算法的步骤如下:1)参数编码,即将n个参数X1,X2,…… ,X n采用二进制编码。2)随机地在可行解域内生产m个候选解组成初始种群。3)以目标函数作为适值函数,计算种群中各个体的适应值。4)按照预定交换率P,在群体中随机抽取数与候选解进行交换运算,交叉因子可任选4种常见交叉因子(部分匹配pox因子,顺序ox因子,循环cx因子和正则un因子之一)。5)按一定概率Pm在一代中随机抽取n个个体,对这些个体运用整体变异,部分变异,逐位变异和倒位变异等手段进行变异。6)在新一代中随机抽去一个个体,将上一代中最好个体补充上,保证最好个体无条件遗传。7)判断是否得到最佳参数值或是否达到预定迭代次数。若是,停止运算,输出最好结果;否则,转第3)步。3 计算机仿真及结果分析下面我们给出一个3级串联系统可靠性数学模型的算·49·例。max5x21+4x1-3x22+4x22+x3+x23s.tx1+3x2+x3≤04x1+2x2+2x3≤15[6]。

其中X i≥0且X i为整数(i=1,2,3)。采用遗传算法寻求最优参数过程如下:

1)首先确定x1,x2,x3的取值范围:0≤x i≤[154];0≤x2≤[103];0≤x3≤[152]采用二进制方法对X1,X2,X3编码,二进制位串长度为7并采取级联编码方案产生。

2)群体中随机抽取4个候选解组成初始种群,如由计算机随机选取初始群体位串分别为:0000000,0111000,0010000,1100000。

3)分别计算初始群体中各个体的适值为0,36,10,57。由于第一个群体位串的适值最小,故用适值最大的初始群体取代,从而选择产生了新的种群

{1100000,0111000,0010000,1100000}。

4)随机选择交配对象和交换点进行交换,结果如下:(其中位串交换点位置及交配过程中交配对象的选择均由计算机随机决定)。选择出的位串交配对象新群体。

(虚竖线为交换点位置)(随机选择) [7]

110┆000 2 1101000

011┆100 1 0110000

0┆010000 4 1010000

1┆100000 3 0100000

再次选择出的位串交配对象新群体(虚竖线为交换点对象)(随机选择)

11000┆00 2 1100000

11000┆00 1 1100000

101┆1000 4 1010000

110┆0000 3 1101000

5)采取逐位变异法将位串变异为1100001,即设最优参数组合[3]X1=3,X2=0,X3=1,目标函数最优值Z=59。计算机仿真结果表明,只经过三次选择交配和一次逐位变异即搜索出参数的最佳组合和目标函数的最优值,可见该遗传算法求解串联系统的可靠性问题是非常有效的。得出以下结论,文在遗传算法的思想基础上,采用了逐位变异等变异手段,实现函数寻优过程,从而解决了串联系统的可靠性问题,在工程实际应用中也有一定的利用价值。

4并联系统可靠性模型的工作原理

组成系统的单元仅在全部发生故障后,系统才失效,这样的系统称之为并联系统。具有n个单元并联系统的逻辑图和电路中的并联图相似。并联系统只要有一个单元不失效就能使系统正常工作。

设并联系统失效时间随机变量为t,在并联系统中,中有每个单元的失效时间都达不到系统所要求的工作时间,系统才会失效。因此,系统的失效概率就是单元全部同时失效的概率。设各个单元的失效时间随机变量互为独立,利用乘法定理便可以算出失效概率,并可以计算并联系统的可靠度,这里不再赘述。经过分析后得出以下结论:

(1)并联系统的失效概率低于各单元的失效概率。

(2)并联系统的平均寿命高于各单元的平均寿命。并联系统的各单元服从指数寿命分布,该系统不再服从指数寿命分布。

(3)并联系统的可靠度大于各单元的可靠度的最大值。

(4)随着单元数的增加,系统的可靠度增大,系统的平均寿命也随之增加,但随着单元数目的增加,新增单元对系统可靠性及寿命提高的作用越来越不明显。

5并联系统可靠性分析的重要方向及其确定方法

5.1并联系统失效概率估算的重要方向

为表达方便, 设所研究的并联系统中基本随机向量被转化为标准正态随机向量x=

[x1,…,x n]。

即x i~N(0,1) (i= 1,…,n)。假设并联系统的m个失效模式的极限状态函数为g i(x) (i = 1,…,m)。

则系统失效域F可表示为F=∩m i= 1F i=∩m i= 1{x∶g i(x)< 0} (1) 式中,Fi= {x∶g i(x)< 0}为第i个失效模式所定义的失效域。并联系统的失效概率P(s)F则可表示为P(s)F=∫…∫F f(x)dx(2)。

式中,f(x)为基本随机变量的联合概率密度函数。从(2)式可知,失效域F中概率密度f(x)越大。

其对失效概率的贡献越大。对比单模式的情况,可以将失效域F中f(x)达到最大值的点定义为并联系统的设计点,则原点到设计点的方向则构成了重要方向,将此重要方向用α表示。

5.2并联系统重要方向α的确定

由于马尔可夫链可以高效模拟感兴趣区域的样本[6],因此本文采用马尔可夫链模拟确定重要方向α。其基本思路是用马尔可夫链获取并联系统失效域中样本点,利用系统失效域中条件样本点,可以确定并联系统的重要方向。对于联合概率密度函数为f(x)的随机向量,其落在失效域内的样本点的密度函数可以表示为q(x|F),且满足如下关系式:

q(x|F)=IF(x)f(x)/P(s)F(3)

式中,IF(x)是失效域的指示函数,当x∈F时,IF(x)= 1;否则,IF(x)= 0。马尔可夫链通过建议分布和Metropolis-Hastings准则,可以快速获得密度函数为q(x|F)的样本点[7],其步骤如下:

(1)初始状态x0的确定

由马尔可夫链的原理可知,其初始状态x0应服从密度函数q(x|F)。即使以不服从q(x|F)的x0作为初始状态,以q(x|F)作为平稳分布的马尔可夫链模拟样本也近似服从q(x|F),这就使得初始状态的选取变得简单。一般的做法是采用工程经验或简单数值方法求得失效域中的一个点作为x0。

(2)马尔可夫链的第j个状态xj的确定

首先依据马尔可夫链理论选取n维空间的均匀分布作为建议分布f(x′|xj-1)[8]。然后,

由建议分布产生马尔可夫链的第j个备选状态x′,并由式(4)的Metropolis-Hastings准则确定马尔可夫链的第j个状态x j x j=x′m in(1,r)≥Random [0, 1]x j-1m in(1,r)< Random [0, 1](4)式中,Random [0, 1]表示在[0, 1]区间上产生的均匀分布的随机数,r=q(x′

|F)/q(x j-1|F)。该准则表明,马尔可夫链以概率m in(1,r)接受x′作为链的下一个状态,以概率1 -m in(1,r)拒绝转移到x′,即链仍处于状态xj-1。

(3)重复步骤(2),直到产生N个马尔可夫状态[4]

X j(j= 1,…,N)。

(4)计算重要方向α

对所有马尔可夫状态x j(j= 1,…,N)进行正则化,即计算单位向量x j/‖x j‖,然后求得所有单。

位向量的平均向量,从而得到重要方向α,指向最有可能失效点。α=1N∑N j=1 x j‖x j‖(5)。

图1是由马尔可夫链样本确定重要方向的简单示意图,图中的灰点表示马尔可夫链的初始点x0,黑点表示由马尔可夫链模拟的并联系统失效域中的条件样本x j(j= 1,…,N),这些样本不仅用来确定重要方向α,而且也将作为失效概率估算的线抽样的样本。图1 利用马尔可夫链获取重要方向T2 马尔可夫链线抽样方法将上节获得的重要方向α正则化,可得到

单位向量e T。e T=α/‖α‖x(6)以上节并联系统失效域中的马尔可夫链样本作为线抽样的样本,并联系统可靠性分析的线抽样方法的抽样方式见图2。基于文献[2]给出的单模式线本文提出了解决多模式并联系统失效概率的

马尔可夫链线抽样方法,与Monte Carlo

法相比,所提方法的抽样效率大大提高,

计算量有明显的下降,且本文方法将求解

重要方向和失效概率的估算融为一体,充

分利用了马尔可夫链条件样本信息,更好

地提高了计算效率。所提方法显然适用于

隐式非线性的极限状态方程,有很广泛的适用范围。此外,对于含有非正态随机变量的系统,还可以先将非正态随机变量转化为标准正态随机变量后,再运用本文方法求解失效概率。[5] 6结论

串并联系统模型在机械可靠性工程中有着重要的应用。串联系统由个单元之间串联组

成,串联单元越多则系统可靠度越低,系统可靠度低于系统中最薄弱单元的可靠度。所以,假如最薄弱单元环节能承受的最大载荷或最危险环境,就认为系统是成功的。并联系统的单元效率为常数时,并联系统的失效率不再是常数,而是时间的函数,也就是说并联系统单元寿命服从指数分布时,并联系统的寿命数据不再是指数分布。在并联系统中,只有每个单元的失效时间都达不到系统所需要的工作时间时,系统才失效。以此,系统的失效概率就是单元全部同时失效的概率。随着单元数n的增多及单元可靠度R的增大,系统可靠度将迅速增大。并联系统对航天系统的可靠性与长寿命有重要作用,为了提高可靠性往往采用单元并联的方法。并联系统由重复的组件,也称为工作贮存系统。并联系统的失效率是组件全部同时失效的概率。

参考文献

[1]峁诗松, 王静龙, 濮晓龙.高等数理统计.北京:高等教育出版社, 1998, 400~457

[2]吴建成, 吴剑国, 吴亚舸.一种基于马尔可夫链模拟样本的自适应重要样本法.华东船舶工业学院学报(自

然科学版),2003, 17(3): 8~12

[3]宋述芳,吕震宙.并联系统可靠性分析的马尔可夫链线抽样方法.[J]西北工业大学学报,2003,第五卷,第三期

[4]张琳,串联系统可靠性的研究[J].辽宁省交通高等专科学校学报,第26卷,第2期

[5]孟祥萍,梁志珊,张化光.一种基于二进制编码的优化方法〔J〕.沈

阳:控制与决策,1998,增刊:513—516

[6]Koutsourelakis P S, Pradlwater H I, Schueller G I. Realistic and Efficient Reliability Estimation for Aerospace Structures. Compute Methods Application Mechanical Engineering , 2005, 194: 1597~1617

[7]Schueller G I, Stix R. A Critical Appraisal of Methods to Determine Failure Probabilities. Structural Safety, 1987, 4:293~309

[8]Mao Shi song, Wang Jing long, Pu Xiao long. Advanced Mathematical Statistics. Beijing: China Higher Education Press,1998, 454~457 (in Chinese)

[9]Wu Jian cheng , Wu Jian guo, Wu Yage. An Adaptive Important Sampling Method Based on Markov Chain Sample Simulation Algorithm. Journal of East China Shipbuilding Institute (Natural Science Edition), 2003, 17(3): 8~12 (in Chinese)

2015年4月28日

WIFI+Portal认证解决方案_高可靠性

宽带连接世界,信息改变未来 WIFI+Portal认证解决方案 2013年02月

目录 1 概述 (3) 2 安朗WIFI+Portal认证系统解决方案 (3) 2.1 系统拓扑 (4) 2.2 系统容量估算 (4) 2.3 防火墙 (5) 2.4 负载均衡 (5) 2.5 Portal系统 (5) 2.6 AAA系统 (5) 2.7 Oracle数据库 (6) 2.8 磁盘阵列 (6) 3 方案特点 (6) 4 典型案例 (6) 4.1 广州电信本地WIFI认证平台 (6) 4.2 广交会WiFi+Portal 认证平台 (8) 广州安朗通信科技有限公司 2 / 9

1概述 随着智能手机和手持终端的不断普及,使用者需要随时随地上网获取信息。为了给客户更好的服务,越来越多的商家开始提供免费或者收费的WIFI接入服务。在酒店、餐饮、汽车4S店等行业,都开始都提供WIFI服务。 目前随着WIFI的接入增加,对于WIFI的认证也逐渐开始收到了更多的关注。特别是对于WIFI的Portal认证方式收到了越来越多的应用。对于电信运营商这一类的WIFI接入提供商来说,Portal认证系统的稳定可靠是优先考虑的,这就需要提供一个具有高可靠性的Portal 认证系统。 2安朗WIFI+Portal认证系统解决方案 为了满足高可靠性的需要,安朗WIFI+ Portal系统解决方案中包括防火墙、负载均衡、Portal系统、AAA系统、Orcale数据库(负载均衡工作模式)、磁盘阵列等部分。 广州安朗通信科技有限公司 3 / 9

广州安朗通信科技有限公司 4 / 9 2.1 系统拓扑 2.2 系统容量估算 这里的系统容量主要是指各个系统需要采用的Portal 服务器和AAA 服务器的计算以及系统所需带宽估算,负载均衡设备和防火墙容量的估算请参考各个厂家的估算公式。 系统带宽=页面文件大小×并发用户数 页面的连接数×并发用户数=Portal 系统需要支持的连接数 并发用户数/超时时间5秒(认证超时)=AAA 系统每秒需要处理认证请求数 需要的Portal 硬件数量= Portal 需要支持的连接数/单台Portal 支持的连接数

可靠性工程每章基本概念及复习要点知识讲解

复习要点: ?可靠性 ?广义可靠性 ?失效率 ?MTTF(平均寿命) ?MTBF(平均事故间隔) ?维修性 ?有效性 ?修复度 ?最小路集及求解 ?最小割集及求解 ?可靠寿命 ?中位寿命 ?特征寿命 ?研究可靠性的意义 ?可靠性定义中各要素的实际含义 ?浴盆曲线 ?可靠性中常见的分布 ?简述串联系统特性 ?简述并联系统特性 ?简述旁联系统特性 ?简述r/n系统的优势 ?并-串联系统与串-并联系统的可靠性关系 ?马尔可夫过程 ?可靠性设计的重要性 ?建立可靠性模型的一般步骤 ?降额设计的基本原理 ?冗余(余度)设计的基本原理 ?故障树分析优缺点 广义可靠性:包括可靠性、维修性、耐久性、安全性。可靠性:产品在规定时期内规定条件规定的时间完成规定功能能力。耐久性:产品在规定的使用和维修条件下,达到某种技术或经济指标极限时,完成规定功能能力。安全性:产品在一定的功能、时间、成本等制约条件下,使人员和设备蒙受伤害和损失最小的能力 可靠度R(t):产品在规定条件下和规定时间内完成规定功能的概率 累积失效概率F(t):也称不可靠度,产品在规定条件下和规定时间内失效的概率 失效概率密度f(t):产品在包含t的单位时间内发生失效的概率 失效率λ(t):工作到t时刻尚未失效的产品,在该时刻t后的单位时间内发生失效的概率。基本:实验室条件下。应用:考虑到环境,利用,降额和其它因素的实际使用环境条件下。任务:元器件在执行任务期间,即工作条件下的基本 不可修产品平均寿命MTTF:指产品失效前的平均工作时间可修MTBF:指相邻两次故障间的平均工作时间,称为平均无故障工作时间或平均故障间隔时间维修性:在规定的条件下使用的可维修产品,在规定的时间内,按规定的程序和法进行维修时,保持或恢复到能完成规定功能的能力 维修度M(t):是指在规定的条件下使用的产品发生故障后,在规定的时间(0,t)内完成修复的概率。修复率μ(t):修理时间已达到某一时刻但尚未修复的产品在该时刻后的单位时间内完成修理的概率。平均修复时间MTTR:可修复的产品的平均修理时间,其估计值为修复

网络可靠性设计

网络可靠性设计

目录 1.1 网络可靠性设计 (2) 1.1.1 网络解决方案可靠性的设计原则 (3) 1.1.2 网络可靠性的设计方法实例 (4) 1.1.3 网络可靠性设计总结 (9)

1.1网络可靠性设计 可靠性是指:设备在规定的条件下、在规定的时间内完成规定的功能的能力。对于网络系统的可靠性,除了耐久性外,还有容错性和可维护性方面的内容。 1)耐久性。是指设备运行的无故障性或寿命,专业名称叫MTBF(Mean Time Between Failure),即平均无故障时间,它是描述整个系统可靠性的重要指标。对于一个网络系统来说,MTBF是指整个网络的各组件(链路、节点)不间断无故障连续运行的平均时间。 2)容错性。专业名称叫MTTR(Mean Time to Repair),即系统平均恢复时间,是描述整个系统容错能力的指标。对于一个网络系统来说,MTTR是指当网络中的组件出现故障时,网络从故障状态恢复到正常状态所需的平均时间。 3)可维护性。在系统发生故障后,能够很快地定位问题并通过维护排除故障,这属于事后维护;根据系统告警提前发现问题(如CPU使用率过高,端口流量异常等),通过更换设备或调整网络结构来规避可能出现的故障,这属于预防维护。可维护性需要管理人员来实施,体现了管理的水平,也反映了系统可靠性的高低。

表示系统可靠性的公式为: MTBF / ( MTBF + MTTR ) * 100%。 从公式或以看出,提高MTBF或降低MTTR都可以提高网络可靠性。造成网络不可用的因素包括:设备软硬件故障、设备间链路故障、用户误操作、网络拥塞等。针对这些因素采取措施,使网络尽量不出故障,提高网络MTBF指标,从而提升整网的可靠性水平。 然而,网络中的故障总是不可避免的,所以设计和部署从故障中快速恢复的技术、缩小MTTR指标,同样是提升网络可靠性水平的手段。 在网络架构的设计中,充分保证整网运行的可靠性是基本原则之一。网络系统可靠性设计的核心思想则是,通过合理的组网结构设计和可靠性特性应用,保证网络系统具备有效备份、自动检测和快速恢复机制,同时关注不同类型网络的适应成本。 构建可靠的网络,需要从耐久性、容错性以及可维护性三个方面进行网络规划设计。而网络的规划设计是个系统工程,不同的设计方案的可靠性性效果不尽相同,这就需要以科学的方法进行设计,构建符合需要的可靠性网络。 1.1.1网络解决方案可靠性的设计原则 不同的网络,其可靠性的设计目标是不同的。网络解决方案的可靠性需要根据实际需求进行设计。高可靠性的网络不但涉及到网络架构、设备选型、协议选择、业务规划等技术层面的问题,还受用户现有网络状况、网络投资预算、用户管理水平等影响,因此在规划可靠性网络时需要因地制宜,综合考虑各方面的影响因素。

可靠性系统工程设计应用练习题

可靠性工程设计与应用练习题目录 1 可靠性工程设计与验证 2 系统可靠性评价 3 可靠性分配预计验证检查内容和方法 4 可靠性试验 5 FMEA 6 维修性设计与验证 7 软件可靠性 8 元器件选择与应用 9 元器件失效分析

1可靠性工程设计验证练习题 一、填空题(每空1分,共15分) 1 2 习惯称平均无故障工作时间,用Mean Time Between Failures )的缩写。 3,设有一个由按n 个单元组成的系统,其中任意r 个(r ≤n )正常工作系统就能正常工作,称为 4 5,GJB 使用阶段可靠性及其工作项目的确定、可靠性管理、可靠性设计与分析、可靠性试验与评价、使用可靠性评价与改进等5系列31项工作项目的通用要求 。 6 7,一批产品有100200小时后,有80个能正常工作,则这批产品在200小时时其可靠度的观测值是 8,设系统下属组件的可靠度分别为r1、r2……rn ,若这n 个系统组成串联系统,则系统的 可靠度为rn= 9,用、MIL-HDBK-217F 和MIL-HDBK-217E 进行预计时,假定元器件的失效 10,在下图的储备系统中,若单元的可靠性度为0.3,则两种( a&b (填有效或无效)。若单元的可靠性度为0.7,则a 、b a b 11会导致系统失效或操作失误。 二、判断题(每题1.5分,共 15分) (判断下列叙述是否正确,正确打“√”,错误打“×”) 1 ,在电子系统中,电位器必须谨慎使用。一般应尽量少用或不用。因其失效率大都是固定电阻器的10至100倍。 2 3,为了使气流畅通,流道应当骤然扩张或收缩。 4 5,在冷却流道设计中应使转变半径最大。 6,电子管灯丝电压和继电器线包吸合电流是不能减额的。 7距太近。 8 9,不是专门为负载转换设计的继电器不应当用来作负载转换。

串并联可靠性模型的应用及举例

上海电力学院 选修课大型作业 课程名称:机电系统可靠性与安全性设计报告名称:串并联可靠性模型的应用及举例院系:能源与机械工程学院 专业年级:动力机械140101 学生姓名:潘广德 学号:14101055 任课教师:张建平教授 2015年4月28日

浅谈串并联可靠性模型的应用并举例 摘要 详细阐述了机械可靠性工程中串并联可靠性模型的应用,并详细的举例说明。系统可靠性与组成单元的数量、单元可靠性以及单元之间的相互联接关系有关。以便于可靠性检测,首先讨论了各单元在系统中的相互关系。在可靠性工程中,常用可靠性系统逻辑图表示系统各单元之间的功能可靠性关系。在可靠性预测中串并联的应用及其广泛。必须指出,这里所说的组件相互关系主要是指功能关系,而不是组件之间的结构装配关系。 关键词:机械可靠性串联并联混联应用举例 0前言 学技术的发展,产品质量的含义也在不断的扩充。以前产品的质量主要是指产品的性能,即产品出厂时的性能质量,而现在产品的质量已不仅仅局限于产品的性能这一指标。目前,产品质量的定义是:满足使用要求所具备的特性,即适用性。这表明产品的质量首先是指产品的某种特性,这种特性反应这用户的某种需求。概括起来,产品质量特性包括:性能、可靠性、经济性和安全性四个方面。性能是产品的技术指标,是出厂时产品应具有的质量属性,显然能出厂的产品就赢具备性能指标;可靠性是产品出厂后所表现出来的一种质量特性,是产品性能的延伸和扩展;经济性是在确定的性能和可靠性水平下的总成本,包括购置成本和使用成本两部分;安全性则是产品在流通和使用过程中保证安全的程度。在上述产品特性所包含的四个方面中,可靠性占主导地位。性能差,产品实际上是废品;性能好,也并不能保证产品可靠性水平高。反之,可靠性水平高的产品在使用中不但能保证其性能实现,而且故障发生的次数少,维修费用及因故障造成的损失也少,安全性也随之提高。由此可见,产品的可靠性是产品质量的核心,是生产厂家和广大用户所努力追求的目标。 1串联系统可靠性模型的工作原理 如果一个系统中的单元中只要有一个失效该系统就失效,则这种系统成为串联系统。或者说,只有当所有单元都正常工作时,系统才能正常工作的系统称为串联系统。 设系统正常工作时间(寿命)这一随机变量为t,则在串联系统中,要使系统能正常工作运行,就必须要求每一个单元都能正常工作,且要求每一单元的正常工作时间都大于系统正常工作时间t。假设各个单元的失效时间是相互独立的,按照概率的乘法定理和可靠性定

网络可靠性实现

高可用性技术(故障检测技术)在路由网络中的应用 国网电科院信息通信技术服务中心蓝鹏 VER1.0 引言:为了保证网络的不间断运行,特别是核心出口网络的高可用性,通常在部署较大规模网络时,会采取链路级备份、设备级备份等方式。技术上通常使用多管理引擎备份、浮动静态路由、VRRP、HSRP等。虽然这些技术给网络带来了一些备份作用,但是对于实时性要求较高的网络还会存在一些问题,本文结合在H3C路由器上的配置实例说明一些故障检测技术与传统技术的结合(联动)从而实现更为智能的高可用性解决方案。 关键字:可靠性故障检测技术NQA BFD TRACK 路由协议网络收敛 (一)、可靠性概述 随着网络的快速普及和应用的日益深入,网络中断可能影响大量业务,因此,作为业务承载主体的基础网络,其可靠性日益成为倍受关注的焦点。在实际网络中,总避免不了各种非技术因素造成的网络故障和服务中断。因此,提高系统容错能力、提高故障恢复速度、降低故障对业务的影响,是提高系统可靠性的有效途径。 1.可靠性需求 可靠性需求根据其目标和实现方法的不同可分为三个级别,各级别的目标和实现方法如表 1 所示。 级别目标实现方法 1减少系统的软、硬件故障硬件:简化电路设计、提高生产工艺、进行可靠性试验 软件:软件可靠性设计、软件可靠性测试等 2即使发生故障,系统功能也不 设备和链路的冗余设计、部署倒换策略、提高倒换成功率受影响 3尽管发生故障导致功能受损, 提供故障检测、诊断、隔离和恢复技术 但系统能够快速恢复 表 1 在上述三个级别的可靠性需求中,第1级别需求的满足应在网络设备的设计和生产过程中予以考虑;第2级别需求的满足应在设计网络架构时予以考虑;第3级别需求则应在网络部署过程中,根据网络架构和业务特点采用相应的可靠性技术来予以满足。 2.可靠性度量 通常我们使用 MTBF ( Mean Time Between Failures ,平均故障间隔时间)和 MTTR ( Mean Timeto Repair ,平均修复时间)这两个技术指标来评价系统的可靠性。 (1).MTBF MTBF 是指一个系统无故障运行的平均时间,通常以小时为单位。 MTBF 越多,可靠性也就越高。 (2).MTTR MTTR 是指一个系统从故障发生到恢复所需的平均时间,广义的 MTTR 还涉及备件管理、客

软件可靠性模型地的综述

软件可靠性模型综述 可靠性是衡量所有软件系统最重要的特征之一。不可靠的软件会让用户付出更多的时间和金钱, 也会使开发人员名誉扫地。IEEE 把软件可靠性定义为在规定条件下, 在规定时间内, 软件不发生失效的概率。该概率是软件输入和系统输出的函数, 也是软件中存在故障的函数, 输入将确定是否会遇到所存在的故障。 软件可靠性模型,对于软件可靠性的评估起着核心作用,从而对软件质量的保证有着重要的意义。一般说来,一个好的软件可靠性模型可以增加关于开发项目的效率,并对了解软件开发过程提供了一个共同的工作基础,同时也增加了管理的透明度。因此,对于如今发展迅速的软件产业,在开发项目中应用一个好的软件可靠性模型作出必要的预测,花费极少的项目资源产生好的效益,对于企业的发展有一定的意义。 1软件失效过程 1.1软件失效的定义及机理 当软件发生失效时,说明该软件不可靠,发生的失效数越多,发生失效的时间间隔越短,则该软件越不可靠。软件失效的机理如下图所示: 1)软件错误(Software error):指在开发人员在软件开发过程中出现的失误,疏忽和错误,包括启动错、输入范围错、算法错和边界错等。 2)软件缺陷(Software defect):指代码中存在能引起软件故障的编码,软件缺陷是静态

存在的,只要不修改程序就一直留在程序当中。如不正确的功能需求,遗漏的性能需求等。3)软件故障(Software fault):指软件在运行期间发生的一种不可接受的内部状态,是软件缺陷被激活后的动态表现形式。 4)软件失效(Software failure):指程序的运行偏离了需求,软件执行遇到软件中缺陷可能导致软件的失效。如死机、错误的输出结果、没有在规定的时间内响应等。 从软件可靠性的定义可以知道,软件可靠性是用概率度量的,那么软件失效的发生是一个随机的过程。在使用一个程序时,在其他条件保持一致的前提下,有时候相同的输入数据会得到不同的输出结果。因此,在实际运行软件时,何时遇到程序中的缺陷导致软件失效呈现出随机性和不稳定性。 所有的软件失效都是由于软件中的故障引起的,而软件故障是一种人为的错误,是软件缺陷在不断的测试和使用后才表现出来的,如果这些故障不能得到及时有效的处理,便不可避免的会造成软件失效。而一个软件中存在的软件错误和缺陷总数是无法确定的,也不可能被完全排除掉,有时候排除掉一个故障甚至会引起更多的故障。 所以在软件开发周期中,软件错误是不可避免的,但可以通过学习改进,不断吸取经验教训,尽量减少程序中的错误特别是重大错误的数量。在测试阶段,测试人员应尽可能多的检测并排除掉软件中的故障,从而减少软件失效强度,提高软件的可靠性和质量。 1.2提高软件可靠性的途径 软件中的故障会导致软件功能不能正常实现,降低了软件的可靠度。软件故障一般是软件开发各阶段人为造成的,大概包括需求分析定义错误、设计错误、编码错误、测试错误和文档错误等。 因此要想获得高可靠性的软件,就要和软件中的故障做斗争。有以下三种直接的方式来

网络高可用性技术白皮书之一

网络高可用性技术白皮书(一) 杭州华三通信技术有限公司

目录 网络高可用性技术白皮书(一) (1) 1. 硬件冗余 (1) 1.1 主控冗余 (1) 1.2 单板热插拔 (2) 1.3 电源风扇冗余 (3) 2. 链路捆绑技术 (3) 3. 热补丁技术 (3) 4. IRF智能弹性架构 (4) 4.1 分布式设备管理 (5) 4.2 分布式路由 (7) 4.3 分布式链路聚合 (8)

网络高可用性技术白皮书 网络高可用性技术,基本都可以归入容错技术,即在网络出现故障(错误)时,确保网络能快速恢复。对目前常用的高可用性技术,可以作一个简单的归类: z单个设备上的硬件冗余,如双主控、单板热插拔、电源冗余、风扇冗余等; z链路捆绑,如以太网链路聚合、MP、MFR等; z环网技术,如RPR、RRPP; z STP、Smart Link、Flex Link等二层冗余技术; z冗余网关技术,如VRRP、HSRP、GLBP; z ECMP,浮动静态路由,动态路由快速收敛(如快速hello,iSPF); z不间断转发:NSF/SSO/GR; z MPLS 快速重路由; z快速故障检测技术,如BFD。 1. 硬件冗余 这里的硬件冗余指的是单台设备上的硬件冗余,一般有主控冗余、交换网冗余、单板热插拔和电源风扇冗余等,使用冗余部件可以在单个部件可靠性一定的情况下,提高整个设备的可用性。随着硬件技术的进步,目前很多设备交换网集成在主控板上,所以交换网冗余不单独介绍。 1.1主控冗余 在设备只有单主控的情况下,如果主控板故障,重起主控板需要加载映象文件、初始化配置、重新注册业务板,然后重建控制平面和转发平面表项,整个过程在5分钟左右,这个时间实在是太长了,特别对于网络中处于单点故障的节点来说更是如此,因为业务在这个过程中将完全中断。为了缩短这个时间,主控冗余应运而生。 主控冗余是指设备提供两块主控板,互为备份。因为主控冗余在控制和转发分离的架构下才能发挥最大的效用,这里先介绍一下控制和转发分离的概念。在控制和转发分离的架构中,控制平面负责各种协议,如路由协议(如RIP/OSPF/IS-IS/BGP)、标签分发协议(如LDP/RSVP-TE/BGP)等的处理,形成路由信息表(RIB)和标签信息表(LIB),从其中选择最优者,加上必要的二层信息,形成路由转发信息表(FIB)和标签转发信息表(LFIB),下发到转发平面,转发平面据此实现快速转发。控制平面的处理在主控板上进行,转发平面的处理既可以在主控板(集中式设备),也可以在业务板(分布式设备)。一旦实现了控制和转发分离,即使控制平面出现故障,转发平面的转发表项在短时间内可以认为仍然合理,继续转发数据而不会导致问题(如环路),当然,控制平面必须能快速恢复并重新和邻居建立协议会话,收敛后再对转发平面进行检查,对表项作必要更新,删除在新的会话环境下不再正确的转发表项。 在主控冗余的设备上,配备了两块主控板,一块实际起作用,称为Master,另一块备用,

软件可靠性模型综述(完整资料).doc

【最新整理,下载后即可编辑】 软件可靠性模型综述 可靠性是衡量所有软件系统最重要的特征之一。不可靠的软件会让用户付出更多的时间和金钱, 也会使开发人员名誉扫地。IEEE 把软件可靠性定义为在规定条件下, 在规定时间内, 软件不发生失效的概率。该概率是软件输入和系统输出的函数, 也是软件中存在故障的函数, 输入将确定是否会遇到所存在的故障。 软件可靠性模型,对于软件可靠性的评估起着核心作用,从而对软件质量的保证有着重要的意义。一般说来,一个好的软件可靠性模型可以增加关于开发项目的效率,并对了解软件开发过程提供了一个共同的工作基础,同时也增加了管理的透明度。因此,对于如今发展迅速的软件产业,在开发项目中应用一个好的软件可靠性模型作出必要的预测,花费极少的项目资源产生好的效益,对于企业的发展有一定的意义。 1软件失效过程 1.1软件失效的定义及机理 当软件发生失效时,说明该软件不可靠,发生的失效数越多,发生失效的时间间隔越短,则该软件越不可靠。软件失效的机理如下图所示:

1)软件错误(Software error):指在开发人员在软件开发过程中出现的失误,疏忽和错误,包括启动错、输入范围错、算法错和边界错等。 2)软件缺陷(Software defect):指代码中存在能引起软件故障的编码,软件缺陷是静态存在的,只要不修改程序就一直留在程序当中。如不正确的功能需求,遗漏的性能需求等。 3)软件故障(Software fault):指软件在运行期间发生的一种不可接受的内部状态,是软件缺陷被激活后的动态表现形式。 4)软件失效(Software failure):指程序的运行偏离了需求,软件执行遇到软件中缺陷可能导致软件的失效。如死机、错误的输出结果、没有在规定的时间内响应等。 从软件可靠性的定义可以知道,软件可靠性是用概率度量的,那么软件失效的发生是一个随机的过程。在使用一个程序时,在其他条件保持一致的前提下,有时候相同的输入数据会得到不同的输出结果。因此,在实际运行软件时,何时遇到程序中的缺陷导致软件失效呈现出随机性和不稳定性。 所有的软件失效都是由于软件中的故障引起的,而软件故障是一种人为的错误,是软件缺陷在不断的测试和使用后才表现出来的,如果这些故障不能得到及时有效的处理,便不可避免的会

机械可靠性综述

机械可靠性设计综述 摘要:可靠性优化设计是在常规优化设计的基础上,结合可靠性设计理论发展起来的一种有效的优化设计方法。本文在总结现有文献的基础上对机械可靠性优化设计进行了综述,系统阐述了机械可靠性、可靠性设计、可靠性优化设计及可靠性试验的理论及方法。 关键词:可靠性;优化设计;可靠性试验 Review of Optimization Design of Mechanical Reliability REN Ju-peng (School of Mechanical Engineering and Automation, Northeastern University, Student ID: 1270174) Abstract:On the basis of traditional optimization design, combined with the theory of reliability design, reliability optimization design is an effective optimization design method. In this paper, the existing literatures are firstly summarized, then the theory and method of mechanical reliability, reliability design, reliability optimization design and reliability test are systematically reviewed. Key words:reliability; optimization design; reliability test 随着现代工业技术的飞速发展,机械产品日趋复杂化、大型化、高参数化,使产品发生故障的机会增多,因而,可靠性作为产品质量的主要指标,愈来愈受到工程界的重视。机械可靠性,是指机械产品在规定的使用条件、规定的时间内完成规定功能的能力。机械的可靠性是机械设计的主要目的之一,有效地增强产品质量、降低产品成本、减轻整机质量、提高可靠性和作业效率是可靠性设计的主要目标。随着工业技术的发展,机械产品性能参数日益提高,结构日趋复杂,使用场所更加广泛,产品的性能和可靠性问题也就越来越突出。机械可靠性设计的基本任务是在故障物理学研究的基础上,结合可靠性试验以及故障数据的统计分析,提供实际计算的数学力学模型和方法及实践。 科技研究人员和工程设计人员积极投入到可靠性工程的研究与实践之中,取得了可喜的成果。张义民[1]结合现代数学力学理论,系统地阐明机械可靠性设计、机械动态可靠性设计、机械可靠性优化设计、机械可靠性灵敏度设计、机械可靠性稳健设计等可靠性设计理论与方法内涵与递进。陈静等[2]阐述了机械产品优化设计及可靠性的相关理论,介绍了可靠性优化设计的应用及发展现状,并介绍了机械行业相关的软件应用情况。喻天翔等[3]对当前机械可靠性的特点和争议进行介绍,从Bayesian理论、FMECA和疲劳可靠性试验三个方面总结了机械可靠性试验技术相关的重要理论问题及其发展,并阐述了可靠性增长试验、加速试验和微机械可靠性试验技术的国内外发展,总结了机械可靠性试验技术研究存在的问题及其发展趋势。 本文将在上述文献的基础上对机械可靠性优化设计进行综述,系统阐述机械可靠性、可靠性设计、可靠性优化设计及可靠性试验的理论及方法。 1可靠性设计 1.1 可靠性设计 传统的机械设计方法认为零件的强度和应力都是单值,只要计算出的安全系数大于规定的安全系数,就认为零件是安全的,因而设计过程中忽略了各设计参数的随机性。可靠性设计将零件的应力和强度作为随机变量,认为应力受到各种环境因素(温度、腐蚀、粒子辐射等)的影响,具有一定的分布规律;强度受材料的性能、工艺环节的波动和加工精度等的影响,也是具有一定的分布规律。可靠性设计认为所设计的任一机械存在着一定的失效可能性,设计时根据需要预先控制的失效概率或可靠度,考虑各参数的随机性及分布规律,以反映出零部件的实际工作状况。 产品的可靠性表示产品在规定使用条件和使用期限内,保持其正常技术性能完成规定功能的能力。可靠性设计的一个目标是计算可靠度,可靠度是指产品在规定的条件下和规定的时间内,完成规定功能的概率。其表达式为: ()0 () x g X R f X dX > =? 式中f x(X)为基本随机参数向量 T 12 (,,) n X X X X =???的联合概率密度;g(X)为状态函数,可表示零件的不同状态:g(X)>0为安全状态,

高可靠性网络解决方案

2. 高可靠性网络解决方案 根据《中国证券经营机构营业部信息系统技术管理规范(试行)》第三章“硬件设施”中第四节“局域网络”的规定:网络结构应合理可靠、网络设备应兼具技术先进性和产品成熟性以及网络设备应用冗余备份的要求。我们凭借多年在证券网络系统集成方面丰富的工作经验,结合网卡容错技术(Adapter Fault Tolerance,AFT)、交换机扩展堆叠技术(Scalable Stacking Technolgy,SST)和IEEE链路冗余技术(Spanning-Tree Protocol,802.1D);使用100M服务器网卡、100M交换机、10M交换机和10M工作站网卡设计并实施了一种高可靠性网络方案。它实现了在服务器网卡端(100M NIC)和主干交换机(100M Switch)上能够自动容错的功能。 国内证券营业部当前流行的网络结构是服务器采用100M交换结构,直接连接到100M交换机上;工作站采用10M交换结构,直接连接到10M交换机连接构成100M网络主干(见图1)。 原有网络主要存在以下几种结构上的隐患: ①如果某服务器网卡崩溃,将引起此服务器与网络的数据传输中断。 ②如果100M交换机崩溃,将引起整个网络数据传输中断。 原有解决方案: ①在服务器上安装双网卡,如果主网卡崩溃,由人工装载备份网卡驱动。 ②另配备一台100M交换机,如果主交换机崩溃,由人工替换。 但它们都需要暂时中断网络运行,并且人工干预。为了解决以上问题。我设计了以下不间断自动解决方案: ①在每台服务器上安装两块100M服务器网卡,并将它们配置成容错状态。 ②配备两台主干交换机(100M交换机),分别连接每台服务器上的一块服务器网卡。同 时每台100M交换机都安装堆叠模块(Stack Module),两台交换机上的堆叠模块相 互连接起来,建立一条1GB链路。 ③根据工作站数量配备多台支干交换机(10M交换机),每台交换机都具有两个100M 端口。两个100M端口分别连接两台100M交换机,建立两条100M主干链路,配合 两台100M交换机间的堆叠链路,将其中一条建成冗余主干链路。

19软件可靠性模型研究综述_王二威

软件可靠性模型研究综述 王二威 (北京理工大学珠海学院,广东 珠海 519088) 摘 要:本文对软件可靠性经典模型、模型选择、普适模型的研究进行了归纳和述评,提出了软件可靠性综合预测框架,给出了软件可靠性综合预测进一步的研究方向。 关键词:软件可靠性;经典模型;综合预测;框架研究 中图分类号:TP311 文献标识码:A Review of Research on Software Reliability Models WANG Erwei (Beijing Institute of Technology ,Zhuhai ,Zhuhai 519088,China ) Abstract:In this paper,the classical model of software reliability,model selection,and the research of the universal model were summarized and reviewed.The framework of software reliability comprehensive prediction was proposed.The further research directions of software reliability comprehensive prediction were proposed. Keywords:software reliability;classical model;comprehensive prediction;framework research 文章编号:2096-1472(2016)-02-01-02 1 引言(Introduction) 软件已经成为影响国民经济、军事、政治乃至社会生活的重要因素。自20世纪60年代“软件危机”出现之后,越来越多的学者开始关注软件可靠性的定量评估和预测。软件可靠性覆盖整个软件开发过程,与软件工程密切相关,它源于工程,又服务于工程。在新技术、新应用(如web软件、移动APP等等)不断涌现的当前,重新审视软件开发和应用环境,开展软件可靠性预测研究,有助于推动软件工程项目的实践,降低软件错误率,提升软件质量,从而保障软件所支撑的工程项目的高效完成,推动我国软件产业的持续发展。 本文对软件可靠性模型研究的相关文献进行了梳理,对前人的研究成果进行了归纳,构建了新计算范式下软件可靠性综合预测框架,提出了软件可靠性综合预测的研究方向。 2 经典软件可靠性模型(Classical software reliability model) 软件可靠性建模的基本方法是:以历史失效数据为基础,对软件失效规律进行趋势拟合,进而预测未来的失效可能。早期软件可靠性的研究是基于概率统计的思想,将软件失效过程看作一个随机过程,从Hudson的工作开始,到1971年J-M模型的发表,再到今天,已公开发表了几百种模型[1](此类模型称之为“经典模型”)。 经典模型存在两个明显的缺陷:第一,在对软件可靠性进行评估预测时都有些固定不变的假设,而这些假设无从证明;第二,模型只考虑输入的随机性,而软件在实际运行时却可能受到各种随机因素影响,使得软件失效出现的情况比较复杂多变。而用某一个固定的失效模式去解释复杂多变的情况,显然是不合适的。实践证明,经典模型的应用存在不 一致性的问题,对一个软件有很好的适用性而对其他的软件则效果很差[2,3],此外预测精度也不够理想。 针对经典模型的不一致性问题,研究者们从两个方面开展了进一步的研究:一是设计一套行之有效的模型选择方法,能够让工程人员从众多的软件可靠性经典模型中选择出最适合实施项目的模型,二是建立一个普适模型。 3 模型选择的研究(Research on model selection) 模型选择策略基本可以归纳为两类:一类是基于模型假设与软件环境的相似性,一类是基于对历史失效数据预测性能的评价。 (1)基于模型假设与软件环境的相似性的模型选择。Andersson、Goel、Sharma等人分别提出了模型假设相似性来选择合适模型的方法[4],基于假设矩阵的模型选择技术实践结果也并不理想[5]。 (2)基于对历史失效数据预测性能的评价。该类策略的模型选择技术依赖于对模型预测性能的评价,1983年,Musa 等人提出了“预测有效性、模型能力、假设质量、模型适用性、简单性”等五个软件可靠性模型评价准则,在学术界获得了较大范围的认可。之后的研究人员不断拓展软件可靠性的影响变量范围,提出了模型拟合性、模型偏差、模型偏差趋势、覆盖度、预测数量、模型噪声等等众多的评价准则,力图从多个角度对软件可靠性模型进行评价。 关于采用何种评价方法来选择模型,一是基于数据挖掘、机器学习的方法[6],汪浩等人提出了基于聚类思想的软件可靠性模型选择,吴勤、吴晨、朱磊等人采用Kohonen网络、BP神经网络、决策树等方法对汪浩等人的研究成果进行了改进,在一定程度上提高了分类系统的准确性,李克文等 软件工程 SOFTWARE ENGINEERING 第19卷第2期2016年2月 V ol.19 No.2Feb. 2016

可靠性建模资料整理

软件可靠性建模 1模型概述 1.1软件可靠性的定义 1983年美国IEEE计算机学会对“软件可靠性”作出了明确定义,此后该定义被美国标准化研究所接受为国家标准,1989年我国也接受该定义为国家标准。该定义包括两方面的含义: (1)在规定的条件下,在规定的时间内,软件不引起系统失效的概率; (2)在规定的时间周期内,在所述条件下程序执行所要求的功能的能力; 其中的概率是系统输入和系统使用的函数,也是软件中存在的故障的函数,系统输入将确定是否会遇到已存在的故障(如果故障存在的话)。 软件失效的根本原因在于程序中存在着缺陷和错误,软件失效的产生与软件本身特性、人为因素、软件工程管理都密切相关。影响软件可靠性的主要因素有软件自身特性、人为因素、软件工程管理等,这些因素具体还可分为环境因素、软件是否严密、软件复杂程度、软件是否易于用户理解、软件测试、软件的排错与纠正以及软件可靠性工程技术研究水平与应用能力等诸多方面。 1.2软件可靠性建模思想 建立软件可靠性模型旨在根据软件可靠性相关测试数据,运用统计方法得出软件可靠性的预测值或估计值,下图给出了软件可靠性建模的基本思想。 图软件可靠性建模基本思想

从图中可以看出软件失效总体来说随着故障的检出和排除而逐渐降低,在任意给定的时间,能够观测到软件失效的历史。软件可靠性建模的目标如下:(1)预测软件系统达到预期目标所还需要的资源开销及测试时间;(2)预测测试结束后系统的期望可靠性。 1.3软件可靠性建模基本问题 软件可靠性建模需要考虑以下基本问题: (1)模型建立 模型建立指的是怎样去建立软件可靠性模型。一方面是考虑模型建立的角度,例如从时间域角度、数据域角度、将软件失效时刻作为建模对象,还可以将一定时间内软件故障数作为建模对象;另一方面是考虑运用的数学语言,例如概率语言。 (2)模型比较 在软件可靠性模型分类的基础上,对不同的模型分析比较,并对模型的有效性、适用性、简洁性等进行综合权衡,从而确定出模型的适用范围。 (3)模型应用 软件可靠性模型的应用需要从以下两方面考虑:一是给定了软件的开发计划,如何选择适当的模型;二是给定了软件可靠性模型,如何指导软件可靠性工程实践。 软件系统的失效历史可以通过对测试得到的失效数据分析获得,而实际情况中,人们最为关注的是软件未来的失效趋势。软件可靠性模型基本都是建立在一定的假设基础之上,所以,即使花费了大量的时间和精力对软件的可靠性进行预计,也只是一种预测,这种预测的不确定性是许多未知原因交互作用的结果,根据软件可靠性模型的预测只能以概率形式表示。 1.4软件可靠性模型的特点 (1)与使用的程序设计语言无关。软件可靠性的应用与选用什么程序设计语言来编写软件之间没有什么直接关系。但对于根据同一个规格说明书,不管你用什么程序设计语言软件来编写软件,同一个软件可靠性模型应给出同样的估测结果。 (2)与具体用到的软件开发方法无关。软件开发是一个十分复杂的过程,涉及到许多的人为因素,从而使得对软件的质量难以进行预测。为了保证预测的精度,不妨假设待估测的软件系统是用最坏的软件开发方法开发出来的。 (3)测试方法的选择问题。实际上是无法通过彻底的测试来获得完全可靠的软件,所以不得不采用有限的测试,那么目标就是用最少的测试以求最大限度的软件可靠性。

网络性能和可靠性优化方案及对策

网络性能和可靠性优化设计方案 当前整个社会已进入全面信息化时代,人们对网络的依赖性已越来越强,几乎成为工作、商业和生活中不可缺少的必需工具,但随之伴随而来也产生一些不容忽视的问题,网络系统可靠性就是其中一个主要的问题,网络的快速应用,一旦网络中断必将影响大量业务,甚至可能造成极其重大的社会影响和极大经济损失,因此,作为业务承载主体的基础网络,其可靠性日益成为倍受关注的焦点。在实际网络中,总会避免不了出现网络故障和服务中断的情况,因此,提高系统容错能力、提高故障恢复速度、降低故障对业务的影响,是提高系统可靠性的有效途径。本文将主要研究网络可靠性影响因素及提升网络可靠性的方法,并对网络可靠性方案做出了归纳总结。 网络系统可靠性设计的核心思想则是,通过合理的组网结构设计和可靠性特性应用,保证网络系统具备有效备份、自动检测和快速恢复机制,同时关注不同类型网络的适应成本。为了保证网络的不间断运行,特别是核心出口网络的高可用性,通常在部署较大规模网络时,会采取链路级备份、设备级备份等方式。技术上通常使用多管理引擎备份、浮动静态路由、VRRP、HSRP、GLBP等。虽然这些技术给网络备份起到了一定的作用,但是对于实时性要求较高的网络还会存在一些问题,所以对网络系统进行科学优化设计是网络可靠运行的重要

基础。网络建设目标就是使网络系统能够满足用户应对网络各个方面的正常需求,以避免网络建成后可能出现的各种问题,网络的可靠性和冗余设计在网络建设中必须重点加以考虑。不同的网络,其可靠性的设计目标是不同的,网络解决方案的可靠性需要根据实际需求进行设计,高可靠性的网络不但涉及到网络架构、设备选型、协议选择、业务规划等技术层面的问题,还受用户现有网络状况、网络投资预算、用户管理水平等影响,因此在规划可靠性网络时需要因地制宜,综合考虑各方面的影响因素。 网络可靠性影响因素 网络可靠性是指设备在规定的条件(操作方式、维修方式、负载条件、温度、湿度、辐射等)下,在规定的时间(1000小时、一个季度等),网络保持连通和完成通信要求的能力。它反映了网络拓扑结构支持网络正常运行的能力,是计算机网络规划、设计与运行的重要参数之一。从现实层面讲,当前影响网络可靠性的外因素较多,且形式多样,容不确定性逐渐增加,诸如电子元件老化,传输介质及设备接口故障,软硬件配置因素失当、网络设计层次不恰当、用户非常规操作等等,这些因素的集聚均相应导致网络可靠性的下降。 网络设备及用户终端的影响。要保证网络可靠稳定运行,硬件设备的质量在其中起着很重要的作用,硬件的质量越好,网络运行的连续性和可靠性就会越高。尤其是网络核心和骨干层,其重要性不言而喻,

给水管网系统建模及其可靠性分析报告

给水管网系统建模及其可靠性分析 摘要 给水管网系统是一个拓扑结构复杂、规模庞大、用水变化随机性强、运行控制为多目标的网络系统。管网建模是仿真给水管网系统动态工况的最有效的方法,是为模拟管网系统建立数学模型的过程。模拟容主要是图形模拟、状态模拟和参数模拟。而建立模型并不是一蹴而就的,要不断的开发、更新和完善。在管网优化设计的四个方面中,保证给水系统可靠性是给水设计的主要容之一。随着现代科学技术的快速发展,可靠性工程理论日益受到广泛重视。 关键词:给水管网系统建模;管网优化设计:管网系统可靠性 一、引言 我国各城市的市政公用输配系统(供水、供气)是城市重要的基础设施之一,也是城市建设和可持续性发展的制约因素,这些工程网络在系统规划上有许多方面存在着共性。 对给水管网系统进行建模,一方面对于大量复杂、繁琐的问题能够取得快速、准确的计算结果,大大提高了工作效率,使得以前很少或者不可能进行的大型工程量计算问题和多方案比较问题得以顺利解决。另一方面,可以对输配系统的工作状态(水力、水质)进行比较准确的模拟仿真,尤其当系统中有较完善的设施时,更可以对系统的实时工况进行在线模拟,这样不仅可为系统的优化运行、调度提供很好的基础条件,为系统的改扩建提供可靠的依据,也为给水管网水质预测和安全输配提供支持。 对给水管网系统建模完成后应注意管网的优化设计,包括四个方面:水压、水量的保证性;水质的安全性;可靠性和经济性。随着现代科学技术的快速发展,作为系统工程之一的可靠性工程理论日益受到广泛重视。在近代,各种工程系统、构筑物设计时,已经开始应用可靠性的数学理论。可靠性和其他技术经济指标一样,成为评价系统优劣的主要指标。可靠性问题之所以得到重视,是因为系统、构筑物、设备相互有关,任一部分损坏可能导致整个系统的故障,而整个系统的故障,例如给水系统发生故障,将对社会和人民生活带来损害。而故障的发生多数为随机事件,一般无法预料和预防,因此给水系统可靠性具有概率的性质。在生活节奏日益加快的今天,确保给水管网系统的正常运行具有十分重要的意义。

预测模型可靠性的模糊数学评价方法

收稿日期:2003-11-10 作者简介:许康(1969-),男(汉族),江苏宜兴人,讲师,博士研究生,从事油气储运与热能工程方面的教学与科研工作。 文章编号:1000-5870(2004)04-0102-03 预测模型可靠性的模糊数学评价方法 许 康,张劲军,陈 俊,李鸿英 (石油大学石油天然气工程学院,北京102249) 摘要:预测模型的可靠程度是通过预测结果中分布规律的可信度体现出来的。针对常见的预测模型可靠性评价中存在的问题,将预测模型预测结果的可信概率定义为预测模型的可靠度,提出了一种评价预测模型的新方法。在新方法中,运用模糊数学理论对预测结果的可信程度进行了评价,建立了预测结果可信度与预测结果相对误差绝对值之间的隶属函数关系,并将模糊数学与可靠性理论相结合,给出了求解预测模型可靠度的计算公式。以含蜡原油粘温关系模型为例,对新方法的评价过程进行了验证。结果表明,对同一种油样采用不同的隶属函数,或对不同油样采用同一个隶属函数,所得预测模型的可靠度均不相同,这说明该方法具有通用性。关键词:含蜡原油;粘温关系;预测模型;可靠度;评价方法;模糊数学;隶属函数中图分类号:O 159 文献标识码:A A new assessment method for reliability of prediction model with fuzzy mathematics XU Kang,ZHANG Jin -jun,CH EN Jun,LI Hong -ying (College of Petr oleum Engineer ing in the University of Petroleum ,China,Beij ing 102249,China) Abstract :T he distribution of the authentic forecast results can embo dy the fiduciar y level o f the prediction model.T he probability o f the authentic for ecast results obtained by t he prediction model w as defined as the fiduciary lev el o f prediction model.A new method for assessment of t he fiduciary level of prediction model was proposed.In or der to assess the fiduciary lev el of the for ecast results,a membership function for describing the relationship betw een the fiduciary lev el and absolute value of relative err or of fo recast results was established on the theory of fuzzy mathematics.By using the fuzzy mat hemat ics and reliabilit y theory ,the formula to calculate the fiduciary level of the pr edict ion model w as provided.A prediction model for waxy o il viscosity was taken as an ex ample to prove the applicability of the assessment method.T he r esults show that the fiduciary levels of prediction model are different fo r the same o il sample with the different membership function or for the different oil sample with the same membership function. Key w ords :w ax y oil;viscosity -temperature r elationship;prediction model;reliabilit y;assessment method;fuzzy mathe -matics;membership function 我国生产的原油80%以上属于含蜡原油,其组成复杂,粘度及粘温关系的变化规律往往不能用纯液体的粘度模型进行描述。原油粘度及粘温关系 直接影响其管道输送的摩阻,是管输工艺设计及运行管理所需的重要基础数据。国内外研究者提出了若干含蜡油粘度模型,这些模型都是基于实验数据统计分析得出的经验模型,对于预测模型预测结果的可靠程度,常见的方法是用大量的预测结果与实测值之间的(绝对或相对)误差的平均值和其中最大 值来说明。但是预测结果是否 准确可信 是一个很模糊的概念,预测结果的 准确可信 与 不可信 之间没有一个明显的界限,对预测结果可信程度的评 价用常规的数学方法不能解决,需要引入模糊数学的理论。对于使用预测模型进行预测时获得可信的预测结果的概率(可靠度),用常用的预测模型的评价方法是无法得出的。因此,笔者根据模糊数学和可靠性理论提出一种评价预测模型可靠性的新方法,介绍新方法的评价过程。 2004年 第28卷 石油大学学报(自然科学版) Vol.28 No.4 第4期 Journal of the U niversity of Petroleum,China Aug.2004

相关主题
文本预览
相关文档 最新文档