当前位置:文档之家› 三相电压型PWM整流器直接功率控制方法综述

三相电压型PWM整流器直接功率控制方法综述

三相电压型PWM整流器直接功率控制方法综述
三相电压型PWM整流器直接功率控制方法综述

三相电压型PWM整流器直接功率控制方法综述

https://www.doczj.com/doc/3a4357089.html,/tech/intro.aspx?id=565

点击数:260

刘永奎,伍文俊

(西安理工大学自动化学院电气工程系,陕西西安710048)摘要首先介绍了三相电压型PWM整流器的拓扑结构,在此基础上,对当前应用于PWM 整流器的直接功率控制策略进行了对比分析,介绍了其实现机理和优缺点,最后,对直接功率控制在三相电压型PWM整流器中的控制技术进行了展望。

关键字 PWM整流器;直接功率控制;综述

Summary about Direct Power Control Scheme of Three-Phase Voltage Source PWM Rectifiers

LIU Yongkui,WU Wenjun

(Xi'an University of Technology,Xi'an Shannxi 710048 China)Abstract The topological structure of three-phase PWM rectifiers is introduced. On this basis, several DPC methods of three-phase voltage source PWM rectifiers were introduced and compared. At last, the pros原per of the control scheme development trends in three-phase PWM rectifiers is presented.

Keywords three-phase PWM rectifiers;direct power control;summary

1 概述

三相电压型PWM整流器具有能量双向流动、网侧电流正弦化、低谐波输入电流、恒定直流电压控制、较小容量滤波器及高功率因数(近似为单位功率因数)等特征,有效地消除了传统整流器输入电流谐波含量大、功率因数低等问题,被广泛应用于四象限交流传动、有源电力滤波、超导储能、新能源发电等工业领域。

PWM 整流器控制策略有多种,现行控制策略中以直接电流、间接电流控制为主,这两种闭环控制策略

需要复杂的算法和调制模块。而三相电压型PWM 整流器直接功率控制(DPC)因具有控制方法简单、抗干扰能力强、良好的动态性能、可以实现有功无功的解耦控制等诸多优点而被近年来广泛研究,控制方法也层出不穷[1-2]。

本文将介绍三相电压型PWM 整流器主电路的拓扑结构和基于DPC 的控制策略,并进行对比分析,在此基础上对PWM 整流器的控制策略进行展望。

2 电路拓扑

近年来对于三相电压型PWM 整流器拓扑结构的研究在小功率场合主要集中在减少功率开关[3]和改进直流输出性能上;对于大功率场合主要集中在多电平[4]、变流器组合以及软开关技术上[5]。目前较成熟的拓扑有两电平和三电平PWM 整流器结构。

三相电压型两电平PWM 整流器是最基本的PWM 整流电路,因为结构简单、控制算法相对成熟,得到了广泛应用。与其相比三电平PWM 整流器每个桥臂多了两个开关管和两个箝位二极管,电路结构复杂、存在中点电位平衡问题、控制算法繁琐,但因此种电路具有更大的变换功率、更低的输入电流畸变率等优点,也被广泛研究应用。

3 直接功率控制方法

直接功率控制(DPC)系统结构是以直流侧电压为外环、瞬时功率控制为内环的双闭环系统。

从功率守恒的角度看,直接功率控制PWM整流器是在交流侧电压一定的情况下,通过控制流入整流器瞬时有功功率和无功功率,来达到控制瞬时输入电流的目的,从而获得预设的功率因数和功率流动方向。

3.1 基于电压的直接功率控制(V-DPC)

与此前各种PWM整流器控制策略相较,该控制策略的突出优点在于:

(1)不需要PWM 调制模块、不需要电流闭环调节、借助于开关矢量表直接对有功功率与无功功率进行控制,控制算法简单;

(2)系统具有更快的动态响应速度;

(3)输入电流具有更低的畸变率;

(4)瞬时功率的获取采用无电压传感器的预测模型,在一定程度上节约硬件成本。

同时它也存在以下几方面不足:

(1)开关频率不固定,为交流侧电感的选取增加了难度;

(2)对传感器转换精度和系统采样频率的依赖程度高。

3.2 基于虚拟磁链的直接功率控制(VF-DPC)

基于虚拟磁链的直接功率控制策略除了具有V-DPC 的诸优点之外,还具有[10]:

(1)较低的采样频率;

(2)在输入三相电网电压不理想的情况下有更低的电流总谐波含量(THD)。

同样VF-DPC 也没有解决开关频率不固定的问题。

3.3 基于瞬时功率理论的直接功率控制

传统理论中的有功功率、无功功率都是定义在平均值的基础上,只适用于电压、电流为正弦波的情况;而瞬时功率理论的概念是建立在瞬时值的基础上,对正弦、非正弦电压和电流的情况都适用[12]。

图5 给出了基于瞬时功率理论的直接功率控

制系统框图[13]。控制原理与V-DPC 相似,用计算得到的有功功率P、无功功率Q与功率给定做差,其结果经过功率滞环比较与电压矢量所在扇区兹n一起决定系统的开关状态。

与V-DPC、VF-DPC 相比,系统虽然采用了额外的电压传感器,但瞬时功率的计算不依赖于系统开关状态,使算法大大简化,同时也提供了更准确的有功、无功功率瞬时量。同时该控制策略同样具有动态响应快、输入侧电流畸变率低等优点。缺点是:

(1)开关频率不固定;

(2)要求较高的采样频率。

3.4 基于空间矢量的直接功率控制(SVM-DPC)

基于空间矢量的直接功率控制(SVM-DPC)用空间矢量PWM调制模块和PI环节取代了传统DPC 系统中的开关矢量表和功率滞环[14-16]。

空间矢量调制直接功率控制策略优点:

(1)不使用非线性控制器;

(2)开关频率是固定的,因此方便了网侧电感参数的选取;(3)降低了采样频率;

(4)可获得任意方向电压矢量,不存在无功失调区;

(5)具有更低的输入电流畸变率。

缺点:

(1)控制算法复杂化,瞬时功率的估算依赖系

统当前开关状态;

(2)多个PI 环节使系统调试复杂度增加。

另外为进一步得到更准确的瞬时功率,有学者提出了在网侧增加电压传感器的控制方案,根据瞬时功率理论计算瞬时有功、无功功率,该方法在三相输入电压不对称等非理想的情况下获得了较好的控制效果。

3.5 基于功率预测的直接功率控制(P-DPC)

基于功率预测的DPC系统[17-19]可以分为定频率和不定频率两种。文献[18]详细介绍了两种PDPC各自的控制算法并做了仿真研究,从两者的仿真结果来看定频控制的效果较优。

图7 给出了基于功率预测的定频直接功率控制系统框图,系统通过功率预测模型得到当前瞬时功率,并结合给定功率选择最佳的电压矢量序列和其对应的作用时间,来控制PWM整流器在恒定开关频率下的运行。

功率预测通过公式(15)、公式(16)计算完成。

基于定频功率预测的直接功率控制保持了传统DPC 的优点,如动态响应快等,同时以新颖的方法实现了固定开关频率的目的,使整流器系统参数设计简化。该控制策略的缺点主要体现在功率算法相对较为复杂。

3.6 基于功率解耦的直接功率控制

由于三相电压型PWM 整流器是混合非线性系统,有功功率与无功功率相互耦合,影响了系统的控制性能。功率解耦控制的思路是将有功功率、无功功率从相互耦合的复杂关系式中分离出来,得到独立的表达式,为系统提供更加准确的控制模型[20-22]。

图8 是采用无源性控制实现功率解耦的直接功率控制结构框图[22]。有功功率给定可由公式(17)计算得到,公式(18)、(19)给出了具体的无源功率控制律。将Sd、Sq 代入整流器数学模型[22]得到公式(20)、(21),可以看出P、Q 的表达式中不再含有传统DPC 控制策略功率表达式中的耦合项。

与现行功率控制相比,功率解耦控制使整流器具有如下优点:

(1)更快速的功率和直流电压跟踪能力;

(2)更好的静态性能;

(3)抗负载扰动能力强。

缺点:

(1)算法复杂;

(2)控制效果依赖于估计参数值Ra1、Ra2 的准确性。

3.7 基于双开关表的直接功率控制

传统开关表是建立在对有功功率和无功功率同时作用的基础上的,即同一个电压矢量要同时兼顾有功功率和无功功率的调节,但这种兼顾实际上很难完美实现,更多的情况是所选电压矢量对一方的调节能力强而对另一方的调节能力弱,从而导致系统整体跟踪速度缓慢。

双开关表是针对有功功率与无功功率独立调节控制的开关矢量表[2]。从一定意义上讲双开关表的运用降

低了有功功率和无功功率的耦合度。其控制思路是在一个控制周期中,如果要增强对有功的调节能力,就增加有功开关表的作用时间,减小无功开关表的作用时间,反之亦然。图9 为基于双开关表的直接功率控制系统框图。

基于双开关表DPC 控制策略解决了传统DPC 单一逻辑开关表进行功率调节时导致启动暂态过程中直流电压、功率出现较大波动,稳态负载扰动造成较大直流侧电压波动、功率跟踪速度慢等问题,具有更好的动、静态性能。

3.8 基于输出调节子空间的直接功率控制

基于输出调节子空间(ORS)的PWM整流器DPC 策略的控制思路是:取瞬时有功和无功功率为输出量,根据瞬时有功和无功功率导数,及时选择整流器输入电压矢量来控制瞬时有功功率和无功功率的增减,完成功率预控制,以达到系统单位功率因数运行和平衡直流电压的目的[23-24]。与传统DPC 策略相比,其优点是提高了系统的动态性能,并在输入电压不平衡条件下取得良好效果,其代价是算法复杂性大大增加。

3.9 其它改进型直接功率控制策略

文献[25]提出一种基于模糊控制的直接功率控制,主要思想是用模糊控制代替传统DPC 中的PI环节来得到系统有功功率给定。

由于传统DPC 对有功调节能力较弱,文献[26]采用了变无功给定的方式,增加对有功的调节能力,改进了功率响应速度。

文献[27]采用功率内环和电压平方外环的功率控制策略进一步提高了直流电压跟踪、功率跟踪能力。

为减少扇形边界对功率控制及直流电压的影响,文献[28]提出了一种设置扇形边界死区的DPC控制策略。

为了更准确的得到电压矢量的相位角,有学者将锁相环(PLL)引入到了PWM 整流器DPC 控制之中,通过检测交流侧输入电压相位来实现对电压矢量的定位。

4 三相整流器直接功率控制策略的展望

随着电力电子技术和控制理论的发展,三相PWM 整流器的控制策略的研究将不断深入,根据对整流器本身的性能要求,像更小的电流畸变率、减小直流侧纹波系数、进一步提高功率因数等,其相应的控制策略主要向以下几个方面发展[1]。

1)针对具有非线性多变量耦合特性的电压型PWM 整流器模型,常规控制策略及其控制器设计的不足之处在于无法保证控制系统大范围扰动的稳定性。为此,学者们提出了基于稳定性理论的DPC 控制策略,以改变系统的鲁棒性。

2)针对在三相电网不平衡时整流器出现直流侧电压和交流侧电流低次谐波幅值增大,同时产生网侧电流的不平衡,严重时可损坏整流装置。有学者在电网不平衡条件下的整流器DPC 控制策略方面也做了一些工作[29]。

3)由于多电平三相PWM整流器在控制电流谐波、稳定直流电压、更高的转换容量等方面存在着突出的优势,有学者也对多电平的DPC 控制策略做了研究[30]。

4)由于传统整流器控制系统都是在电网平衡、功率开关器件为理想模型基础上给定的,所以系统鲁棒性较差,针对这些问题,有学者尝试将智能控制,如神经网络控制器、模糊逻辑控制器等应用到整流器DPC 控制策略中,来予以解决。

5 结语

本文首先介绍了直接功率控制在三相电压型PWM整流器中的应用优势并说明了其控制思路,重点介绍了三相电压型整流器的两电平、三电平电路拓扑结构,以及当前直接功率控制的主要方法和实现原理,最后对三相PWM整流器的直接功率控制技术的发展方向做了展望。

作者简介:

刘永奎(1985-),男,陕西韩城人,硕士生,研究方向为新型电力电子装置与系统。

伍文俊(1967-),女,江西上高人,讲师,博士生,研究方向为电力电子装置、多电平变换器。

参考文献:

[1] 张兴. PWM 整流器及其控制策略的研究[D].合肥工业大学,2003.

[2] 王久和,李华德. 一种新的电压型PWM 整流器直接功率控制策略[J]. 中国电机工程学报,2005, 25 (15).

[3] Shied J-J, Pan C-T, Cuey Z-J. Modelling and Design of a Reversible Three-phase Switching Mode Rectifier [J].IEE Proc. Electr Power Appl, 1997,144 (6), 389-396.

[4] Rodriguez J, Jih-Sheng Lai, Fang Zheng Peng. Multilevel Inverters: a Survey of Topologies, Controls, and Applications [J]. IEEE Transactions on Industrial Electronics, 2002,49(4):724-738.

[5] Xinbo Ruan, Linquan Zhou. Soft -switching PWM Three-level Converters[J]. IEEE Transactions on Power Electronics, 2001,16(5): 612-622.

[6] T Ohnishi. Three -phase PWM Converter/Inverter by Means of Instantaneous Active and Re active Power Control[A]. IEEE IECON’91[C], 1991, 819-824.

[7] T Noguchi, H Tomiki, S Kondo, I Takahashi, and J Katsumara. Instantaneous Active and Reactive Power Control of PWM Converter by Using Switching Table[J].

Trans. Inst. Elect. Eng. Jpn. Ind. Applicat., 1996, 116,no(2):222-223.

[8] Hadian A S R,徐殿国,郎永强援一种PWM 整流器直接功率控制方法[J]援中国电机工程学报,2007,27(25):78-84

[9] Malinowski M, Kazmierkowski M P. Simulation Study of Virtual Flux Based Direct Power Control for Three-Phase PWM Rectifiers [J] . 26th Annual Conference of the IEEE on Industrial Elec tronics Society, 2000, 4 :2620-2625.

[10] Mariusz M, Marian P K, Steffan Hansen, Frede Blaabjerg, G D Marques. Virtual-flux-based Direct Power Control of Three -phase PWM Rectifiers [J]. IEEE Transactions on Industry Applications, 2001,37

(4):1019-1027.

[11] 何致远,韦巍.基于虚拟磁链的PWM 整流器直接功率控制研究[J].浙江大学学报(工学版),2004,38(12).

[12] 徐小平,黄进,杨家强.瞬时功率控制在三相PWM 整流中的应用[J].电力电子技术,2004,38(2).

[13] 孙向群,王久和.电压型PWM 整流器功率控制策略研究[J].华北科技学院学报,2004,1(2).

[14] Malinowski M, Jasinski M, Kazmierkowski M P. Simple Direct Power Control of Three -phase PWM Rectifier Using Space-vector Modulation [J]. IEEE Transactions

on Industry Electronics, 2004, 51(2): 447-453.

[15] 张颖超,赵争鸣,鲁挺,张永昌,袁立强. 固定开关频率三电平PWM 整流器直接功率控制[J].电工技术学报,2008,23(6):72-76.

[16] 孙丽芹,廖晓钟. PWM整流器的定频直接功率控制[J].电气传动,2006,36(7):39-42.

[17] Cortes P, Kazmierkowski MP, Kennel RM, Quevedo DE, Rodriguez J. Predictive Control in Power Electronics and Drives [J]. IEEE Transactions on Industrial Electronics, 2008,55(12): 4312-4324.

[18] P Antoniewicz , M P Kazmierkowski , S Aurtenechea and M A Rodrguez. Comp arative Study of Two Predictive Direct Power Control Algorithms for Three-phase

AC/DC Converters [A]. Proc. EPE Conf. Aalborg, Denmark[C], 2007, p. 1.

[19] S Aurtenechea , M A Rodriguez , E Oyarbide and J R Torrealday. Predictive Direct Power Control -A New Control Strategy for DC/AC Converters [A]. Proc. IEEE

32nd Annu. Conf. IECON[C], Nov. 2006, p. 1661.

[20] Wang J H,Yin H R,Zhang J L,et alStudy on Power Decoupling Control of Three Phase Voltage Source PWM Rectifiers [A]CES/IEEE 5th International Power

Electronics and Motion Control Conference [C]援Shanghai,2006

[21] 王久和,杨微,李华德援功率前馈电压型PWM 整流器直接功率解耦控制[J]援辽宁工程技术大学学报,2007,26(2):238-241

[22] 王久和,黄立培,杨秀媛援三相电压型PWM整流器的无源性功率控制[J]援中国电机工程学报,2008,28(21).

[23] Gerardo Escobar, Aleksandar M Stankovic, Juan MCarraso, etal. Analysis and Design of Direct Power Control (DPC) for three Phase Synchronous Rectifier via Output Regulation Sub-spaces [J]. IEEE Transactions on Power Electronics, 2003, 18(3): 823-830.

[24] 王久和,李华德,李正熙. 电压型PWM 整流器直接功率控制技术[J]. 电工电能新技术,2004,23 (3).

[25] Bouafia A Krim, F Gaubert J-P. Direct Power Control of Three-phase PWM Rectifier Based on Fuzzy Logic Controller[J]. IEEE Transactions on Industrial Electronics, 2008,323-328.

[26] 王栓庆,王久和,王立明援电压型PWM 整流器变无功给定直接功率控制[J]援辽宁工程技术大学学报,2006,25(Sup.域):173-175

[27] 王久和,尹虹仁,张金龙,等援采用功率内环和电压平方外环的电压型PWM 整流器[J]援北京科技大学学报,2008,30(1):90-95

[28] 王久和,李华德,杨立永援设置扇形边界死区的电压型PWM 整流器直接功率控制[J]援北京科技大学学报,2005,27(3):380-384

[29] Eloy -Garcia, J Arnaltes, S Ro driguezAmenedo, J L.Extended Direct Power Control of a Three-level Neutral Point Clamped Voltage Source Inverter with unbalanced voltages[J], Power Electronics Specialists

Conference, 2008. PESC 2008. IEEE, On page (s): 3396-

3400.

[30] Eloy Garcia, J Arnaltes, S. Rodriguez-Amenedo, J LExtended Direct Power Control For Multilevel InvertersIncluding DC Link Middle Point Voltage Control [J],IEEE Transactions on Electric Power Applications,2007,1: 571-580.

三相PWM整流器控制器设计(精)

三相PWM 整流器控制器设计 PWM 整流器能够实现整流器电网侧的电流为正弦,从而大大降低整流器对电网的谐波污染。PWM 整流器同时能够实现电网侧电流相位的控制,常见的有使得电网侧电流与电源电压同相位,从而实现单位功率因数控制,也可以根据需要使得电网侧电流相位超前或滞后对应的电源相电压,从而实现对电网的功率因数补偿。 三相PWM 整流器主电路和控制系统原理图如图1所示,其中A VR 为直流侧电压外环PI 调节器、ACR_d、ACR_q分别为具有解耦和电源电压补偿功能的dq 轴电流内环PI 调节器,PLL 为电源电压锁相环,SVPWM 为电压空间矢量运算器,Iabc to Idiq、Vabc to ValfaVbeta和Vdq to ValfaVbeta分别为三相静止坐标-两相旋转直角坐标变换、三相静止坐标-两相静止直角坐标变换和两相旋转直角坐标-两相静止直角坐标变换。 图1 基于空间矢量的三相PWM 整流器原理图

根据开关周期平均值概念、三相电压型PWM 整流器开关函数表等,可得到三相电压型PWM 整流器在dq 坐标下微分方程形式和等效电路形式的开关周期平均模型。经过dq 轴电流解耦和电源电压补偿的控制系统结构图如图2所示,其中小写的变量表示该变量的开关周期平均值,大写的变量表示该变量在工作点的值。 v dc d dc q 图2 基于dq 轴电流解耦和电源电压补偿的控制系统结构图 对解耦和电源电压补偿之后的dq 轴等效电路进行工作点附近的小信号分析,即可得到小信号下的传递函数如式(1、(2)和(3)所示,其中L 、R 分别为交流侧的滤波电感及其等效电阻,C 为直流侧滤波电容,Dd 为d 轴在工作点的占空比。 ~ i d (s αd (s ~ i q (s αq (s ~ v dc (s i d (s V dc (1

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

PWM整流电路概述

PWM整流电路概述 1引言 在电力系统中,电压和电流应是完好的正弦波。但是在实际的电力系统中,由于非线性负载的影响,实际的电网电压和电流波形总是存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题,因而就有必要采取措施限制其对电网和其它设备的影响。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,采用二极管整流方式的整流器存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。采用相控方式的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变等缺点。这些整流器从电网汲取电流的非线性特征,给周围用电设备和公用电网都会带来不利影响。 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。本文主要对与PWM整流器相关的功率开关器件、主电路拓扑结构和控制方式等进行详细说明,在此基础上对PWM整流技术的发展方向加以探讨。 2功率开关器件 PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt 和dv/dt。目前在PWM整流器中得到广泛应用的电力电子器件主要有如下几种:

PWM整流工作原理

PWM整流工作原理

图6-28 单相PWM 整流电路 整流电路也可分为电压型和电流型两大类,目前半桥电路直流侧电容必须由两个电容串联,其中点和交流电源单相半桥电路 交流侧电感电感和交流电源内部电感,是电全桥电路直流侧电容只要一个就可以。 单相全桥电路 6-8 电力电子技术 (1)单相全桥PWM 整流电路的工作原理 正弦信号波和三角波相比较的方法对图6-28b 中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。 u AB 中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。 由于L s 的滤波作用,谐波电压只使i s 产生很小的脉动。 当正弦信号波频率和电源频率相同时,i s 也为与电源频率相同的正弦波。 u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。 改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 6.4.1 PWM 整流电路的工作原理

6-12 电力电子技术 (2)对单相全桥PWM 整流电路工作原理的进一步说明 整流状态下: u s > 0时,(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s < 0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 6.4.1 PWM 整流电路的工作原理

PWM整流电路工作原理

PWM整流电路的原理分析 摘要:无论是不控整流电路,还是相控整流电路,功率因数低都是难以克服的缺点.PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,本文以《电力电子技术》教材为基础,详细分析了单相电压型桥式PWM整流电路的工作原理和四种工作模式。通过对PWM整流电路进行控制,选择适当的工作模式和工作时间间隔,交流侧的电流可以按规定目标变化,使得能量在交流侧和直流侧实现双向流动,且交流侧电流非常接近正弦波,和交流侧电压同相位,可使变流装置获得较高的功率因数。 1 概述 传统的整流电路中,晶闸管相控整流电路的输人电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输人中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输人电流中谐波分量很大,功率因数也较低。 PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输人电流非常接近正弦波,且和输人电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。 参考文献[1]在第6章“PWM控制技术”中增添了“PWM整流电路及其控制方法”这一部分内容。但在PWM整流电路的工作原理中介绍篇幅较少,只是针对PWM整流电路的运行方式相量图进行分析,没有分析其工作过程。对PWM 整流电路不熟悉的教师在了解这部分内容时普遍感觉吃力。 1 单相电压型桥式PWM整流电路 电压型单相桥式PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供直流中间环节,其电路如图I所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L为交流侧附加的电抗器,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图 1 电压型单相桥式PWM整流电路 除必须具有输人电感外,PWM整流器的电路结构和PWM逆变电路是相同的。按照

PWM整流器控制技术的发展

PWM整流器控制技术的发展 文章分别就PWM整流器控制技术的基本原理及其主要特点、三相电压型和电流型PWM整流器主要控制技术的原理进行阐述。此外还分析国内外对PWM 整流器控制技术的研究现状,并对其发展趋势进行展望。 从电力电子技术发展来看,传统的相控整流器应用时间较长,技术也成熟且被广泛应用,但其存在如下的诸多问题。 1).晶闸管换相引起网侧电压波形畸变。 2).网侧谐波电流对电网产生谐波“污染”。 3).深控时网侧功率因数降低。 4).闭环控制时动态响应相对较慢。 针对这些问题,PWM整流器进行了全面的改进。其关键性的改进在于用全控型功率开关管取代了半控型功率开关管和二极管,以PWM斩控整流取代了相控整流或不控整流。因此PWM整流器就取得了以下的优良性能。 1).网侧电流为正弦波。 2).网侧功率因数控制。 3).电能双向传输。 4).较快的动态控制响应。 由于电能的双向传输,当PWM整流器从电网吸取电能时,其运行于整流工作状态,而当PWM整流器向电网传输电能时,其运行于有源逆变工作状态。所谓单位功率因数是指当PWM整流器运行于整流状态时,网侧电压、电流同相正阻特性,当PWM整流器运行于有源逆变状态时,网侧电压、电流反相、负阻特性。进一步研究表明,由于PWM整流器网侧电流及功率因数均可控。因而可被推广应用于有源电力滤波及无功补偿等非整流器应用场合。 综上可见,PWM整流器实际上是一个交、直流可控的四象限,运行变流装置。控制技术是决定PWM整流器发展的关键因素,PWM整流控制对象是输入电流和输出电压,其中输入电流控制是整流器控制的关键。这是由于应用PWM 整流器的目的是使输入电流正弦化,在单位功率因数下运行。对输入电流有效控制实质就是对电力电子变换器的能量流动进行控制,进而控制输出电压。相反,

PWM整流电路控制原理及技术研究_杨红举

317 华章 二 ○一一年第十八期 Magnificent Writing 杨红举,张玉珍,淅川县电业局。 作者简介:PWM 整流电路控制原理及技术研究 杨红举,张玉珍 (淅川县电业局,河南淅川474450) [摘要]PWM控制技术是在电力电子领域有着广泛的应用,使电力电子技术的性能大大的提高,并对电力电子技 术产生了十分深远影响的一项技术。笔者就PWM整流电路的工作原理和PWM整流电路的控制方法进行了详细的阐述,以供读者参考。 [关键词]PWM整流电路;原理;控制方法PWM (Pulse Width Modulation )控制就是脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。如图1所示。PWM 的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM 相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM 用于通信的主要原因。从模拟信号转向PWM 可以极大地延长通信距离。在接收端,通过适当的RC 或LC 网络可以滤除调制高频方波并将信号还原为模拟形式。PWM 控制技术一直是变频技术的核心技术之一。1964年A.Schonung 和H.stemmler 首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。 目前,实用的整流电路几乎都是晶闸管整流或二极管整流。晶闸管相控整流电路输入电流滞后于电压,且其中谐波分量大,因此功率因数很低。而二极管整流电路虽位移因数接近1,但输入电流中谐波分量很大,所以功率因数也很低。把逆变电路中的SPWM 控制技术用于整流电路,就形成了PWM 整流电路。控制PWM 整流电路,使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为1,也称单位功率因数变流器,或高功率因数整流器。下面就PWM 整流电路及其控制方法进行详细的阐述。 1、PWM 整流电路的工作原理 PWM 整流电路也可分为电压型和电流型两大类,目前电压型的较多。 1.1单相PWM 整流电路。半桥电路直流侧电容必须由两个电容串联,其中点和交流电源连接。交流侧电感包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。 全桥电路直流侧电容只要一个就可以。 1.1.1单相全桥PWM 整流电路的工作原理。正弦信号波和三角波相比较的方法对图2中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 1.1.2对单相全桥PWM 整流电路工作原理的进一步说明整流状态下: u s >0时,如图2所示。(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。 V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s <0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 1.2三相PWM 整流电路。三相桥式PWM 整流电路,是最基本的PWM 整流电路之一,应用最广。工作原理和前述的单相全桥电路相似,只是从单相扩展到三相。如图3所示。进行SPWM 控制,在交流输入端A 、B 和C 可得SPWM 电压,按图4a 的相量图控制,可使i a 、i b 、i c 为正弦波且和电压同相且功率因数近似为1 。 2、PWM 整流电路的控制方法 2.1间接电流控制。间接电流控制也称为相位和幅值控制。图5 为间接电流控制的系统结构图。 图中的PWM 整流电路为图4的三相桥式电路,控制系统的闭环是整流器直流侧电压控制环。 2.2直接电流控制。通过运算求出交流输入电流指令值,再引入交流电流反馈,通过对交流电流的直接控制而使其跟踪指令电流值。有不同的电流跟踪控制方法,图6给出一种最常用 的采用电流滞环比较方式的控制系统结构图。 3、结语 综上所述,PWM 控制技术用于整流电路即构成PWM 整流电路,也可看成逆变电路中的PWM 技术向整流电路的延伸,其控制系统结构简单,电流响应速度快,系统鲁棒性好,目前在电力电子行业已获得了一些应用,并有良好的应用前景。 【参考文献】 [1]刘海云,韩继征,李玉仓,张浩,胡雪生.交直交变频三电平矢量脉宽调制模式的原理及调制算法探讨[A ].第十一届全国自动化应用技术学 术交流会论文集[C ].2006. [2]姚旺,王京.基于VxWorks 下的三电平PWM 整流器的控制研究[A ].自动化技术与冶金流程节能减排——全国冶金自动化信息网2008 年会论文集[C ].2008.

三相pwm整流器

空间矢量的广义仿真与实验研究三相电压源逆变器的脉宽调制技术 文摘 调速驱动系统需要可变电压和频率总是从三相获得供应电压源逆变器(VSI)。一定数量的脉冲宽度调制(PWM)用于获取可变电压和方案从一个逆变器频率供应。最广泛使用的三相逆变器是舰载正弦脉宽调制方案脉宽调制和空间矢量脉宽调制(SVPWM)。有增加趋势,利用空间矢量PWM(SVPWM)因为他们的简单数字的认识和更好的直流总线利用率。然而,一个合适的仿真模型还没有可用的文学。因此,本文在一步一步的发展SVPWM紧随其后的MATLAB / SIMULINK仿真模型实验的实现。首先讨论了三相逆变器的模型基于空间向量表示。下一个简单和灵活的仿真模型的SVPWM的方法,使用MATLAB / SIMULINK开发。发达模型一般自然,因为它可以利用来实现连续和不连续空间矢量。论文的新颖性依赖提议的灵活和通用SVPWM的Matlab / Simulink仿真模型。实验及仿真结果验证该模式 关键词:空间矢量PWM 不连续PWM电压源逆变器 1.介绍 三相电压源逆变器广泛应用于变速交流电动机驱动应用程序因为他们提供变量电压和通过脉冲宽度调制控制变频输出。持续改进和高成本开关频率的功率半导体器件和机器控制算法的发展导致越来越感兴趣更精确的PWM技术。的工作已经在这个方向进行,评估的流行技术提出了由霍尔兹(1992)和霍尔兹(1994)。使用最广泛的是舰载sine-triangle PWM脉宽调制方法由于简单的实现方法在模拟和数字实现。在此方法中,然而,直流总线利用率低,直流5 V,这导致了客观的调查其他技术改善直流总线利用率。它是Houdsworth和格兰特(1984)发现注入零序(第三次谐波)扩展了范围的操作调制器15.5%。与大功率传动的应用程序相关的主要问题是高在逆变器开关的损失。来降低切换损失称为不连续PWM脉宽调制技术(DPWM)是由Depenbrock(1977)和Kolar et al。(1991)。拟议中的不连续PWM技术是基于triangle-intersection-implementation中非正弦调制信号与三角载波比较。一个广义不连续脉宽调制算法提出的有et al。(1998)包括的技术Depenbrock Kolar(1977)和:et al。(1991)。

单相电压型PWM整流电路原理分析与仿真

单相电压型PWM整流电路原理分析与仿真 0 引言众所周知,在传统的整流电路中,晶闸管可控整流装置的功率因数会随着其触发角的增加而变坏,这不但使得电力电子类装置成为电网中的主要谐波因素,也增加了电网中无功功率的消耗。PWM 整流电路是采用脉宽调制技术和全控型器件组成的整流电路,能有效地解决传统整流电路存在的问题。通过对PWM 整流电路进行有效的控制,选择合适的工作模式和工作时序,从而调节了交流侧电流的大小和相位,使之接近正弦波并与电网电压同相或反相,不但有效地控制了电力电子装置的谐波问题,同时也使得变流装置获得良好的功率因数。 1 单相电压型桥式PWM 整流电路的结构单相电压型桥式PWM 整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1 所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L 为交流侧附加的电抗器,起平衡电压,支撑无功功率和储存能量的作用。图1 中 uN(t)是正弦波电网电压;Ud 是整流器的直流侧输出电压;us(t)是交流侧输入 电压,为PWM 控制方式下的脉冲波,其基波与电网电压同频率,幅值和相位可控;iN(t)是PWM 整流器从电网吸收的电流。由图1 所示,能量可以通过构成桥式整流的整流二极管VD1~VD4 完成从交流侧向直流侧的传递,也可以经全控器件VT1~VT4 从直流侧逆变为交流,反馈给电网。所以PWM 整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视VT1~VT4 的脉宽调制方式而定。 因为PWM 整流器从交流电网吸取跟电网电压同相位的正弦电流,其输入端的功率是电网频率脉动的两倍。由于理想状况下输出电压恒定,所以此时的输出电流id 与输入功率一样也是网频脉动的两倍,于是设置串联型谐振滤波器

三相PWM整流器

摘要 随着绿色能源技术的快速发展,PWM整流器技术己成为电力电子技术研究的热点和亮点。PWM整流器可成为用电设备或电网与其它电气设备的理想接口,因为它可以实现网侧电流正弦化和功率因数可调整。 本文首先分析了PWM整流器的基本原理,然后根据三相电压源型PWM整流器各相电压电流之间的关系和桥路的工作状态,给出系统在三相ABC坐标系和两相dq坐标系中的数学模型,利用电流反馈解耦控制,以及系统的基本控制框图。并设计了电压环和电流环数字化PI调节器,结合理论分析和实际对其参数进行了优化整定。 关键词:三相电压型PWM整流器;数学模型;dq变换。

1 三相电压源型PWM 整流器工作原理及数学模型 1.1 PWM 整流器原理 1.1.1 PWM 整流电路工作原理 将普通整流电路中的二极管或晶闸管换成IGBT 或MOSFET 等自关断器件,并将SPWM 技术应用于整流电路,这就形成了PWM 整流电路。通过对PWM 整流电路的适当控制,不仅可以使输入电流非常接近正弦波,而且还可以使输入电流和电压同相位,功率PWM 整流电路由于需要较大的直流储能电感以及交流侧LC 滤波环节所导致的电流畸变、振荡等问题,使其结构和控制复杂化,从而制约了它的应用和研究。相比之下,电压型PWM 整流电路以其结构简单,较低的损耗等优点,电压型PWM 整流电路的成功应用更现实鸭故选择电压型PWM 整流电路进行研究。下面分别介绍单相和三相PWM 整流电路的拓扑结构和工作原理。 图1-2 单相PWM 整流电路 图1-2为单相全桥PWM 整流电路,交流侧电感s L 包含外接电抗器的电感和交流电源内部电感,是电路正常工作所必需的。电阻s R 包含外接电抗器的电阻和交流电源内部电阻。同SPWM 逆变电路控制输出电压相类似,可在PWM 整流电路的交流输入端AB 产生一个正弦调制PWM 波AB u ,AB u 中除含有和开关频率有关的高次谐波外,不含低次谐波成分。由于电感s L 的滤波作用,这些高次谐波电压只会使交流电流

浅述PWM型整流器

浅述PWM型整流器 061230105 何卓 电力电子技术是现代电工技术中最活跃的领域,并且在电力系统中得到日益广泛的应用。电力电子技术根据用电场合而改变电能的应用方式,即所谓“变流”,使得电能的应用更好地满足人们的需求,并通过功能和性能的提高产生经济效益和社会效益。因此,电力电子技术又被认为是电能应用的优化技术。 除了线性功率放大的场合,电力电子装置中的功率器件大多工作于开关状态,这种电力电子装置不加控制的扩大应用,带来的一个副作用就是电网的“污染”。例如传统的二极管整流器和晶闸管相控整流器,其运行过程中,网侧电流均含有大量谐波,且总的功率因数较低,大量应用所导致的电磁兼容问题可能会造成严重的后果,因此必须加以限制。 环保意识的提高,促使人们在电力电子技术的发展中探索一条“绿色”之路。对变流装置而言,“绿色”的内涵应包括电网无谐波污染、单位功率因数,以及功率控制系统的高性能、高稳定性、高效率等传统变流装置所不具备的优越性能。“绿色”电能变换的需求呼唤着电力电子技术的发展,而电力电子技术的发展又促进了“绿色”电能变换的实现。PWM 整流器作为各种电力电子应用系统与电网的接口,其发展方向是将变流技术与微电子技术和自动控制技术相融合,已成为电力电子技术发展中的热点和亮点。 PWM控制技术的应用与发展为整流器性能的改进提供了变革性的思路和手段,结合了PWM控制技术的新型整流器称为整流器。经过20多年的研究与探索,PWM控制技术已成功应用于整流器的设计中,使整流器获得了前所未有的优良性能。 与传统的整流器相比,PWM整流器不仅获得了可控的AC/DC变换性能,而且可实现网侧单位功率因数和正弦波电流控制,甚至能使电能双向传输。一般称电能可双向传输的PWM整流器为可逆PWM整流器。由于可逆PWM整流器不仅体现出PWMAC/DC 变流特性(整流),而且还可呈现出PWMDC/AC变流特性(有源逆变),因而确切地说,可逆PWM整流器实际上是一种新型的可四象限运行的变流器。 随着PWM控制技术的发展,如空间矢量PWM(SVPWM)、滞环电流PWM控制等方案的提出,以及现代控制理论和智能控制技术的发展和应用,PWM整流器的性能得到了不断提高,功能也不断扩展。PWM整流器网侧独特的受控电流源特性,使得PWM 整流器作为核心被广泛应用于各类电力电子应用系统中,这些应用系统主要有:(1)功率因数校正(PowerFactorCorrector—PFC);(2)静止无功补偿(StaticVarCompensator—SVC);(3)有源电力滤波(ActivePowerFilter—APF); (4)统一潮流控制器(VnifiedPowerFlowController); (5)超导储能(SuperconductingMagneticEnergyStorage—SMES); (6)高压直流输电(HighVoltageDirectCurrentTransmission—HVDC); (7)可再生能源并网发电;

单相电压型PWM整流电路原理分析与仿真

论文(设计)撰写指导 文献综述 题目:单相电压型PWM整流电路原理分析与仿真 学院:人民武装学院 专业:电子信息科学与技术 班级: 2013级(专升本) 学号: 1320070193 学生姓名:丁武荣 指导教师:王代强 2014年7 月15 日

单相电压型PWM整流电路原理分析与仿真 在生活中很多地方往往要用到直流电源来供电,直流电源是能够维持电路中形成稳恒电流的装置,所以直流电源在生活中的地位也非常重要,但是在生活中用到的电源,往往是交流电,怎样将交流电转换成直流电呢?那就需要整流电路来实现。整流电路(rectifying circuit)把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压。习惯上称单向脉动性直流电压。 传统的整流电路中,晶闸管相控整流电路的输入电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输入中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输入电流中谐波分量很大,功率因数也较低。传统低频整流电路存在的问题【1】PWM整流电路是采用脉宽调制技术和全控型器件组成的整流电路,能有效地解决传统整流电路存在的问题。通过对PWM整流电路进行有效的控制,选择合适的工作模式和工作时序,从而调节了交流侧电流的大小和相位,使之接近正弦波并与电网电压同相或反相,不但有效地控制了电力电子装置的谐波问题,同时也使得变流装置获得良好的功率因数。PWM(Plll∞Width Modulation)控制就是脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换【2】。PWM整流器种类较多,根据输入交流电源相数分为单相和三相P W M整流电路;按主电路结构分为单开关与多开关型;根据PWM整流器直流侧电能输出环节的不同,又可以将PWM整流器分为电压型PWM整流器和电流型PWM整流器;按桥路结构可分为半桥电路和全桥电路;另外,还有新型的三电平PWM整流器等。【3】PWM 整流电路的控制方法有直接电流控制和间接电流控制两种。直接电流控制引入交流输入电流反馈实行闭环控制,其电流指令运算电路比不引入交流输入电流反馈的间接电流控制简单,因此,本文采用直接电流控制方法。【4】单相电压型PWM整流电路与三相整流电路相比较,三相电压型PWM 整流器的工作原理,它具有高功率因数,低谐波污染等显著优点,必将在节能降耗,改善供电质量方面起到巨大的应用。【5】单相电压型PWM整流电路的结构图如下:

PWM整流技术原理及在和谐号机车上的应用应用

课程名称:牵引电机课程设计 设计题目:PWM整流技术在和谐号 系列机车上的应用 院系:电气工程系 专业:电力机车 年级:2009级 姓名: 指导教师: 西南交通大学峨眉校区 2012 年10 月25 日

课程设计任务书 专业姓名学号 开题日期:年月日完成日期:年月日 题目PWM整流技术在和谐号系列机车上的应用 一、设计的目的 通过该设计,使学生初步掌握PWM整流技术的组成系统、作用原理以及其在和谐号机车上的应用。 二、设计的内容及要求 1.画出PWM蒸馏技术的原理图; 2.并说明图中各主要部件的作用、性能; 3.掌握PWM调频调压技术的工作原理; 4.掌握PWM整流技术在和谐号及车上的应用。 三、指导教师评语 四、成绩 指导教师(签章) 年月日

PWM整流技术原始资料PWM整流电路是PWM控制方式和全控型器件组成的整流电路。就整流电路而言,按相数不同有单相和三相之分,按滤波环节所用器件不同,又有电压型和电流型两种,而现在普遍使用的是电压型整流电路。对PWM 整流电路的控制方式,在机车上我们采用的是以正弦信号为调制波的正弦脉宽调制(简称SPWM)。 一:单相桥式电压型PWM整流电路 单相桥式电压型PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供中间环节,器电路如图1所示。每个桥臂有一个全控器件和反并联的整流二极管在组成。L为交流侧附加的电抗,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图1 单相桥式电压型PWM整流电路 二:三相电压型PWM整流电路 图2为三相电压型PWM整流电路,其应用非常广泛,工作原理与单相桥式PWM整流电路相似。对六个全控器件按一定要求和反式进行控制,在

PWM整流电路工作原理

P W M整流电路工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

PWM整流电路的原理分析 摘要:无论是不控整流电路,还是相控整流电路,功率因数低都是难以克服的缺点.PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,本文以《电力电子技术》教材为基础,详细分析了单相电压型桥式PWM整流电路的工作原理和四种工作模式。通过对PWM整流电路进行控制,选择适当的工作模式和工作时间间隔,交流侧的电流可以按规定目标变化,使得能量在交流侧和直流侧实现双向流动,且交流侧电流非常接近正弦波,和交流侧电压同相位,可使变流装置获得较高的功率因数。 1 概述 传统的整流电路中,晶闸管相控整流电路的输人电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输人中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输人电流中谐波分量很大,功率因数也较低。 PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输人电流非常接近正弦波,且和输人电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。 参考文献[1]在第6章“PWM控制技术”中增添了“PWM整流电路及其控制方法”这一部分内容。但在PWM整流电路的工作原理中介绍篇幅较少,只是针对PWM整流电路的运行方式相量图进行分析,没有分析其工作过程。对PWM 整流电路不熟悉的教师在了解这部分内容时普遍感觉吃力。 1 单相电压型桥式PWM整流电路 电压型单相桥式PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供直流中间环节,其电路如图I所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L为交流侧附加的电抗器,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图 1 电压型单相桥式PWM整流电路

三相电压型PWM整流器PI调节器参数整定的原理和方法

三相电压源型PWM整流器 PI调节器参数整定的原理和方法 1引言 1.1 PID调节器简介 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。目前,在工业过程控制中,95%以上的控制回路具有PID结构。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的,其原理图如图1-1所示。 图1-1 PID控制系统原理图 PID控制器传递函数常见的表达式有以下两种: (1) ()i p d K G s K K s s =++ ,Kp代表比例增益,Ki代表积分增益,Kd代表微 分增益;

(2) 1 () p d i G s K T s T s =++ (也有表示成 1 ()(1) p d i G s K T s T s =++),Kp代表比 例增益,Ti代表积分时间常数,Td代表微分时间常数。 这两种表达式并无本质区别,在不同的仿真软件和硬件电路中也都被广泛采用。 ?比例(P,Proportion)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系,能及时成比例地反映控制系统的偏差信号,偏差一旦产 生,调节器立即产生控制作用,以减少偏差。当仅有比例控制时系统输 出存在稳态误差(Steady-state error)。 ?积分(I,Integral)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制 系统是有稳态误差的或简称有差系统(System with Steady-state Error)。 为了消除稳态误差,在控制中必须引入“积分项”。积分项对误差取决 于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小, 积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误 差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系 统在进入稳态后无稳态误差。积分作用的强弱取决于积分时间常数Ti, Ti越大,积分作用越弱,反之则越强。 ?微分(D,Differential)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现 振荡或者失稳。其原因是在于由于存在有较大惯性组件(环节)或有滞 后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用“超前”,即在误差接近零时,抑制误 差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是 不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微 分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就

相关主题
文本预览
相关文档 最新文档