当前位置:文档之家› 欧式黎曼罗氏几何

欧式黎曼罗氏几何

欧式黎曼罗氏几何
欧式黎曼罗氏几何

除欧氏几何,还有罗氏几何、黎曼几何。它们合称非欧几何。

可以推断你的基础还薄弱,理解不了这些,给你简单讲几句。以后慢慢学你可能能理解。

欧几里德几何(欧式几何)的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。

欧几里德几何的五条公理是:

1、任意两个点可以通过一条直线连接。

2、任意线段能无限延伸成一条直线。

3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。

4、所有直角都全等。

5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。

第五条公里称为平行公理,可以导出下述命题:

通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。

长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。

有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。

由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?

到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。

但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:

第一,第五公设不能被证明。

第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。

这种几何学被称为罗巴切夫斯基几何,简称"罗氏几何"。这是第一个被提出的非欧几何学。

从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。

几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发展新的几何学而辛勤工作。终于在1832年,在他的父亲的一本著作里,以附录的形式发表了研究结果。

那个时代被誉为“数学王子”的高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。

罗式几何

罗式几何学的公理系统和欧式几何学不同的地方仅仅是把欧式几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。

我们知道,罗式几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗式几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,再罗式几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:

欧式几何

同一直线的垂线和斜线相交。

垂直于同一直线的两条直线或向平行。

存在相似的多边形。

过不在同一直线上的三点可以做且仅能做一个圆。

罗式几何

同一直线的垂线和斜线不一定相交。

垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。

不存在相似的多边形。

过不在同一直线上的三点,不一定能做一个圆。

从上面所列举得罗式几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗式几何中的一些几何事实没有象欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗式几何是正确的。

1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。

人们既然承认欧几里是没有矛盾的,所以也就自然承认非欧几何没有矛盾了。直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。

黎曼几何

欧氏几何与罗氏几何中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧式几何讲“过直线外一点有且只有一条直线与已知直线平行”。罗氏几何讲“过直线外一点至少存在两条直线和已知直线平行”。那么是否存在这样的几何“过直线外一点,不能做直线和已知直线平行”?黎曼几何就回答了这个问题。

黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。

黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限演唱,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。

近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰是和黎曼几何的观念是相似的。

此外,黎曼几何在数学中也是一个重要的工具。它不仅是微分几何的基础,也应用在微分方程、变分法和复变函数论等方面。

三种几何的关系

欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。

在我们这个不大不小、不远不近的空间里,也就是在我们的日常生活中,欧式几何是适用的;在宇宙空间中或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些。

七年级上册数学 几何图形初步同步单元检测(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难) 1.已知AM∥CN,点B为平面内一点,AB⊥BC于B. (1)如图1,直接写出∠A和∠C之间的数量关系________; (2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C; (3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数. 【答案】(1)∠A+∠C=90°; (2)解:如图2,过点B作BG∥DM, ∵BD⊥AM,

∴DB⊥BG,即∠ABD+∠ABG=90°, 又∵AB⊥BC, ∴∠CBG+∠ABG=90°, ∴∠ABD=∠CBG, ∵AM∥CN, ∴∠C=∠CBG, ∴∠ABD=∠C; (3)解:如图3,过点B作BG∥DM, ∵BF平分∠DBC,BE平分∠ABD, ∴∠DBF=∠CBF,∠DBE=∠ABE, 由(2)可得∠ABD=∠CBG, ∴∠ABF=∠GBF, 设∠DBE=α,∠ABF=β,则 ∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β, ∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°, ∴∠FCB=∠AFC=3α+β, △BCF中,由∠CBF+∠BFC+∠BCF=180°,可得 (2α+β)+3α+(3α+β)=180°,① 由AB⊥BC,可得 β+β+2α=90°,② 由①②联立方程组,解得α=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°. 2.如图1,点为直线上一点,过点作射线,使,将一直角三角

高观点下的几何学练习题及参考答案

《高观点下的几何学》练习题参考答案 一 一、填空题。 1.公理法的三个基本问题是(相容性问题)、(独立性问题)和(完备性问题)。 2.公理法的结构是(原始概念的列举)、(定义的叙述)、(公理的叙述)和(定理的叙述和证明)。 3.仿射变换把矩形变成平行四边形 4.仿射变换把平行线变成平行线 5.仿射变换把正三角形变成三角形 二、简答题。 1.试给一个罗氏几何的数学模型。 答:罗氏几何的(Cayley-F.kLein)模型 在欧氏平面上任取一个圆,把圆内部的点所构成的集合看成是罗氏“平面”。 罗氏平面几何的原始概念解释成: 罗氏点:圆内的点; 罗氏直线:圆内的开弦(两个端点除外,它们可称为无穷远点)。 结合关系:圆内原来的点和线的结合关系; 介于关系:圆内弦上三点的介于关系; 运动关系:欧氏平面上,将圆K变成自身的射影变换。 罗氏平行公理(在罗氏平面上)通过直线外一点至少存在两直线与已知直线不相交。 2.试给一个黎曼几何的数学模型 答:黎曼几何的(F.KLein)模型 黎曼几何的原始概念解释成: 黎氏点:欧氏球面上的点,但把每对对径点看成一点; 黎氏直线:球面上的大圆; 黎氏平面:改造后的球面。 黎氏点与黎氏直线的基本关系: (1)通过任意两个黎氏点存在一条黎氏直线; (2)通过任意两个黎氏点至多存在一条黎氏直线; (3)每条黎氏直线上至少有两个黎氏点;至少存在三个黎氏点不在同一条黎氏直线上。 黎曼几何平行公理:黎氏平面上任意两条直线相交。 3.简述公理法的基本思想。 答:若干个原始概念(包括元素和关系)、定义和公理一起叫做一个公理体系,构成了一种几何的基础。全部元素的集合构成了这种几何的空间。在这个公理体系的基础上,每个概念都必须给出定义,每个命题都必须给出证明,原始概念、定义、公理和定理按照逻辑关系有次序地排列而构成命题系统——逻辑结构,这就是公理法思想。 4.简述公理系统的独立性 答:如果一个公理系统中的某条公理不能由其余公理证明,即不时其余公理的推论,则称这跳公理在公理

人教版 七年级数学上册 第4章 几何图形初步 同步综合训练

人教版七年级数学上册第4章几何图形初步 同步综合训练 一、选择题(本大题共10道小题) 1. 下列四个几何体中,是三棱柱的为() 2. 经过同一平面内A,B,C三点可连接直线的条数为() A.一条 B.三条 C.三条或一条 D.不能确定 3. 如图所示的几何体,从上面看得到的平面图形是() 4. [2018·河南]某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉 B.害 C.了 D.我 5. 图中的几何体的面数是() A.5 B.6 C.7 D.8 6. 如图,对于直线AB,线段CD,射线EF,其中能相交的是()

7. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线() A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 8. 如图0,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是() A.∠AOD>∠BOC B.∠AOD<∠BOC C.∠AOD=∠BOC D.无法确定 9. 如图所示,下列对图形描述不正确的是() A.直线AB B.直线BC C.射线AC D.射线AB 10. 图(1)(2)中所有的正方形完全相同,将图(1)的正方形放在图(2)中①②③④的某一位置,所组成的图形不能围成正方体的位置是() A.① B.② C.③ D.④ 二、填空题(本大题共7道小题) 11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:

(1)______;(2)______;(3)__________;(4)________. 12. 已知∠A=100°,那么∠A的补角为________度. 13. 如图所示的几何体由个面围成,面与面相交成条线. 14. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是. 15. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号) 16. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°. 17. 图中可用字母表示出的射线有条. 三、解答题(本大题共4道小题) 18. 如图,是长方体的展开图,将其折叠成一个长方体,那么: (1)与点N重合的点是哪几个?

中山大学2007级硕士研究生黎曼几何考试题

Riemanian Geometry Uia,Math,Sysu,China 2008-6-26 1.Let M be a Riemannian Manifold with sectional curvature identically zero. Show that, for every p M ∈, the mapping ()()exp :0p εp εB T M B p ?→ is an isometry, where ()εB p is a normal ball at p . 2.Let M ? be a covering space of a Riemani- an Manifold M . Show that it is possible to give M ? a Riemannian structure such that the covering map :πM M →? is a local isometry ( this metric is called the covering metric ). Show that M ? is complete in the covering metric iff M is complete. 3.If a complete simply connected Riemanian Manifold M has a pole, then M is diffeomorphic to n R , dim n M =.

4.Introduce a complete Riemannian metric on 2R . Prove that ()()222lim inf ,0x y r r K x y +≥→∞≤ where ()2,x y R ∈ and (),K x y is the Gaussian curvature of the given metric at (),x y . 5.Let []:0,γa M → be a geodesic segment on M such that ()γa is not conjugate to ()0γ. Then γ has no conjugate points on ()0,a iff for all proper variations of γ ()()0,..00δs t s δE s E ?>< In particular, if γ is minimizing, γ has no conjugate points on ()0,a .

人教版数学七年级上册第4章【几何图形初步】同步提升训练

【几何图形初步】同步提升训练 一.选择题 1.下列图形中,不可以作为一个正方体的展开图的是() A.B.C.D. 2.对如图所示几何体的认识正确的是() A.棱柱的底面是四边形B.棱柱的侧面是三角形 C.几何体是四棱柱D.棱柱的底面是三角形 3.延长线段AB到C,使BC=AB,若AC=15,点D为线段AC的中点,则BD的长为()A.4.5B.3.5C.2.5D.1.5 4.如图1,A,B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小,图2中所示的C点即为所求的码头的位置,那么这样做的理由是() A.两直线相交只有一个交点 B.两点确定一条直线 C.两点之间,线段最短 D.经过一点有无数条直线 5.已知线段AB=9,点C是AB的中点,点D是AB的三等分点,则C,D两点间距离为()

A.3B.1.5C.1.2D.1 6.如图,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD ⊥MN于点D,下列结论错误的是() A.AD+BC=AB B.与∠CBO互余的角有两个 C.∠AOB=90°D.点O是CD的中点 7.如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向,则∠BAC的度数是() A.85°B.80°C.90°D.95° 8.如图,一张长方形硬纸片的长为12厘米,宽为10厘米,将它的四角各剪下一个边长为x厘米的正方形(阴影部分),然后沿虚线将Ⅰ、Ⅱ、Ⅲ、Ⅳ这四个部分折起,构成一个无盖的长方体纸盒,这个纸盒的体积是() A.(12﹣x)(10﹣x)B.x(12﹣x)(10﹣x) C.(12﹣2x)(10﹣2x)D.x(12﹣2x)(10﹣2x)

椭圆几何性质学案

椭圆的简单几何性质学习案 一、课程阅读学习目标 1.通过阅读椭圆标准方程和图形,使学生掌握椭圆的几何性质. 2.认真研读椭圆的几何性质,理解实质。 3.掌握椭圆的几何性质的简单运用 二、阅读学习建议 1.认真阅读椭圆的几何性质 2.认真研读重点性质 3.阅读难点是离心率 第一课时 1 阅读椭圆标准方程和图形, 猜想:椭圆有哪些几何性质 2研读教材 (1)对称性 问题1:请同学们观察刚才这个图形在x轴的上方、下方,y轴的左侧、右侧有怎样的关系呢? 问题2;一般的椭圆是否也具有这种对称性,你能根据方程来进行研究吗? 对称性:在上任取一点P(x,y)则P点关于x轴、y轴和坐标原点的对称点分别是(x,-y)(-x,y)、(-x,-y),而代入方程知这三个对称点都适合方程,即点P关于x轴、y 轴和坐标原点的对称点仍然在椭圆上,可得结论。 总结: (2)顶点 (大屏幕展示所表示的图形) 问题3:请同学们继续观察这个椭圆与坐标轴有几个交点呢?一般的椭圆与坐标轴有几个交点呢? 问题4:你能根据方程求得四个交点的坐标吗? 总结;顶点的定义,结合图形指出长轴、短轴、长轴长、短轴长半轴长、短半轴长,点明方程中a、b的几何意义。 (3)范围 问题5:(据图)如果过、、分别作y轴的平行线,过、分别做x 轴的平行线,则这四条直线将构成___________, 椭圆在矩形__________这说明了椭圆有____________,x、y的范围_____________________ ______; (4)离心率 通过前面的探讨,我们知道椭圆是有范围的,即它围在一个矩形框内。有了前面这几个性质,我们就可以很快地作出焦点在x轴上的椭圆的草图了教师在黑板上示范作图(先找到标准方程所表示的椭圆与坐标轴的四个交点,画出矩形框,光滑曲线连接,并注意对称性) 练习:请同学们根据这种作图方法,在同一坐标系下画出方程和所示的椭圆,并思考这两个椭圆的形状有何不同? 实物展台展示画图,指出一个扁一些,一个圆一些。

相对论与黎曼几何-16-宇宙常数的故事

爱因斯坦在1905年建立了狭义相对论,1915年建立广义相对论的引力场方程,在1917年的一篇文章中引入了宇宙常数一项。场方程看起来并不是很复杂,解起来却异常困难。我们暂时忽略宇宙常数的一项,考察一下引力场方程包含的物理意义。如今我们很难体会和揣摸爱因斯坦当时的真实思想,但可以从我们现在所具有的物理知识出发,首先重新认识一下场方程到底意味着些什么。为方便起见,将方程在此重写一遍: 为了更深刻地理解广义相对论,不妨先回忆一下狭义相对论。相对于经典牛顿力学而言,狭义相对论否认了速度(即运动)的绝对意义。那就是说,当我们在狭义相对论中谈及速度v时,一定要说明是相对于哪个参考系而言的速度,否则就是毫无意义的。到了广义相对论中则更进了一步,因为广义相对论取消了惯性系的概念,速度不仅没有了绝对的意义,连速度对惯性系的相对意义也没有了。比如说,在广义相对论预言的弯曲时空中,我们只能在同一个时空点来比较两个速度(或任何矢量),而无法比较不同时间、不同地点的两个速度的大小和方向,除非我们将它们按照前面介绍过的黎曼流形上平行移动的方法移动到同一个时空点。这也就是为什么我们花了很长的时间来解释黎曼几何和张量微积分等等数学概念。因为在(伪)黎曼流形上,每个不同的时空点定义了不同的坐标系,使用它们,才能正确描述广义相对论中弯曲时空的精髓。或许可以用一句简单的话来表述得更清楚一些:狭义相对论将独立的时间和空间统一成了“4维时空”,广义相对论则将平直的时空变成了带着活动标架的“流形”。 当然,在流形上的一个很小局部范围内,我们仍然可以忽略时空的弯曲效应,近似地使用狭义相对论的概念,但那只是在两个粒子相距非常小的时候才能成立。 最后与爱因斯坦在一起工作过的著名物理学家约翰·惠勒有一句解释广义相对论的名言:“物质告诉时空如何弯曲,时空告诉物体如何运动。” “物质告诉时空如何弯曲”,这点从方程(2-16-1)是显而易见的。因为方程的右边是给定世界的“物质”分布,它决定了方程的解,即度规张量,也就是表征时空如何弯曲的几何度量。 后一段话则说的是:弯曲的时空中粒子将如何运动。

山东省乐陵市第一中学2013-2014学年七年级上同步导学案:第四章几何图形初步(共13学时)

第四章图形认识初步 第1学时4.1.1 几何图形(1) 学习目标:1.观察生活中的实物或图片,认识以生活中的事物为原型的几何图形; 认识一些简单几何体的基本特性,能识别这些简单几何体. 2.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解 立体图形与平面图形. 学习重点:识别简单几何体. 学习难点:从具体事物中抽象出几何图形. 使用要求:1.阅读课本P115-P118; 2.尝试完成教材P118的两组思考的问题; 3.限时25分钟完成本导学案(合作或独立完成均可); 4.课前在小组内交流展示. 一、自主学习: 1.观察P115本章的章前图: (1)知道这是什么地方吗?你对它了解多少?(可上网查找) (2)你能从中找到我们熟悉的图形吗?找找看. 2.多姿多彩的图形美化了我们的生活,找一找我们生活中的你熟悉的图形. 3.你能不能设计一个装墨水的墨水盒?你能不能画出一个五角星?如果能,你就试一试,如果不能,那就让我们一起走进多姿多彩的图形世界,共同学习. 二、合作探究: 1.观察P116的9张多姿多彩的图片,你能从中看出哪些熟悉的几何图形,与同学交流你观察到的图形. 【老师提示】:对于一个物体,如果我们考虑它的颜色、材料和重量等,而只考虑它的形状(如方的、圆的)、大小(如长度、面积、体积)和位置(如平行、垂直、相交),所得到的图形就称为几何图形.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形. 2.立体图形:各部分不都在同一平面内的图形,叫做立体图形. ①长方体、正方体、圆柱、圆锥、球等都是立体图形, 棱柱、棱锥也是常见的立体图形. 找一找生活中有哪些物体的形状类似于这些立体图形?(小组交流) ②观察P117图4.1-3,你能由实物想到几何图形及其形状吗? ③完成P118思考的问题(上),并与你的同学交流. 【老师提示】:常见 ..的立体图形大致分为:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体三类.3.平面图形:各部分都在同一平面内的图形,叫做平面图形. ①长方形、正方形、三角形、四边形、圆等都是平面图形. 找一找生活中的平面图形,与同学交流. ②完成P118思考的问题(下) 4.立体图形与平面图形是两类不同的几何图形,但他们是互相联系的. 任何一个立体图形图形是由一个或几个平面图形围成的.

SECTION黎曼几何初步

§5 黎曼几何初步 一、 黎曼空间 [黎曼空间及其度量张量] 若n 维空间R n 中有一组函数g ij ( x i )=g ji ( x i ),使得两邻点x i , x i +d x i 之间的距离ds 由一个正定二次型 d s 2 = g ij ( x )d x i d x j 决定,则称空间R n 为黎曼空间,记作V n .称黎曼空间V n 中的几何学为黎曼几何.二次型 ds 2 称为V n 的线素.定义曲线弧长的微分为 ()j i ij x x x g s d d d = 而任一曲线x i =x i (t )()a t b ≤≤的弧长为积分 ()()? =b a j i ij t t x t x t x g s d d d d d 因为在坐标变换 () x x x i i i =' 下,ds 2 为一个不变量,所以 j j i i ij j i x x x x g g ' ' ' '????= 这表明g ij ( x )为一个二阶协变张量的分量,它称为黎曼空间V n 的度量张量或基本张量. [矢量的长度·两矢量的标量积和夹角·伴随张量] 在黎曼空间中关于标量(场)、矢量(场)、张量(场)等的定义类似前面各节,它们的运算法则也相仿. 设{} a i 是一个逆变矢量,则其长度的平方为 g ij a i a j 设{}i a 与{} b i 是两个逆变矢量,则其标量积为 g ij a i b j 这两矢量夹角的余弦为

g a b g a a g b b ij i j ij i j ij i j 设 g ij a i =a j , g ij b i =b j 则{}j a 与{}j b 都是协变矢量,它们的长度与标量积分别为 g ij a i a j =a j a j , g ij a i b j =a j b j 张量j k i T ??的伴随张量为 j l i lk ijk T g T ??=,k i lj jk i l T g T ???= 式中g lj 满足等式 g g il lj i j =δ 式中j i δ为克罗内克尔符号. [黎曼联络与克里斯托弗尔符号] 在黎曼空间中总可以用唯一的方式确定联络k ij Γ,满足条件: (i) 仿射联络是无挠率的,即k ji k ij ΓΓ= (ii) 仿射联络所产生的平行移动保持矢量的长度不变. 这种k ij Γ称为黎曼联络或勒维-奇维塔联络. 根据上述两个条件可以得出 ??? ? ????-??+??= l ij i jl j il kl k ij x g x g x g g 21Γ 如果记 k ij lk l ij g ΓΓ=, 则有 ?? ? ? ????-??+??=l ij i jl j il l ij x g x g x g 21,Γ 有时用下面的记号:

黎曼几何学习心得

1 自几何佳缘 在这方面我是很有感受的。我整理了一些心得笔记,打算以后给学生上课的时候,把这些内功心法传授给他们。 这里先随便讲两句。 如果楼主想聊聊的话,可以写信到我的百度邮箱。 以前研究生时候,我学过微分几何,用的是陈维桓那本。 但是学了之后还是不得要领。因为我们的老师只是照着书念,根本没有讲出精髓来。直到后来,我重学的时候,才恍然大悟,接下来可以说是一通百通。 到底是怎么回事呢?且待我慢慢道来。 (I) 首先我这次选的书非常好--可以说是机缘巧合。 我用的书是侯伯宇《物理学家用的微分几何》。这本书有几个特点:它讲述概念非常直观简洁,而且会告诉你这些概念的物理北景; 对重要的定理结论,它不给证明,但是会详细解释它的几何意义和物理意义。初学者看此书是非常省力的。 忠告:如果你初学微分几何,千万不要看陈省身和陈维桓的《微分几何讲义》,这本书已经是高度提炼了。你没有好的几何背景根本不能消化--比如联络那一章就是。 (II)其次, 侯的《物》里说了一段话,使我顿悟微几的关键所在。 他告诉我们,微分几何的概念结论等等都是在一个原则下展开的: 所讨论的东西都要与坐标选取无关。书中引用爱因斯坦一段话,说爱氏花了7年之功才建立广义相对论,其原因就在于他一直努力摆脱坐标系的困扰。 忠告: 不管你学到哪个概念,你一定要牢牢记住这个原则。 举例来说,为什么定义切空间和与切空间要这么大费周章从等价类入手?就是因为它要让定义出来的东西和坐标无关。 明白这个原则,基本上就越过了学微几的第一道坎。后面可说是事半功倍。 (III) 学微几的另一个重要原则就是: 内蕴的思想。 你碰到的所有概念和结论都是内蕴的。就是说他们只和这个流形有关,和流形所在的大空间无关。 这和本科的《曲面微分几何》不同,那里定义的东西常常是在3维空间里看的。 忠告: 牢记这个原则! 在你学了公理化定义的联络以及黎曼度量以后,再回过头来看,就会明白为什么人家煞费苦心来做这些事。 (IV)理解切空间和与切空间,以及他们的张量,是微分几何入门的关键! 记住上面讲的原则,你再去看一遍体会体会就会领悟的。 这里不再多讲。 我只想说说张量。 如果看陈省身和陈维桓的《微分几何讲义》,那你对张量的理解永远只是表面,你最多只知道他的代数定义。 为什么我们要在微几里讨论张量呢? 你要是不知道很多背景,就不能体会其用意。 比如黎曼度量, 他就是一个二阶张量。首先你要明白二阶张量不过就是矩阵! 一般的张量不过是矩阵的推广!你回忆一下,向量可以看作一个1维数组,矩阵可以看作2维表格,那么3维表格不就是3阶张量吗?

黎曼几何教学简介

中国科学技术大学研究生课程《黎曼几何》教学大纲 课程内容简介: 黎曼几何是现代数学的重要分支之一,黎曼几何学经历了从局部理论到大范围理论的发展过程。现在,黎曼几何学已经成为广泛地用于数学、物理的各个分支学科的基本理论,它与众多数学分支及理论物理关系密切。 本课程的目的就是介绍黎曼几何研究中的各种基本概念和技巧。以测地线的研究为重点讨论了各种形式的比较定理,同时也介绍球面定理和子流形几何。本课程内容共分三大部分。第一部分主要介绍黎曼几何研究中的各种基本概念,如:黎曼度量;仿射联络;挠率和曲率;黎曼联络;协变微分;Laplace 算子;黎曼几何基本定理;黎曼曲率等。第二部分主要讨论测地线第一、第二变分公式及其应用,各种形式的比较定理和Morse指数定理。第三部分主要介绍子流形几何。第四部分介绍复几何的基础知识,介绍Calabi-Yau定理和Donaldson-Uhlenbeck-Yau定理. 本课程的授课对象是基础数学方向和理论物理方向的研究生,授课对象需具有微分几何和偏微分方程方面的知识。 教材: 1,白正国,沈一兵等:黎曼几何初步,高教出版社 参考书目: 1, 伍鸿熙等:黎曼几何初步,北京大学出版社。 2,F.W.Warner, Foundations of Differential manifolds and Lie groups, GTM, Springer-Verlag。3,W.M. Boothby: An introduction to differential manifolds and Riemannian geometry. 4, J.Jost; Riemannian geometry and geometric analysis. 5, S.Kobayashi and K.Nomizu, foundations of differential geometry. 6. Peter Petersen, Riemannian geometry GTM 教学内容及课时安排

(完整版)高中数学椭圆几何性质练习题

2.1.2 椭圆的简单几何性质 第1课时 椭圆的简单几何性质 双基达标 (限时20分钟) 1.已知椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( ). A .(±13,0) B .(0,±10) C .(0,±13) D .(0,±69) 解析 由题意知,椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2 =69, 故焦点坐标为(0,±69). 答案 D 2.椭圆x 2+4y 2=1的离心率为( ). A.32 B.34 C.22 D.23 解析 将椭圆方程x 2+4y 2=1化为标准方程x 2+y 214 =1,则a 2=1,b 2=1 4,c = a 2- b 2=32,故离心率e = c a =3 2. 答案 A 3.已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是6 3,则椭圆C 的方程为( ). A.x 23+y 2 =1 B .x 2 +y 2 3=1 C.x 23+y 2 2=1 D.x 22+y 2 3=1 解析 因为c a =6 3,且c =2,所以a =3,b = a 2-c 2=1.所以椭圆C 的

方程为x 23+y 2 =1. 答案 A 4.已知椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于5,则此椭圆的标准方程是________. 解析 设椭圆的长半轴长为a ,短半轴长为b ,焦距为2c ,则b =1,a 2+b 2=(5)2,即a 2=4. 所以椭圆的标准方程是x 24+y 2=1或y 24+x 2 =1. 答案 x 24+y 2=1或y 24+x 2 =1 5.已知椭圆x 2k +8 +y 29=1的离心率为1 2,则k 的值为________. 解析 当k +8>9时,e 2 =c 2a 2=k +8-9k +8 =14,k =4; 当k +8<9时,e 2 =c 2a 2=9-k -89=14,k =-5 4. 答案 4或-5 4 6.求椭圆x 24+y 2 =1的长轴和短轴的长、离心率、焦点和顶点的坐标. 解 已知方程为x 24+y 2 1=1,所以,a =2,b =1,c =4-1=3,因此,椭圆的长轴的长和短轴的长分别为2a =4,2b =2,离心率e =c a =3 2,两个焦点分别为F 1(-3,0),F 2(3,0),椭圆的四个顶点是A 1(-2,0),A 2(2,0),B 1(0,-1),B 2(0,1). 综合提高 (限时25分钟) 7.已知椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的2倍,则m =( ). A.14 B.1 2 C .2 D .4

人教新2020秋七年级上学期数学《第4章 几何图形初步》同步练习卷

人教新2020秋七年级上学期数学《第4章几何图形初步》同步 练习卷 一.选择题 1.围成下列立体图形的各个面中,每个面都是平的是() A.长方体B.圆柱体 C.球体D.圆锥体 2.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是() A.B.C.D. 3.由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为() A.9B.11C.14D.18 4.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()

A.①⑤B.②④C.③⑤D.②⑤ 5.如图所示,正方体的展开图为() A.B. C.D. 6.如图1,已知∠ABC,用尺规作它的角平分线. 如图2,步骤如下, 第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E; 第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P; 第三步:画射线BP.射线BP即为所求. 下列正确的是() A.a,b均无限制B.a>0,b>DE的长 C.a有最小限制,b无限制D.a≥0,b<DE的长 7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是() A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C

8.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为() A.2B.3C.4D.6 9.如图,已知∠AOB.按照以下步骤作图: ①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接 CD. ②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在∠AOB内交于点E, 连接CE,DE. ③连接OE交CD于点M. 下列结论中错误的是() A.∠CEO=∠DEO B.CM=MD C.∠OCD=∠ECD D.S四边形OCED=CD?OE 10.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:

14拓扑学(下)详解

课题:拓扑学(下) 【教学目标】了解拓扑学的发展史和有趣概念 【教学重点】拓扑学中的几个典型概念 【教学过程】 等价 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,圆和方形、三角形的形状、大小不同,但在拓扑变换下,它们都是等价图形;足球和橄榄球,也是等价的----从拓扑学的角度看,它们的拓扑结构是完全一样的。 而游泳圈的表面和足球的表面则有不同的拓扑性质,比如游泳圈中间有个“洞”。在拓扑学中,足球所代表的空间叫做球面,游泳圈所代表的空间叫环面,球面和环面是“不同”的空间。 莫比乌斯环(只有一个面)性质 “连通性”最简单的拓扑性质。上面所举的空间的例子都是连通的。而“可定向性”是一个不那么平凡的性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。这样的空间是可定向的。

而德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面不能用不同的颜色来涂满。莫比乌斯曲面是一种“不可定向的”空间。可定向性是一种拓扑性质。这意味着,不可能把一个不可定向的空间连续的变换成一个可定向的空间。 发展简史 萌芽 拓扑学起初叫形势分析学,这是德国数学家莱布尼茨1679年提出的名词。欧拉在1736年解决了七桥问题,1750年发表了多面体公式;高斯1833年在电动力学中用线积分定义了空间中两条封闭曲线的环绕数。Topology这个词是由J.B.利斯廷提出的(1847),源自希腊文τ?πο?和λ?γο?(“位置”和“研究”)。这是拓扑学的萌芽阶段。 1851年,德国数学家黎曼在复变函数的研究中提出了黎曼面的几何概念,并且强调为了研究函数、研究积分,就必须研究形势分析学。黎曼本人解决了可定向闭曲面的同胚分类问题。 组合拓扑学的奠基人是法国数学家庞加莱。他是在分析学和力学的工作中,特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,引向拓扑学问题的。他的主要兴趣在流形。在1895~1904年间,他创立了用剖分研究流形的基本方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,探讨了三维流形的拓扑分类问题,提出了著名的庞加莱猜想。 拓扑学的另一渊源是分析学的严密化。实数的严格定义推动康托尔从1873年起系统地展开了欧氏空间中的点集的研究,得出许多拓

相对论与黎曼几何-13-四维时空

相对论与黎曼几何-13-四维时空 13. 四维时空 在科学史上,恐怕没有哪一个理论,像相对论这样引发了这么多的“佯谬”。除了双生子佯谬之外,还有滑梯佯谬、贝尔 的飞船佯谬、转盘佯谬等等,以及它们的许许多多变种。这些佯谬的产生,根本原因是出于对同时性、时钟变慢、长度收缩、相对性原理、不同参考系的观察者、统一时空等等概念的思考和质疑。时间和空间到底是什么?正如公元四世纪哲学家圣·奥古斯丁对“时间”概念的名言:“Ifno one asks me, I know what it is. If I wish to explain it to him who asks, Ido not know.”我把它翻译成如下两句:“无人问时我知晓,欲求答案却茫然。”相对论是否部分地回答了这个问题?尽管众口难调,见仁见智,但相对论起码为我们提供了一种科学的思路和方法,使我们能从物理数学的理论上较为详细地诠释这些概念,何况还有上百年大量实验结果及天文观测数据的验证和支持呢。修正尚可,否定不易,起码不是诋毁谩骂之辈能做到的。 像双生子佯谬一样,尽管佯谬本身往往涉及到加速度参考系,但分析和理解这些佯谬并不一定需要广义相对论,许多相关

的问题也并非一定要使用弯曲时空来解释。况且,正如我们在介绍黎曼几何时提到的,黎曼流形的每一个局部看起来都是一个欧氏空间。那么,对广义相对论研究的弯曲时空而言,它的每一个局部看起来便都是一个闵可夫斯基空间。闵可夫斯基4维时空的性质对广义相对论至关重要,是理解弯曲时空、分析黑洞等奇异现象的基础。因此,我们有必要在介绍爱因斯坦的引力场方程之前,首先多了解一些闵氏时空。 闵可夫斯基时空是欧氏空间的推广,仍然是平坦的。闵氏空间与欧式空间的区别,是在于度规张量的正定性。在黎曼流形上局部欧氏空间中定义的度规张量场gij,是对称正定的。如果将时间维加进去之后,度规张量便不能满足“正定”的条件了。将非正定的度规张量场包括在内的话,黎曼流形的概念被扩展为“伪黎曼流形”。比较幸运的是,之前我们所介绍的列维-奇维塔联络及相关的平行移动、测地线、曲率张量等等概念,都可以相应地推广到伪黎曼流形的情形。 度规张量是一个二阶张量,可以被理解为我们更为熟悉的方形“矩阵”。在矩阵中也有“对称正定”的概念。所谓对称矩阵,是指行和列对换后仍然是原来矩阵的那种矩阵。度规张量的对称性,是由它的定义决定的: ds2 = gijdxidxj 实际上,任何矩阵都可以分解成一个对称矩阵和一个反对称

2018学年中考数学《几何图形的动点问题》同步提分训练(附答案)

2018年中考数学提分训练: 几何图形的动点问题 一、选择题 1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是() A. B. C. D. 2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做 ,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当 点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( ) A. B. C. 6 D. 5 3.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()

A. ① B. ④ C. ①或③ D. ②或④ 4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是() A. B. C. D. 5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( ) A. 变短 B. 变长 C. 不变 D. 无法确定 二、填空题 6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值) 7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________. 8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC

黎曼流形上的几何学

黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854 年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。 这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上 的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。亦即(gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。 黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+ 2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。 黎曼几何以欧几里得几何和种种非欧几何作为其特例。例如:定义度量(a是常数), 则当a=0时是普通的欧几里得几何,当a>0时,就是椭圆几何,而当a<0时为双曲几何。 黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔 记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基 本数学工具的作用。他们进一步发展了黎曼几何学。 但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式 与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。 1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦茨几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。 1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。 地图投影度量空间是球面空间的一种诱导度量,在一定情况下,可用诱导度量研究原曲面上的关系,但在另外情况下,诱导度量与原曲面上的实际情况会大相径庭。如在地球表面局部范围类,可用投影到平面上的诱导度量量度地面实际情况,但对于全球化大范围的情况,则或者不能用地图投影平面研究问题,或者这样结果得到错误的结果。

人教版2020七年级数学上册第四章几何图形初步4.1几何图形同步练习(新版)新人教版

4.1几何图形同步练习 一、单选题 1.下列图形中不是正方体的平面展开图的是() A. B. C. D. 【答案】C 【解析】:A、是正方体的展开图,不合题意; B、是正方体的展开图,不合题意; C、不能围成正方体,故此选项正确; D、是正方体的展开图,不合题意. 故选:C. 【分析】由平面图形的折叠及立体图形的表面展开图的特点解题. 2.一个几何体的边面全部展开后铺在平面上,不可能是() A. 一个三角形 B. 一个 圆 C. 三个正方 形 D. 一个小圆和半个大圆 【答案】B 【解析】:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形; 一个圆锥展开可以是一个小圆+半个大圆. 故选B. 【分析】由平面图形的折叠及立体图形的表面展开图的特点解题. 3.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()

A. B. C. D. 【答案】B 【解析】:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B. 【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 4.下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有() A. 4个 B. 3个 C. 2 个 D. 1个【答案】B 【解析】:长方体、正方体不可能截出圆, 球、圆柱、圆锥都可截出圆, 故选:B. 【分析】根据几何体的形状,可得答案. 5.下列图形是四棱柱的侧面展开图的是()

A. B. C. D. 【答案】A 【解析】:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A. 【分析】根据四棱柱的侧面展开图是矩形图进行解答即可. 6.下面现象能说明“面动成体”的是() A. 旋转一扇门,门运动的痕 迹 B. 扔一块小石子,小石子在空中飞行的路线 C. 天空划过一道流 星 D. 时钟秒针旋转时扫过的痕迹 【答案】A 【解析】:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确; B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误; C、天空划过一道流星说明“点动成线”,故本选项错误; D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误. 故选A. 【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解. 7.如图,将正方体沿面AB′C剪下,则截下的几何体为() A. 三棱锥 B. 三棱 柱 C. 四棱 锥 D. 四棱柱 【答案】A

相关主题
文本预览
相关文档 最新文档