当前位置:文档之家› 三叶转子气冷式罗茨真空泵的流场数值分析

三叶转子气冷式罗茨真空泵的流场数值分析

三叶转子气冷式罗茨真空泵的流场数值分析
三叶转子气冷式罗茨真空泵的流场数值分析

第47卷第6期2010年11月

真空VACUUM

Vol.47,No.6Nov.2010

收稿日期:2010-04-02作者简介:戴映红(1974-),女,浙江省台州市人,硕士,讲师。

通讯作者:张宝夫,教授级高工。

三叶转子气冷式罗茨真空泵的流场数值分析

戴映红1,钟云会2,黄智敏2,张宝夫

1

(1.台州职业技术学院,浙江台州318000;2.浙江真空设备集团有限公司,浙江台州318000)摘

要:本文利用数值模拟软件FLUENT 建立三叶转子气冷式罗茨真空泵的二维计算模型,采用动网格

技术对气冷式罗茨真空泵内部流动进行动态模拟。分析了转子在转动情况下泵内部流场的变化、内部流场的压强分布以及进排气腔的速度分布,得出泵内部流场的流动规律,为气冷式罗茨真空泵的设计和分析提供理论依据,同时可以用于气冷式罗茨真空泵的性能预测及优化设计。关键词:气冷式罗茨真空泵;三叶转子;数值模拟中图分类号:

TB752+.26文献标识码:A

文章编号:1002-0322(2010)06-0037-04

Simulative analysis of flow field of air-cooled Roots vacuum pump

with trifolium rotor

DAI Ying-hong 1,ZHONG Yun-hui 2,HUANG Zhi-min 2,ZHANG Bao-fu 1

(1.Taizhou Vocational &Technical College,Taizhou 318000,China;

2.Zhejiang Vacuum Equipment Group Co.,Ltd.Taizhou 318000,China )

Abstract:A 2-D computational model was developed for an air -cooled Roots vacuum pump with trifolium rotor by the

numerical simulation software FLUENT,where the airflow inside the pump was dynamically simulated by the movable gridding technique.The change and pressure distribution in the flow field inside the pump when the rotor is rotating were analyzed,as well as the pumping speed distribution at air inlet and outlet.As a result,how the air flows in the flow field is found,thus providing a theoretical reference for the design and analysis of the air -cooled Roots vacuum pump,and it is available to the prediction of the performance of the pump and its design optimization.

Key words:air-cooled Roots vacuum pump;trifolium rotor;numerical simulation

气冷式罗茨真空泵具有结构简单、工作可靠等优点,近年来广泛应用于大型空间模拟装置、汽轮机动平衡装置、化工等各行业,市场前景广阔、经济效益显著。在文献[1]中已经对气冷式罗茨真空泵转子的型线进行分析比较,从中可知在泵的中心距和外圆半径相同的条件下,转子叶数越多,容积利用系数λ越大。目前国内的气冷式罗茨真空泵的转子基本上是两叶宽头圆弧摆线型线,试验表明将气冷式罗茨真空泵的转子结构从两叶圆弧摆线转子改为三叶圆弧摆线转子,可显著提高抽气速率和降低噪声。

气冷式罗茨真空泵的结构及运转特点使其难以通过实验工具对内部流动进行检测。随着计算机技术的发展,CFD 越来越多地应用于流体设

备的设计和流场分析中,CFD 数值模拟可真实地

显示流体的流动状况。本文采用广泛应用于CFD 行业的FLUENT 软件模拟三叶转子气冷式罗茨真空泵的内部流动,分析内部流场的流动情况,为气冷式罗茨真空泵及同类产品的优化设计提供参考。

1计算模型

1.1基本方程

①连续性方程

鄣ρ+div (ρu i

)=0

(1)

②运动方程

真空VACUUM 第47卷

鄣鄣t

(ρu )+div (ρuu i

)=div (μgradu )-鄣(p )鄣x +S

u

(2)鄣鄣t (ρv )+div (ρvu i

)=div (μgradv )-鄣(p )鄣y

+S

v

(3)鄣鄣t

(ρw )+div (ρwu i )=div (μgradw )-鄣p 鄣z +S

w

(4)

③能量守恒方程

鄣(ρT )鄣t

+div (ρu i T )=div k c p grad 鄣鄣

T +S T

(5)式(1)~(5)中,ρ为密度,t 为时间,u i 为速度矢量,u 、v 、w 是速度矢量u i 在x 、y 、z 方向的分量。p 是流体微单元体上的压力,μ是动力粘度,S u 、S v 、S w 是动量守恒方程的广义源项,c p 是比热容,T 为温度,k 为流体的传热系数,S T 为粘性耗散项[2~4]。1.2湍流模型

湍流模型采用RNG k-ε模型,该模型考虑了平均流动中的旋转及旋流流动情况,能够更好地处理高应变率及流线弯曲程度较大的流动[5,6]

。k 方程和ε方程分别为:

鄣(ρk )+鄣(ρku i )i =鄣j a k μeff 鄣k

鄣x j

鄣+G k +ρε(6)

鄣(ρε)鄣t +鄣(ρεu i )鄣x i =鄣鄣x j

a ε

μeff

鄣ε鄣x j

鄣+C 1ε

*

εk

G k

-C 2ερε2k

(7)式(6)、(7)中G k 是由于平均速度梯度引起的

湍动能k 的产生项。

μeff =μ+μi ,μi =ρC μk 2ε

C μ=0.0845,αk =αε=1.39

C *1ε=C 1ε-

η(1-η/η0)

1-βη3

C 1ε=1.42,C 2ε=1.68

η=2E ij ·E ij 鄣鄣1/2k ε

E ij =1

2鄣u i j +鄣u j

i

鄣鄣

η0=4.337,β=0.0121.3数值解法

采用有限体积法求解,压力速度耦合方程采用PISO 算法求解,压力项采用PRESTO!格式离散,其余项采用二阶迎风格式。壁面附近采用壁面函数法[7]。由于泵运转时转子在一个周期内各个时刻的位置在发生变化,其流道形状也在不断变化。通过定义型函数采用动网格技术实现转子的转动[8]。

1.4模型建立及网格划分

建立三叶圆弧摆线转子气冷式罗茨真空泵

的模型,其主要参数有:抽气速率为300L/s ,

中心距180mm,电机转速为1490rpm 。

由于计算模型为非定常,计算区域划分网格的尺寸小,划分的总体网格数大,计算时间较长,三维模型径向截面流动同二维的流动情况基本相同,二维计算模型能够满足流场分析的需求,因此计算中采用了二维模型[9]。图1为三叶圆弧摆线转子气冷式罗茨真空泵二维流道模型。

图1三叶转子的气冷式罗茨真空泵二维流道模型Fig.12-D flow passage model of air-cooled Roots vacuum pump with

trifolium rotor

为便于计算以及尽量减少网格数,进气、排

气非旋转区域因为在计算过程中网格没有变化,采用四边形结构化网格;旋转流场区域网格随时间变化,为减小不同时刻网格的扭曲率以及计算的收敛性,采用三角形网格。整个流场的初始网格数为115340,网格最大扭曲率为0.505867。1.5边界条件及初始条件设置

边界条件设置如下:进气压强为5000Pa ,进气温度为20℃;排气压强为20000Pa ,排气温度为140℃;左右两返冷气压强为20000Pa ,温度为30℃。上述所采用的压强均为绝对压强值。流动介质采用空气,按理想气体设置属性,初始化整个流场。

2数值模拟结果及分析

2.1确定流场分析的位置

由于泵开始旋转阶段内部流场的流动不稳

定,为保证分析的流场内部流动处于稳定状态,取转子旋转一定角度,分析其典型位置的流场状况。以右转子顺时针旋转如下角度进行分析。

125.13°位置为进气腔与右转子工作腔间的流道开始变小,左转子工作腔完全与返冷气口相通并与排气腔隔离。

143.01°位置为右转子工作腔封闭,左转子工作腔继续与返冷气口相通并与排气腔隔离。160.89°位置为右转子工作腔开始与返冷气口、

排气腔相通,左转子工作腔即将与排气腔38··

第6期戴映红,等:三叶转子气冷式罗茨真空泵的流场数值分析

相通。

169.82°位置为右转子工作腔完全与返冷气口相通并与排气腔隔离,左转子工作腔与排气腔相通。

232.39°位置为右转子工作腔与排气腔相通,左转子工作腔与返冷气口相通并开始与排气腔隔离。

2.2压强分布

图2至图6为上述位置的泵内部流场压强等值线分布图。从图中可以看出,各个位置的进气腔压强分布较均匀,大部分区域的压强为设定的进气压强,在转子的齿根附近,形成低于进气压强的区域,低压区域随着转子的转动被转子带入工作腔。各图中的最小压强均出现在转子与转子及转子与泵内壁的间隙处。由于存在间隙,高压区域气体通过间隙向低压气体区域高速返流,导致压力能转化为动能,压强降低。各个位置的工作腔压强随着位置的不同,压强发生较大变化。进气腔与工作腔相通及工作腔封闭两个状态,工作腔内的压强基本不变,如图2、图3中的右工作腔。当工作腔与返冷气口、排气腔同时相通

图2125.13°压强分布

Fig.2Pressure distribution positioned at125.13°

图3143.01°压强分布

Fig.3Pressure distribution positioned at143.01°

图4160.89°压强分布

Fig.4Pressure distribution positioned at160.89°

图5169.82°压强分布

Fig.5Pressure distribution positioned at169.82°

图6232.39°压强分布

Fig.6Pressure distribution positioned at232.39°时,腔内压强上升至6000Pa左右,如图4中的右工作腔。当转子继续转动至169.82°位置,也就是工作腔开始与返冷气口相通但与排气腔隔离的位置,工作腔压强增大至16000Pa左右,而不是所预测的20000Pa,如图5的右工作腔。工作腔与返冷气口相通但与排气腔隔离的整个过程中,见图6、图2、图3和图4的左工作腔,腔内压强从16000Pa逐渐升到20000Pa。各个位置的排气腔压强为边界条件设定的排气压强20000Pa。

2.3进气腔速度分布

从图7至图10各位置的进气腔速度矢量图可看出,进气腔的气体受转子转动挤压及转子与转子间隙、转子与泵内壁间隙的气体返流的影响,出现大量涡旋。图2至图5进气腔中的低压区正是涡旋所在位置。涡旋的位置、形状和大小随着转子的转动而发生变化。随着转子的周期性运动,涡旋会周期性的产生、发展和消失,导致进气腔处产生进气涡旋噪声。进气口处均出现气体返流,返流位置随着转子的位置不同有所变化。

图7125.13°速度矢量图

Fig.7Velocity distribution positioned at125.13°

图8143.01°速度矢量图

Fig.8Velocity distribution positioned at143.01°

图9160.89°速度矢量图

Fig.9Velocity distribution positioned at160.89°

图10232.39°速度矢量图

Fig.10Velocity distribution positioned at232.39°

2.4排气腔速度场

由于工作腔与排气腔相通前工作腔内的压强已达到排气压强,排气腔处的流动状况较好,气体随着转子的转动正常排出。图11为右工作腔与排气腔相通时的排气腔速度矢量图,排气有序,基本上没有涡旋,排气口右侧出现少量气体返流。

39

··

真空VACUUM 第47卷

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

图11232.39°速度矢量图

Fig.11Velocity distribution positioned at 232.39°

3结论

(1)工作腔与返冷气口相通时,腔内存在压

差,出现强度较大的涡旋,结果使腔内压强均匀,

涡旋逐渐减小直至消失,在这过程中返冷气口处产生周期性的涡旋噪声。

(2)进气腔处涡旋较多,由于转子的周期性运动,产生周期性的进气涡旋噪声。

(3)由于转子与转子、转子与泵内壁间存在间隙,高压气体通过间隙向低压气体区域高速返流,影响泵的抽气速率、极限真空及噪声。

(4)工作腔与排气腔相通前工作腔内的气体压强已经达到排气压强,排气腔处的气体流动状况较好,基本没有涡旋产生,排气腔处的涡旋噪

声基本没有。

参考文献

[1]戴映红.气冷式罗茨真空泵的转子型线设计及流场

分析[D].杭州:浙江工业大学,2010.

[2]王福军.计算流体动力学分析-CFD 软件原理与应

用[M].北京:清华大学出版社,2004.

[3]Ferziger J H,Peric https://www.doczj.com/doc/3a5538757.html,putational M ethods for Fluid

Dynamics [M].Springer,2002.

[4]袁寿其,朱兴业,李红等.全射流喷头内部流场计算流

体动力学数值模拟[J].农业机械学报,2005,36(10):46-49.

[5]周光垌,严宗毅,许世雄,章克本.流体力学[M].北京:

高等教育出版社,1993.

[6]John Vande Voorde,Jan Vierendeels,Erik Dick.Flow

simulations in rotary volumetric pumps and compressors with the factitious domain method[J].Journal of Computational and Applied Mathematics,2004(168):491-499.

[7]侯树强,王灿星,林建忠.叶轮机械内部流场数值模拟

研究综述[J].流体机械,2005,33(5):30-34.

[8]阎超.流体机械内部流动数值计算方法的新进展[J].

流体机械,1994,22(8):33-38.

[9]江帆,黄鹏.Fluent 高级应用与实例分析[M].北京:清

华大学出版社,2008.

障还是机械故障,即使是人为操作不当等引起的一切停机,真空泵油不会倒吸(即不返油)。值得一提的是,该产品为国内首创,独一无二,它可为您超断续工作,按需启动、关机,为您节省电能,不必担心返油。从功能上取代了电磁阀,又不破坏真空系统。综合本泵特点:具有不返油、抽速快、噪音低、重量轻、体积小、无污染、节能、外形美观、价格低。本泵有多种接口形式供您选择,若与您的设备配套使用,将使您的设备更加精悍完美!

注:本公司还为您提供安全可靠的防爆型真空泵。

上海德英真空照明设备有限公司市场部经理:郭东权地址:上海市通河路162号邮编:200431

电话:021-556609195566092965111737

传真021-********

手机:138********

132********

E-mail:webmaster@https://www.doczj.com/doc/3a5538757.html, https://www.doczj.com/doc/3a5538757.html, 开户行:工行虹口支行大柏树分理处帐号:1001232009200006307

真空泵规格型号真空极限(Pa )进气口内径(mm )直联式2XZ-0.256×10-110直联式2XZ-0.56×10-216直联式2XZ(S)-16×10-216直联式2XZ(S)-26×10-225/13直联式2XZ(S)-46×10-225/13直联式

2XZ(S)-86×10-240直联式2XZ(S)-156×10-240皮带式2X-46×10-225皮带式2X-86×10-240皮带式2X-156×10-240皮带式2X-306×10-265皮带式2X-06×10-280真联式(防爆型)

2XZ(S)-2(380V)

6×10-2

25/13

真空泵返油在此成为历史

上海德英真空为您提供国家专利产品真空泵停机后永不返油

本产品系旋片式有油真空泵,能在极短的时间内,获得极高的真空极限。在使用中,不用电磁阀,无论出现电路故40··

WKA微型真空泵说明.doc

微型真空水泵 WKA系列 特点 既能直接抽水又能抽真空,两用泵;能自吸,可“干转”;无污染传输,免维护;可以任意方向安装;可以24小时连续运转。 用途特别广泛,多用于医疗设备、分析仪器、工业仪表等。 技术参数 型号 作真空泵用时作水泵用时 电压电流流量真空度电压电流流量V DC mA L/min KPa(abs.) V DC mA L/min WKA600 12 <210 0.7 90 12 <260 0.6 24 <130 24 <160 WKA1000 12 <240 1.0 80 12 <300 1.0 24 <130 24 <180 WKA1300 12 <240 1.5 75 12 <400 1.3 24 <140 24 <240

安全警示! ★所有产品均不具备防爆性能,不能在易燃易爆环境中工作! ★当抽取有害气体时,客户必须对泵进行再次密封,确保人身安全! 一、选型特别注意 1、作气泵使用时,泵的抽气端和排气端均可以带大负载、甚至完全堵塞,属正常工作,泵不会损伤;作水泵使用时,抽水口可以完全堵塞,属正常工作,泵不会损伤,排水口也可以完全堵塞,但不宜长时间堵塞。 2、建议:请优先选用24V产品,价格相同、品质更好。 3、低电磁干扰型:如果系统配有精密电路(如单片机)控制微型泵的运行,请选用低电磁干扰型产品。以上所有规格均可制成低电磁干扰型产品,订货时需要标明,如:WKA1300-24V(低干扰型) 4、泵的工作介质 泵所抽取的气体或液态必须无腐蚀、非油、不含固体颗粒 类别允许的介质气体温度范围注意事项 常温介质型0~50℃ 禁止介质气体中含有固体颗粒! 高温介质型0~100℃ 如需要“高温介质型”产品请在订货时特别说明,如:WKA1300-24V(高温介质型);没有贴“高温介质型”标签的产品均为常温介质型。 特别提醒:当抽取高温水时,因水中有气体析出而挤占空间,会使抽水流量降低。 5、所有规格均使用直流电源;订购时请标明工作电压,如,WKA1300-24V 6、重量:约480克 7、对于其它电压、流量规格的产品,可以联系定制。

转子动力学

转子动力学是固体力学的一个分支。本文主要研究转子支承系统在旋转状态下的振动,平衡和稳定性,特别是在接近或超过临界转速的情况下转子的横向振动。转子是涡轮机,电动机和其他旋转机械的主要旋转部件。 200多年来,工程和科学界一直关注转子振动。w.j.m. 1869年英格兰的兰金(Rankin)和1889年法国的拉瓦尔(c.g.p.de Laval)对挠性轴的测试是研究此问题的先驱。随着现代工业的发展,高速细长转子逐渐出现。由于它们通常在柔性状态下工作,因此它们的振动和稳定性变得越来越重要。转子动力学的主要研究内容如下: ①临界速度 由于制造误差,转子每个微小部分的质心与旋转轴略有偏离。当转子旋转时,由上述偏差引起的离心力将使转子产生横向振动。在某些速度(称为临界速度)下,这种振动似乎非常强烈。为了确保机器不会在工作速度范围内产生共振,临界速度应适当偏离工作速度,例如大于10%。临界速度与转子的弹性和质量分布有关。对于具有有限集总质量的离散旋转系统,临界速度的数量等于集总质量的数量;对于具有连续质量分布的弹性旋转系统,临界速

度是无限的。传递矩阵法是计算大型转子支撑系统临界转速的最常用数值方法。要点是:首先,将转子分成几个部分,每个部分左右两端的四个部分参数(挠度,挠度角,弯矩和剪切力)之间的关系可以通过传递来描述。该部分的矩阵。以此方式,可以获得系统的左端和右端的横截面参数之间的总传递矩阵。然后,根据边界条件和自然振动中非零解的条件,通过试错法求出各阶的临界速度,得到相应的振动模式。 ②通过临界速度的状态 通常,转子以可变速度通过临界速度,因此通过临界速度的状态是不稳定的。与以临界速度旋转时的静止状态不同,有两个方面:一是振幅的最大值小于静止状态的振幅,速度越大,振幅的最大值越小。另一个是振幅的最大值不会在像静止状态那样的临界速度下出现。在不稳定状态下,频率转换干扰力作用在转子上,这使分析变得困难。为了解决这种问题,在数值计算或非线性振动理论中必须使用渐近法或级数展开法。 ③动态响应

罗茨真空泵技术规范书

罗茨真空泵技术规范书-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

皖能合肥发电有限公司 #5机组凝汽真空系统高效节能改造 技术规范书 编写 审核 批准 皖能合肥发电有限公司 2015年9月

目录 一、总则 (3) 二、改造范围及供货周期 (4) 三、技术要求与性能保证 (5) 四、供货界限及接口规则 (13) 五、供货清单及设备规范 (14) 六、清洁,油漆,包装,装卸,运输与储存 (15) 七、性能验收试验 (15) 八、技术服务 (16) 九、质量保证 (17) 十、设备交货进度 (18) 十一、施工组织管理 (18) 技术规范书 一、总则 1、本规范书适用于皖能合肥发电有限公司#5机组真空系统优化工程。它提出了提出了对采购罗茨真空泵及配套设备的功能设计、结构、性能、安装和试验等方面的技术要求。

2、本规范书提出的是最低限度的技术要求,并未对一切技术要求作出详细规定,也未充分引述有关标准及规范的条文。投标方应保证提供符合本规范书和相关的国际、国内工业标准的优质产品。 3、如投标方没有对本规范书提出书面异议,招标方则可认为投标方提供的产品完全满足本规范书的要求。 4、如招标方有除本规范书以外的其他要求,应以书面形式提出,经招、投标双方讨论、确认后,载于本规范书。 5、本规范书所引用的标准若与投标方所执行的标准发生矛盾时,按较严格的标准执行。 6、本规范书经招、投标双方共同确认和签字后作为订货合同的技术附件,与订货合同正文具有同等效力。 7、在合同签定后,招标方有权因规范、标准、规程发生变化而提出一些补充要求。 二、改造范围及供货周期 1 、皖能合肥发电有限公司#5机组为东方汽轮机有限公司制造的超临界、一次中间再热、单轴、三缸四排汽、双背压、凝汽式汽轮机,额定功率为1× 630MW,#5机配置三台真空泵,型号:2BW4 353-OEK4,生产厂家为广东佛山水泵厂,正常运行电流198A ,为保证机组抽真空系统设备的安全、可靠、节能运行,通过调研拟在#5机组增加二套维持真空泵。 2 、本次真空系统优化拟增加真空泵不改变原抽真空系统的设备及功能,在抽真空母管上并接一套高效真空泵组,蒸汽和不凝结气体进入罗茨泵,加压后经冷却器冷凝进入下级水环泵,由于提高了水环泵的入口压力,可保证水环泵高效稳 定运行。系统采用DCS控制,可实现远程和就地操作。在机组启动建立真空期间,使用原抽真空设备快速启动真空,在正常运行期间,使用罗茨-水环高效真空机组维持真空。 1)水环泵工作水来自除盐水,经自动补水阀进入分离罐,分离罐起汽水分离的作用;

ZJ-ZJP型罗茨真空泵说明书

JIANG YIN TIANTIAN V ACUUM EQUIPMENT.CO.,LTD. ZJ型 ZJP 型罗茨真空泵 安装 使用 维护 手册 中华人民共和国 江阴天田真空设备制造有限公司 地址:中国江阴云亭工业区B区松文头路19号邮编:214422 电话: 86-0510-******* 销售直线:86-0510-******* 传真: 86-0510-*******

目录 A.安全警告-------------------------------------------------------------------------3 B.概述----------------------------------------------------------------------------4 C.主要技术参数------------------------------------------------------------------ 6 D.安装说明-------------------------------------------------------------------------7 E.使用说明-------------------------------------------------------------------------8 F.维护检查及产品维修--------------------------------------------------------- 9 G.故障原因与消除方法----------------------------------------------------------17 H.易损件表-------------------------------------------------------------------------15 -------------------------------------------------------- 16

罗茨真空泵技术及装配

罗茨真空泵技术及装配 一、罗茨真空泵工作原理 罗茨真空泵(以下简称罗茨泵)是通过一对相互作用同步反向旋转的“8”字形转子实现抽气功能的。当转子和泵体形成吸气腔时,两个转子相互之间始终保持密封,从而确保排气口的气体不返流到进气口,以此实现抽气的功能。 转子的反向同步旋转是通过一对安装在转子轴上的齿轮实现的。由于在泵腔里面没有摩擦,罗茨泵能以每秒1500~3000转的高速运转而无须在泵腔内进行润滑,另外,要保持罗茨泵在高转速下平稳运行,要对转子进行良好的动平衡。高速旋转的转子间、转子和泵体间没有任何直接的接触,各运动部件之间均保持一定的间隙。 罗茨泵在进排气口间设置了一内置溢流阀,其作用是:当进排气口的压差达到一定值时,溢流阀就自动打开,排气口的部分气体通过打开的溢流阀返流到进气口,这就大大降低了高压差下罗茨泵和前级真空泵(以下简称前级泵)的运行负荷。同时因为打开的溢流阀有强大的泄流作用,可以确保罗茨泵和前级泵可以同时启动而不会使罗茨泵和前级泵过载,并可以提高高入口压力下罗茨泵机组的抽速。 二、罗茨真空泵主要用途 罗茨泵被广泛地应用于真空获得的各个方面,它延伸了油封机械真空泵在较低入口压力下的工作范围,具有小体积大抽速的特点,在1~100pa入口压力范围内具有大抽速,特别适合于低入口压力下需要大抽速的真空系统中使用,例如电力变压器、电力电容器、电力互感器的真空干燥、真空浸渍处理、真空热处理、真空冶炼的排气、真空镀膜设备的预抽,大型试验风洞的抽气及照明灯具生产线的排气等等。

如果选用合适的前级泵,罗茨泵还可以在食品、化工、医药、轻纺等行业的真空蒸馏、浓缩、干燥等的工艺过程中得到广泛的应用。 三、罗茨真空泵主要技术性能指标(见下表)

真空泵的选型及常用计算公式

真空泵选型 真空泵的作用就是从真空室中抽除气体分子,降低真空室内的气体压力,使之达到要求的真空度。概括地讲从大气到极高真空有一个很大的范围,至今为止还没有一种真空系统能覆盖这个范围。因此,为达到不同产品的工艺指标、工作效率和设备工作寿命要求、不同的真空区段需要选择不同的真空系统配置。为达到最佳配置,选择真空系统时,应考虑下述各点: 确定工作真空范围: ----首先必须检查确定每一种工艺要求的真空度。因为每一种工艺都有其适应的真空度范围,必须认真研究确定之。 确定极限真空度 ----在确定了工艺要求的真空度的基础上检查真空泵系统的极限真空度,因为系统的极限真空度决定了系统的最佳工作真空度。一般来讲,系统的极限真空度比系统的工作真空度低20%,比前级泵的极限真空度低50%。 被抽气体种类与抽气量 检查确定工艺要求的抽气种类与抽气量。因为如果被抽气体种类与泵内液体发生反应,泵系统将被污染。同时必须考虑确定合适的排气时间与抽气过程中产生的气体量。 真空容积 检查确定达到要求的真空度所需要的时间、真空管道的流阻与泄漏。 考虑达到要求真空度后在一定工艺要求条件下维持真空需要的抽气速率。 主真空泵的选择计算 S=2.303V/tLog(P1/P2) 其中: S为真空泵抽气速率(L/s) V为真空室容积(L) t为达到要求真空度所需时间(s)

P1为初始真空度(Torr) P2为要求真空度(Torr) 例如: V=500L t=30s P1=760Torr P2=50Torr 则: S=2.303V/t Log(P1/P2) =2.303x500/30xLog(760/50) =35.4L/s 当然上式只是理论计算结果,还有若干变量因素未考虑进去,如管道流阻、泄漏、过滤器的流阻、被抽气体温度等。实际上还应当将安全系数考虑在内。目前工业中应用最多的是水环式真空泵和旋片式真空泵等 一般的要求是: 1、真空度、真空容积、主要介质、温度、主要容积类设备。 2、真空流入介质及流量、压力、温度、规律。 3、抽气量、抽出气体介质、温度。 4、真空设备的占地面积、自动化程度、真空管道规格 选用真空泵时需要注意事项: 1、真空泵的工作压强应该满足真空设备的极限真空及工作压强要求。如:真空镀膜要求1×10-5mmHg的真空度,选用的真空泵的真空度至少要5×10-6mmHg。通常选择泵的真空度要高于真空设备真空度半个到一个数量级。 2、正确地选择真空泵的工作点。每种泵都有一定的工作压强范围,如:扩散泵为10-3~10-7mmHg,在这样宽压强范围内,泵的抽速随压强而变化,其稳定的工作压强范围为5×10-4~5×10-6mmHg。因而,泵的工作点应该选在这个范围之内,而不能让它在10-8mmHg下长期工作。又如钛升华泵可以在10-2mmHg下工作,但其工作压强应小于1×10-5mmHg为好。

罗茨真空泵开机和运转注意事项介绍

罗茨真空泵开机和运转注意事项介绍 罗茨真空泵生产力的发展,扩大产品运用及性能的发挥,要通过产品实力的提升,不断完善产品运用及品质性能的提升,从而加快设备应用性能的发挥,以高品质的实用水平不断增强其产品性能的带动,使各斋运用实力的发挥,体现出产品运用能力的提升,从而加快产 检查水冲泵(前级泵)水箱液位是否达到水箱的3/4以上,若不足则补足。检查水箱内所使用的水是否清洁,不允许用含有泥沙的污水,以免堵塞管路,罗茨真空泵增加水泵叶轮磨损、增大电机负荷造成故障,影响水冲泵使用寿命。检查中间泵及主泵泵体内的润滑油油面高度,必须达油窗的3/4以上,中环真空设备在同时检查润滑油的颜色,罗茨真空泵出现乳白色或黑色杂质较多则通知机修更换润滑油。罗茨真空泵检查中间泵及主泵循环冷却水水路是否完好,打开循环冷却水进出口阀门,检查循环冷却进出水是否正常。检查中间泵底部缓冲罐排污阀门是否关闭。检查真空泵机组电路完好及控制柜各项指示等是否正常。检查真空泵机组电极触点压力表中级泵、主泵启动压力是否正常(中级泵启动入口压力为0.065Mpa 以上,主泵启动入口压力为0.085Mpa以上)。待以上事项检查完毕确认无误后方可启动真空机组。 运转注意事项 真空机组在运转过程中声响应均匀,无杂音且运行中无不规则的异常震动。注意电动机负荷和泵的各部位温升情况,在正常情况下,罗茨真空泵泵的最高温升不得超过40℃,工作最高温度不得超过80℃。在工作中如发现有漏油时,应立即停止工作,泄压后进行检查、修理。罗茨真空泵不允许在发现漏油的现象之后,仍继续进行工作或带压进行检修。在工作中必须保证循环冷却水的正常进出。罗茨真空泵真空机组启动:打开中间泵和主泵循环冷却水进出口阀门,确保循环冷却进出水正常。关闭水冲泵缓冲罐排污阀门,启动水冲泵,待运行正常(电机及泵发出噪声均衡)后,缓慢开启前级水冲泵旁通管道上的阀门和罗茨真空泵进气阀门。待系统压力达到中间泵设定的允许进口压力后,启动中间泵,如过采用自动控制挡,则直接拨到自动控制挡,机组的启动过程则实现自动化。如手动控制,当中间泵出口压力达到主泵允许进口压力后,启动主泵。 罗茨真空泵停机操作 将真空机组控制柜上控制手柄打入手动挡,关闭罗茨真空泵的吸气口阀门,与真空系统隔断。按主泵、中间泵前级水冲泵次序,逐级停泵,严禁搞错停机程序。在停前级水冲泵时,先打开水冲泵缓冲罐排污阀门,后停泵关机。

罗茨真空泵产品结构原理及安装

罗茨真空泵产品结构原理及安装 一、ZJY型罗茨真空泵实际抽速计算 对应罗茨泵的入口压力P,测取罗茨泵出口(亦为前级泵入口)压力Pv,并根据前级泵入口压力Pv查前级泵抽速特性曲线,得出前级泵在Pv入口压力下的抽速Sv,查出罗茨泵在出口压力Pv时的零流量压缩比Kv,即可通过以下公式算出罗茨泵在入口压力为P时的实际抽速S,即S=S N K V/(K V+(S N/S V)-( S V/S N)3/2) 式中:S ——罗茨泵实际抽速,L/sS N——罗茨泵几何抽速,L/sS V——前级泵在入口压力下的抽速,L/sK V——罗茨泵在Pv出口压力的零流量压缩比 二、ZJY型罗茨真空泵使用说明 1、润滑 1.1润滑系统用油应采用1号真空泵油 1.2查看油位,齿轮箱测油位应以浸没4~5个全齿高度为宜;电机测油位应以浸没2/3油窗高度为宜;用以润滑油封的油杯处不应断油,油位不应低于1/3油杯高度,不宜加油过多,避免泵运转时溢出油杯外。风冷泵油位要高于水冷泵的油位。 2、冷却 冷却水进口温度≤25℃。避免因冷却水温度高,使泵体发热,而引发异响、轴承损坏。风冷泵要通风散热,避免泵体温度过高烫伤人,使用温度≤80℃. 3、启动 当泵较长时间停用后再次使用时,应先点动1、2次,使润滑油进入轴承内,然后再正式起动,否则将缩短轴承及泵的使用寿命。 4、停泵

停泵时,应先停罗茨泵,待电机停转后,在停前级泵,否则会导致罗茨泵出口压力升高、负荷增大,而引起返油、污染真空管路和泵腔、甚至烧坏罗茨泵电机。 三、ZJY型罗茨真空泵维护和保养 1、保持泵的清洁,以利于通风散热。 2、每月至少检查一次油质情况,当发现油质明显变色、变稀、乳化等情况,应立即换油。 3、换油时,罗茨泵最好先运转一小时,使油温变热变稀后,在停泵并向泵内放气后再放油加油。加油时,润滑油中不得混入柴油、煤油、汽油、水等其他饱和蒸汽压较高的介质,以免影响泵的极限压力。 4、拆洗泵及泵内零件时,应使用纱布擦拭;当必须清洗时,可用丙酮或者汽油清洗,但必须注意防火安全,洗完后必须用纱布擦干后方可重新装配。 5、当发现泵有异常声响时,应立即停泵检查或与供应商联系。

罗茨真空泵培训教材

罗茨真空泵培训教材 罗茨真空泵的选型、使用和维护 第一节 概述 一、罗茨真空泵产生的原因: 罗茨真空泵自上世纪四十年代由罗茨鼓风机演变发展而来,它的出现,主要是由于随着工业的发展,在许多真空系统的应用中,为了提高真空系统的抽气效率、缩短抽气时间,或者是在大量放气的真空系统中能保持较恒定的真空条件,通常工艺上要求真空泵在1333~1.3Pa压力范围具有较大的抽速,要满足这样的工艺条件,使用其他形式的机械真空泵是困难的,即使能勉强达到这样的使用要求,也很不经济,因此,罗茨真空泵正是在适应这样的工业应用中得以广泛使用。 二、 罗茨真空泵的特点: 罗茨真空泵是一种容积式真空泵。它是利用一对8字型转子在泵壳中保持一定的间隙,作等速反向旋转而产生吸气和排气作用的,二个转子被支承在泵壳的二侧面端盖的滚动轴承中,依靠一对可调节的同步齿轮使二个转子在高速反向旋转时始终保持着一定的相互位置,从而完成吸排气过程。 目前国内的罗茨真空泵的主要性能参数如下: 抽气速率:30~20000升/秒 极限压力:6×10-2~1×10-1Pa 配用功率:0.75~115千瓦 转速:600~3000转/分 (一)、罗茨真空泵的优点: 1、在较宽的压力范围内具有较大的抽速。 2、起动快。 3、泵腔及转子工作时为干式无油,对被抽气体中的灰尘,水蒸汽不敏感,油蒸汽污染真空系统的情况比油增压泵、油扩散泵和油封机械泵要少得多。 4、由于动平衡较好,所以运转时的振动小、噪声低。 5、驱动功率小,这是因为机械摩擦损失小。 6、不用排气阀。 7、转速高、体积小,可制成任何几何抽速的泵。 8、可凝性蒸汽对泵无影响,因为经过泵时还没压缩到饱和蒸汽压。 9、与其它机械真空泵比较,节能效果显著,且耗油量小。

罗茨真空泵故障排除及原理

罗茨真空泵故障排除及原理 一、罗茨真空泵实际抽速计算 对应罗茨泵的入口压力P,测取罗茨泵出口(亦为前级泵入口)压力Pv,并根据前级泵入口压力Pv查前级泵抽速特性曲线,得出前级泵在Pv入口压力下的抽速Sv,查出罗茨泵在出口压力Pv时的零流量压缩比Kv,即可通过以下公式算出罗茨泵在入口压力为P时的实际抽速S,即S=S N K V/(K V+(S N/S V)-( S V/S N)3/2) 式中:S ——罗茨泵实际抽速,L/sS N——罗茨泵几何抽速,L/sS V——前级泵在入口压力下的抽速,L/sK V——罗茨泵在Pv出口压力的零流量压缩比 二、罗茨真空泵使用说明 1、润滑 1.1润滑系统用油应采用1号真空泵油 1.2查看油位,齿轮箱测油位应以浸没4~5个全齿高度为宜;电机测油位应以浸没2/3油窗高度为宜;用以润滑油封的油杯处不应断油,油位不应低于1/3油杯高度,不宜加油过多,避免泵运转时溢出油杯外。风冷泵油位要高于水冷泵的油位。 2、冷却 冷却水进口温度≤25℃。避免因冷却水温度高,使泵体发热,而引发异响、轴承损坏。风冷泵要通风散热,避免泵体温度过高烫伤人,使用温度≤80℃. 3、启动 当泵较长时间停用后再次使用时,应先点动1、2次,使润滑油进入轴承内,然后再正式起动,否则将缩短轴承及泵的使用寿命。 4、停泵

停泵时,应先停罗茨泵,待电机停转后,在停前级泵,否则会导致罗茨泵出口压力升高、负荷增大,而引起返油、污染真空管路和泵腔、甚至烧坏罗茨泵电机。 三、罗茨真空泵维护和保养 1、保持泵的清洁,以利于通风散热。 2、每月至少检查一次油质情况,当发现油质明显变色、变稀、乳化等情况,应立即换油。 3、换油时,罗茨泵最好先运转一小时,使油温变热变稀后,在停泵并向泵内放气后再放油加油。加油时,润滑油中不得混入柴油、煤油、汽油、水等其他饱和蒸汽压较高的介质,以免影响泵的极限压力。 4、拆洗泵及泵内零件时,应使用纱布擦拭;当必须清洗时,可用丙酮或者汽油清洗,但必须注意防火安全,洗完后必须用纱布擦干后方可重新装配。 5、当发现泵有异常声响时,应立即停泵检查或与供应商联系。

罗茨真空泵工作原理

二叶罗茨真空泵工作原理 附件: 罗茨真空泵(简称罗茨泵)是一种旋转式变容真空泵。它是由罗茨鼓风机演变而来的。根据罗茨真空泵工作范围的不同,又分为直排大气的低真空罗茨泵;中真空罗茨泵(又称机械增压泵)和高真空多级罗茨泵。一般来说,罗茨泵具有以下特点: 在较宽的压强范围内有较大的抽速; 起动快,能立即工作; 对被抽气体中含有的灰尘和水蒸气不敏感; 转子不必润滑,泵腔内无油;

振动小,转子动平衡条件较好,没有排气阀; 驱动功率小,机械摩擦损失小; 结构紧凑,占地面积小; 运转维护费用低。 因此,罗茨泵在冶金、石油化工、造纸、食品、电子工业部门得到广泛的应 罗茨泵的结构如图所示。在泵腔内,有二个“8”字形的转子相互垂直地安装在一对平行轴上,由传动比为1的一对齿轮带动作彼此反向的同步旋转运动。在转子之间,转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。由于罗茨泵是一种无内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限真空除取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空度,可将罗茨泵串联使用。 罗茨泵的工作原理与罗茨鼓风机相似。由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v0内,再经排气口排出。由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返冲到空间v0中去,使气体压强突然增高。当转子继续转动时,气体排出泵外。 如图为罗茨泵转子由0°转到180°的抽气过程。在0°位置时(图中a),下转子从泵入口封入v0体积的气体。当转到45°位置时(图中b),该腔与排气口相通。由于排气侧压强较高,引起一部分气体返冲过来。当转到90°位置时(图中c),下转子封入的气体,连同返冲的气体一起排向泵外。这时,上转子也从泵入口封入v0体积的气体。当转子继续转到135°时(图中d),上转子封入的气体与排气口相通,重复上述过程。180°(图e)位置和0°位置是一样的。转子主轴旋转一周共排出四个v0体积的气体。 水环式真空泵工作原理 水环真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空

VCH微型真空泵说明.doc

微型真空泵 VCH系列 特点 真空度很高、吸力强劲;无污染传输,免维护;可以任意方向安装;允许介质富含水汽;可以24小时连续运转。多用于医疗、保健、美容设备、工业设备、物体吸附等。 技术参数 型号 电压负载电流流量 真空度(绝对压力) 三种单位换算值 (V DC) (A) (L/min)(KPa)(mmHg) (mbar) VCH1028 24 <1.7 28 10 76 100 对比:标准大气压101 760 1013 安全警示! ★产品不具备防爆性能,不能在易燃易爆环境中工作! ★当抽取有害气体时,客户必须对泵进行再次密封,确保人身安全! ★泵的排气端必须通畅,在排气管路中不得有任何阻尼元件,否则会因阻塞产生很高的气压,危及安全!

一、选型特别注意 1、泵的抽气端可以带大负载、甚至完全堵塞,均属正常工作,泵不会损伤。 2、泵的排气端必须通畅,在排气管路中不得有任何阻尼元件!否则,请选择FM或FAA或PCF系列产品。 3、泵的工作介质 泵所抽取的气体必须无腐蚀、不含油分、无固体异物,但允许富含水汽。 类别允许的介质气体温度范围注意事项 常温介质型0~50℃ 禁止介质气体中含有固体颗粒! 高温介质型0~100℃ 如需要“高温介质型”产品请在订货时特别说明,如:VCH1028-24V(高温介质型);没有贴“高温介质型”标签的产品均为常温介质型。 4、所有规格均使用直流电源;订购时请标明工作电压,如,VCH1028-24V 5、重量:约2.6 Kg 6、对于其它电压、流量规格的产品,可以联系定制。 二、使用说明 1、泵的工作环境: 环境温度:0~40℃,泵不宜在室外日晒,应在清洁无腐蚀的环境中工作2、过滤问题 当泵工作一段时间后,所抽气体中含有的粉尘会积累在泵腔内部,破坏泵的气密性,使流量和真空度下降,在抽气口端一定要配过滤器。实践表明,一般我们认为很清洁的气体中仍然还有粉尘杂质,也需要过滤,确保泵内部的精密气密性元件正常工作。

罗茨真空泵工作原理

罗茨真空泵工作原理 罗茨真空泵(简称罗茨泵)是一种旋转式变容真空 泵。它是由罗茨鼓风机演变而来的。根据罗茨真空泵工 作范围的不同,又分为直排大气的低真空罗茨泵;中真空 罗茨泵(又称机械增压泵)和高真空多级罗茨泵。一般 来说,罗茨泵具有以下特点: ?在较宽的压强范围内有较大的抽速; ?起动快,能立即工作; ?对被抽气体中含有的灰尘和水蒸气不敏感; ?转子不必润滑,泵腔内无油; ?振动小,转子动平衡条件较好,没有排气阀; ?驱动功率小,机械摩擦损失小; ?结构紧凑,占地面积小; ?运转维护费用低。 因此,罗茨泵在冶金、石油化工、造纸、食品、电子 工业部门得到广泛的应用。 罗茨泵的工作原理: 罗茨泵的结构如图所示。在泵腔内,有二个“8”字形 的转子相互垂直地安装在一对平行轴上,由传动比为1 的一对齿轮带动作彼此反向的同步旋转运动。在转子之 间,转子与泵壳内壁之间,保持有一定的间隙,可以实现 高转速运行。由于罗茨泵是一种无内压缩的真空泵,通常 压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限 真空除取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空度,可将罗茨泵 串联使用。 罗茨泵的工作原理与罗茨鼓风机相似。由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v0内,再经排气口排出。由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返冲到空间v0中去,使气体压强突然增高。当转子继续转动时,气体排出<本网页由山东伯仲真空设备有限公司陈宗武制作,版权所有,翻录必究!>

真空泵选型与计算

在真空泵选型前,我们一定弄清楚几个基础概念: 真空理论上是指容积里面不含有任何的物质。(现实中是不存在真正的真空的)通常把容器内气压低于正常大气压(101325 Pa)的都称之为真空状态。 真空度表示处于真空状态下的气体稀簿程度,通常用压力值来表示。实际应用中,真空度通常有绝对真空和相对真空两种说法。从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,从表上表示出来的数值又称为表压强,业界也称为极限相对压强,即:真空度=大气压强-绝对压强(大气压强一般取101325Pa,水环式真空泵极限绝对压强3300Pa;旋片式真空泵极限绝对压强约10Pa) 绝对真空&相对真空 极限相对压强相对压强即所测内部压强比“大气压”低多少压强。表示出系统压强实际数值低于大气压强的数值。由于容器内部空气被抽,因此内部的压强始终低于容器外部压强。所以当用相对压强或者表压强表示的时候,数值前面须带负号,表示容器内部压强比外部压强低。 极限绝对压强绝对压强即所测内部压强比”理论真空(理论真空压强值为0Pa)”高多少压强。它所比较的对象为理论状态的绝对真空压强值。由于工艺所限,我们无论如何都不能将内部压强抽到绝对真空0Pa这个数值,因此,真空泵所抽的真空值比理论真空值要高。所以当用绝对真空表示时,数值前面无负号。

例如,设备的真空度标为0.098MPa,实际上是-0.098MPa 抽气量抽气量是真空泵抽速的一个衡量因素。一般单位用L/S和m3/h来表示。是弥补漏气率的参数。不难理解,理论下抽一个相同体积的容器,为什么抽气量大的真空泵很容易抽到我们所需的真空度,而抽气量小的真空泵很慢甚至无法抽到我们想要的真空度?因为管路或者容器始终不可能做到绝对不漏气,而抽气量大的弥补了漏气所带来的真空度下降的因素,所以,大气量的很容易抽到理想真空度值。这里建议,在计算出理论抽气量的情况下,我们尽量选择高一级的抽气量的真空泵。抽气量具体计算公式以下会介绍。 他们Pa, KPa, MPa, mbar, bar, mmH2O, Psi之间的换算方式如下表: 下面进入真空泵的选型。 1、工艺要求达到的真空度 真空泵的工作压力应该满足工艺工作压力要求,选型时真空度要高于真空设备真空度的半个到一个数量级。(如:真空工艺要求100pa(绝对压力)的真空度,选用真空泵的真空度至少要50pa-10pa)。一般如果要求绝对压强高于3300Pa则优先选择水环式真空泵作为真空装置,如果绝对压强要求低于3300Pa,则不能选择水环式真空泵,选择旋片式真空泵或更高真空级别的真空泵作为真空获得装置。 2、工艺要求的抽气量(抽气速率) 真空泵要求抽气速率(即要求真空泵在其工作压力下,排出气体、液体,固体的能力),一般

罗茨真空泵

罗茨真空泵 罗茨真空泵简称罗茨泵,它是利用两个8字形转子在泵壳中旋转而产生吸气和排气作用的。其原理和罗茨鼓风机相似。罗茨泵在低压范围内工作,气体分子的自由程较大,气体漏过微小 缝隙的阻力很大,可以获得较高的压缩比,可作为增压真空泵使用。 按泵体结构分类: ㈠普通型:不能单独把气体直接排入大气,使用时需要和前级真空泵串联,被抽气体通过前级泵排入大气。 ①一般型泵:最大允许压差在2000Pa-10000Pa范围 ②带旁通阀型泵:允许压差仅限于2000Pa-4000Pa范围 当压差超过每一规格泵的规定值时,旁通阀就会自动顶开,泵出口处的气体经旁通阀返流入  泵进口处,使泵安全运行。 ㈡直排大气型:可以直接把气体排入大气,此种泵的最大允许压差可达88000Pa。 ①气冷式直排罗茨泵  必须配置冷却器和消声器。罗茨泵压缩过程中产生的热量被传到转子和泵体上,转子很难将 热量传到泵外,而泵体则可以轻松将热量散失到周围的大气中,这样转子和泵体之间就出现了温差,加剧了转子的热膨胀。当泵负荷增大时,转子膨胀,使其之间的间隙减小,最终导致转子卡死,因此诞生了气冷式罗茨泵,用冷却的气体或大气直接去冷却热的转子,从而减小了转子和泵 体的温差,提高了罗茨泵的抗热能力. ②水冷式直排大气型罗茨真空泵 按罗茨泵工作压力范围分类: ㈠低真空的直排大气干式罗茨泵和湿式罗茨泵 小泵极限压力为2×10 Pa,大泵可达1×10 Pa,若两台串联,可获得极限压力2×10 Pa-3×10 Pa。湿式罗茨泵可以吸入少量的水,但吸入量过大时,要在泵入口前设置分离器,将水分离后,再注入适量的水。这种泵直接向大气中排放时,噪声较大,故需要加消声器。 ㈡中真空罗茨泵(机械增压泵) 中真空罗茨泵出口压力在4×10 Pa以下,吸入压力在1×10 Pa-10 Pa范围,如出口压力在10 Pa, 入口压力在10 Pa-1Pa范围内使用,效率最高。 有溢流阀的罗茨泵可以缩短启动时间 一、罗茨泵分类 443333-132

罗茨真空泵使用方法及特点

罗茨真空泵使用方法及特点 一、罗茨真空泵工作原理 罗茨真空泵(以下简称罗茨泵)是通过一对相互作用同步反向旋转的“8”字形转子实现抽气功能的。当转子和泵体形成吸气腔时,两个转子相互之间始终保持密封,从而确保排气口的气体不返流到进气口,以此实现抽气的功能。 转子的反向同步旋转是通过一对安装在转子轴上的齿轮实现的。由于在泵腔里面没有摩擦,罗茨泵能以每秒1500~3000转的高速运转而无须在泵腔内进行润滑,另外,要保持罗茨泵在高转速下平稳运行,要对转子进行良好的动平衡。高速旋转的转子间、转子和泵体间没有任何直接的接触,各运动部件之间均保持一定的间隙。 罗茨泵在进排气口间设置了一内置溢流阀,其作用是:当进排气口的压差达到一定值时,溢流阀就自动打开,排气口的部分气体通过打开的溢流阀返流到进气口,这就大大降低了高压差下罗茨泵和前级真空泵(以下简称前级泵)的运行负荷。同时因为打开的溢流阀有强大的泄流作用,可以确保罗茨泵和前级泵可以同时启动而不会使罗茨泵和前级泵过载,并可以提高高入口压力下罗茨泵机组的抽速。 二、罗茨真空泵主要用途 罗茨泵被广泛地应用于真空获得的各个方面,它延伸了油封机械真空泵在较低入口压力下的工作范围,具有小体积大抽速的特点,在1~100pa入口压力范围内具有大抽速,特别适合于低入口压力下需要大抽速的真空系统中使用,例如电力变压器、电力电容器、电力互感器的真空干燥、真空浸渍处理、真空热处理、真空冶炼的排气、真空镀膜设备的预抽,大型试验风洞的抽气及照明灯具生产线的排气等等。

如果选用合适的前级泵,罗茨泵还可以在食品、化工、医药、轻纺等行业的真空蒸馏、浓缩、干燥等的工艺过程中得到广泛的应用。 三、罗茨真空泵主要技术性能指标(见下表)

微型真空泵的选型要领

微型真空泵的选型要领 一、如果只是用微型气泵输出压缩空气。 简单地说,就是只用它来打气、充气,泵的抽气口基本不用。这种情况比较简单,按输出压力从大到小依次可选:PCF5015N、FAA8006、 FAA6003、FAA4002、FM2002、FM1001,当然还要参考流量指标等相关技术参数。 二、如果是用微型泵抽气,情况稍微复杂些,大致可从以下两个方面来决定选型: 1、判断微型泵抽气端工况 用于抽气的微型泵分为两类:气体采样泵和微型真空泵。虽然通常总是不加区分地把它们简单统称为微型真空泵,但从技术角度二者是有区别的,选型时更要特别注意。 简而言之,气体采样泵只能带小负载(即:泵抽气端阻力不能太大),但价格便宜;严格意义上的微型真空泵可以带大负载(抽气端允许大阻力,甚至完全堵塞),但价格稍贵。二者具体区别可以详见文章《关于微型真空泵与气体采样泵的区别》,不再复述。 气体采样泵有:SA、SB、PM系列(例如:SA751.5、SB550.5、PM950.2等); 微型真空泵有: VM系列、VAA系列、PK系列、PC系列、VCA系列、VCC系列、VCH系列、PH系列、VBH系列、FM系列、FAA系列、PCF系列,这些系列下的所有规格都是真正的微型真空泵,如VM7002、VAA6005、PC3025等。 对于微型泵抽气端阻力的大小可以用仪器测定,把它与泵的技术参 数“进气口允许最大阻力”Por值比较就可以知道选型是否合适。通常

根据经验采用简便的方法确定,比如下述几种情况都属于负载较大(即泵的抽气端阻力较大),只能在微型真空泵范围内选型: ①在泵的抽气端要接很长的管道,或管道弯曲点多、弯曲厉害甚至会阻塞封闭,或管道内孔很小(比如小于?2毫米); ②在管路上有节流阀、电磁阀、气路开关、过滤器等元件; ③泵抽气口与密闭容器连接,或该容器虽未密闭但进气量较小; ④泵抽气口与吸盘连接,用于吸附物体(如集成块、精密工件等); ⑤泵的抽气端与过滤容器相连,容器口放置滤网,用于加速液体过滤。 2、判断微型泵排气端工况 以上都是在讨论微型泵抽气端阻力的问题,根据这些判断条件已经缩小了选型的范围,但还必须考虑排气端阻力问题,这样才能最终确定可选范围。 在实际应用中,微型真空泵面临的排气状况是不一样的:一类是排气很顺畅,直通大气;另一类是排气阻力较大,比如在排气管路上有阀、细小弯管、大阻尼传感器、非专用的消音器、在液面以下排气、气体排往密闭或半密闭容器等。在现代设计制造中,把面对不同排气条件的微型真空泵区别对待。“排气口允许最大阻力Por值”这一参数就是标定泵的排气能力,让我们可以用严格的技术手段确定选型是否恰当。 简单地说,对于排气阻力大的系统,我们的选型范围是:FM系列、FAA 系列、PCF系列;对于排气阻力小的系统,选型范围是:VM系列、VAA系列、PK系列、PC系列、VCA系列、VCC系列、VCH系列、PH系列、VBH系列。 根据以上几个步骤,我们已经可以确定微型泵的选型范围了。在划定的几个可选系列中,再根据我们对流量和真空度的要求就可以确定具体的

罗茨真空泵原理及故障处理

罗茨真空泵原理及故障处理 一、罗茨真空泵实际抽速计算 对应罗茨泵的入口压力P,测取罗茨泵出口(亦为前级泵入口)压力Pv,并根据前级泵入口压力Pv查前级泵抽速特性曲线,得出前级泵在Pv入口压力下的抽速Sv,查出罗茨泵在出口压力Pv时的零流量压缩比Kv,即可通过以下公式算出罗茨泵在入口压力为P时的实际抽速S,即S=S N K V/(K V+(S N/S V)-( S V/S N)3/2) 式中:S ——罗茨泵实际抽速,L/sS N——罗茨泵几何抽速,L/sS V——前级泵在入口压力下的抽速,L/sK V——罗茨泵在Pv出口压力的零流量压缩比 二、罗茨真空泵使用说明 1、润滑 1.1润滑系统用油应采用1号真空泵油 1.2查看油位,齿轮箱测油位应以浸没4~5个全齿高度为宜;电机测油位应以浸没2/3油窗高度为宜;用以润滑油封的油杯处不应断油,油位不应低于1/3油杯高度,不宜加油过多,避免泵运转时溢出油杯外。风冷泵油位要高于水冷泵的油位。 2、冷却 冷却水进口温度≤25℃。避免因冷却水温度高,使泵体发热,而引发异响、轴承损坏。风冷泵要通风散热,避免泵体温度过高烫伤人,使用温度≤80℃. 3、启动 当泵较长时间停用后再次使用时,应先点动1、2次,使润滑油进入轴承内,然后再正式起动,否则将缩短轴承及泵的使用寿命。 4、停泵

停泵时,应先停罗茨泵,待电机停转后,在停前级泵,否则会导致罗茨泵出口压力升高、负荷增大,而引起返油、污染真空管路和泵腔、甚至烧坏罗茨泵电机。 三、罗茨真空泵维护和保养 1、保持泵的清洁,以利于通风散热。 2、每月至少检查一次油质情况,当发现油质明显变色、变稀、乳化等情况,应立即换油。 3、换油时,罗茨泵最好先运转一小时,使油温变热变稀后,在停泵并向泵内放气后再放油加油。加油时,润滑油中不得混入柴油、煤油、汽油、水等其他饱和蒸汽压较高的介质,以免影响泵的极限压力。 4、拆洗泵及泵内零件时,应使用纱布擦拭;当必须清洗时,可用丙酮或者汽油清洗,但必须注意防火安全,洗完后必须用纱布擦干后方可重新装配。 5、当发现泵有异常声响时,应立即停泵检查或与供应商联系。

ZJ-600型罗茨真空泵设计(论文)

毕业设计 2013 年 6 月 1 日 设计题目 ZJ-600型罗茨真空泵设计 学生姓名 相 源 学 号 20090755 专业班级 机械设计制造及其自动化09-10班 指导教师 王庆生 院系名称 机械与汽车工程学院

目录 中文摘要 (1) 英文摘要 (1) 1. 引言 (3) 1.1 绪论 (3) 1.2 我国罗茨真空泵的现状 (3) 1.3 我国罗茨泵与国外先进水平相比的差距 (4) 1.4 罗茨真空泵的发展趋势 (5) 1.5 设计内容、步骤和目的 (5) 2. 罗茨泵的工作原理及其结构特点 (7) 2.1 罗茨泵的工作原理 (7) 2.2 罗茨泵的结构特点 (8) 2.3 罗茨泵的应用及实物图 (9) 3. ZJ-600型罗茨真空泵的主要零件及结构设计 (11) 3.1 罗茨真空泵的主要零部件 (11) 3.2 电动机的选择 (13) 3.3斜齿圆柱齿轮传动设计 (15) 3.4转子体设计计算 (19) 3.5轴的结构设计计算 (23) 3.6轴承选取设计计算 (27) 3.7 ZJ-600型罗茨真空泵的结构 (28) 结论 (30) 致谢 (31) 参考文献 (32)

ZJ-600型罗茨真空泵设计 摘要:本设计是对ZJ-6OO罗茨真空泵进行整体结构设计,并且针对罗茨泵结构的几个方面进行改进:第一,针对罗茨真空泵工作时的噪声过大的问题,本 设计采用一对同步齿轮传动,使转子之间相对位置保持始终不变,保证转子 和齿轮在轴上定位的径向位移适中,同时加强轴的刚度,确保润滑油供应充 足,以减小罗茨真空泵的噪声;第二,针对罗茨真空泵的密封是油密封,会 将一部分油带入真空室,污染真空室,本设计罗茨真空泵的密封部位采用机 械密封,靠一对或者几对垂直于轴作相对滑动的端面在流体压力或补偿机构 的弹力作用下保持接合,并配以辅助密封,进而保证没有油或者水蒸气进入 真空室;第三,针对罗茨真空泵的泵体与转子是由铸铁做成,在潮湿的环境 中很容易受到腐蚀,导致转子之间的间隙变大,极大地影响了罗茨泵的效率 与寿命,本设计通过在泵体和转子表面镀上一层镍来防止泵体与转子的腐 蚀。通过以上几个方面的改进,与原来的罗茨泵相比,性能有了一定提高。关键词:罗茨真空泵;噪声;转子型线;密封

罗茨真空泵操作规程(格式规范)

罗茨真空泵操作规程 一、目的 为了使操作者正确操作使用,确保该设备的正常. 二、适用范围 所有ZJB-300`ZJ-600罗茨泵及操作者. 三、操作规范 (一)、泵启动前的准备工作 1、检查工作电源,工作电压是否达到要求; 2、检查电机运转方向,确认无误后方可投入使用; 3、检查泵的冷却水是否畅通; 4、检查泵的油位,出轴处的油杯内注满润滑油,齿轮箱及轴承箱内的润滑油的油位须在油窗的3/4高度处,润滑油用1号(粘度为46)真空泵油; (二)、泵启动运行 1、起动前级泵(罗茨泵不允许直接抽大气); 2、待系统内的压力达到罗茨真空泵的允许入口压力后 (<1330Pa),即可启动罗茨泵真空泵。 3、泵的最高温升不得超过40℃,最高温度不得超过80℃; (三)、停泵 1、先停罗茨真空泵,且停稳后再停前级真空泵; 2、关闭冷却水;(长时间不用,应将泵壳余水放尽)

四、维护与保养 1、每日检查 (1)油位检查:检查油杯、齿轮箱、轴承箱内得油位,理想的油位高度以油窗的3/4为宜,齿轮箱和轴承箱的油位过多,使油位升高,油位过低造成润滑不良,有的可能发出噪音; (2)温度检查:用温度计检查各部位温度; (3)电机负荷检查:用钳形表测量电动机负荷; 2、每月检查 联轴器弹性体的张力; 3、每季检查 齿轮箱内润滑油是否变质; 4、每半年检查 (1)前盖轴承箱内润滑油是否变质; (2)油封是否损坏; 5、每一年检查 (1)轴承是否磨损; (2)活塞环及活塞环衬套是否磨损; (3)齿轮微量程度的磨损对转子正常工作是否产生影响是否需要调整; 6、拆装罗茨真空泵 (1)、未拆卸前,先测量并记录转子各部分间隙; (2)、尽量避免用重锤敲打,拆下的零件不得碰伤,妥善保管好;

相关主题
文本预览
相关文档 最新文档