当前位置:文档之家› 二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系(专题)
二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系

课时学习目标:

1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。

2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。

3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。

学习重点:

利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。。

学习难点:利用图像认识总结函数性质变化规律。 一、复习预备

1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。

2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。

3.已知函数y= x 2 -2x -3 ,

(1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的?

(2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;

(5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积;

(6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。 例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a

其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个. 二、归纳二次函数y=ax 2+bx+c(a ≠0)的图像

与系数a 、b 、c 、ac b 42-的关系

三、二次函数图像对称变换前后系数的关系探究

例1. 某抛物线和函数y= -x2 +2x -3的图象关于y轴成轴对称, 请你求出该抛物线的关系式。

例2. 某抛物线和函数y= -x2 +2x -3的图象关于x轴成轴对称, 请你求出该抛物线的关系式。

例3.某抛物线和函数y= -x2 +2x -3的图象关于原点成中心对称,请你求出该抛物线的关系式。

例4.某抛物线和函数y= -x2 +2x -3的图象关于顶点坐标成轴对称, 请你求出该抛物线的关系式。

例5.某抛物线和函数y= -x2 +2x -3的图象关于点(3,2)成中心对称, 请你求出该抛物线的关系式。

函数y= ax2 +bx+c的图象对称变换后,解析式系数变化规律:

四、达标检测

1. 二次函数y= ax 2 +bx+c(a ≠0)的图象如图所示,则点A(a,b)在( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限

2.二次函数y= ax 2 +bx+c(a ≠0)的图象如图所示,则下列条件不正确的是( ) A.a<0,b>0,c<0 B.b 2-4ac<0 C.a+b+c<0 D.a-b+c>0

3.二次函数y= 6x 2

___________, 关于y 轴对称的图象于坐标原点对称的解析式___________________.

(1)具体步骤:

先利用配方法把二次函数化成

2()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图所示:

(2)平移规律:在原有函数的基础上“左加右减,上加下减”. 二、二次函数图象的对称变换

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

2. 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

3. 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

5. 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

无论抛物线作何种对称变换,形状不变,a 不变.求抛物线的对称抛物线的表达式时,先确定已知抛物

(1) (2)

线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,再写出其对称抛物线的表达式.

【习题分类】

一、二次函数图象的平移变换

1、函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤是:( )

A. 右移两个单位,下移一个单位

B. 右移两个单位,上移一个单位

C. 左移两个单位,下移一个单位

D. 左移两个单位,上移一个单位

2、函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤

是( )

A. 右移三个单位,下移四个单位

B. 右移三个单位,上移四个单位

C. 左移三个单位,下移四个单位

D. 左移四个单位,上移四个单位

3、二次函数2241y x x =-++的图象如何移动就得到2

2y x =-的图象( )

A. 向左移动1个单位,向上移动3个单位.

B. 向右移动1个单位,向上移动3个单位.

C. 向左移动1个单位,向下移动3个单位.

D. 向右移动1个单位,向下移动3个单位.

4、将函数2y x x =+的图象向右平移()0a a >个单位,得到函数232y x x =-+的图象,则a 的值为( )

A .1

B .2

C .3

D .4

5、把抛物线2y ax bx c =++的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是235y x x =-+,则a b c ++=________________.

6、对于每个非零自然数n ,抛物线()()

2211

11n y x x n n n n +=-

+

++与x 轴交于n n A B 、两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++…的值是( )

A .

20092008 B .20082009 C .20102009 D .2009

2010

7、把抛物线2y x =-向左平移1个单位,向上平移3个单位,则平移后抛物线的解析式为( )

A .()213y x =---

B .()2

13y x =-+- C .()2

13

y x =--+ D .()2

13

y x =-++

8、将抛物线22y x =向下平移1个单位,得到的抛物线是( )

A .()221y x =+

B .()2

21y x =- C .221y x =+ D .221y x =-

9、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( )

10、一抛物线向右平移3个单位,再向下平移2个单位后得抛物线224y x x =-+,则平移前抛物线的解析式为________________.

11、如图,ABCD Y 中,4AB =,点D 的坐标是(0,8),以点C 为顶点的抛物线2y ax bx c =++ 经过x 轴上的点A ,B .

⑴ 求点A ,B ,C 的坐标.

⑵ 若抛物线向上平移后恰好经过点D ,求平移后抛物线的解析式.

12、抛物线254y ax x a =-+与x 轴相交于点A B 、,且过点()54C ,

. ⑴ 求a 的值和该抛物线顶点P 的坐标.

⑵ 线的解析式.

二、二次函数图象的对称变换 1、函数2y x =与2y x =-的图象关于______________对称,也可以认为2y x =是函数2y x =-的图象绕__________旋转得到. 2、已知二次函数221y x x =--,求: ⑴关于x 轴对称的二次函数解析式;

⑵关于y 轴对称的二次函数解析式; ⑶关于原点对称的二次函数解析式.

3、在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )

A .22y x x =--+

B .22y x x =-+-

C .22y x x =-++

D .22y x x =++

4、已知二次函数2441y ax ax a =++-的图象是1c .

⑴ 求1c 关于()10R ,成中心对称的图象2c 的函数解析式; ⑵ 设曲线12c c 、与y 轴的交点分别为A B ,,当18AB =时,求a 的值. 5、已知抛物线265y x x =-+,求

⑴ 关于y 轴对称的抛物线的表达式; ⑵ 关于x 轴对称的抛物线的表达式; ⑶ 关于原点对称的抛物线的表达式.

6、设曲线C 为函数()20y ax bx c a =++≠的图象,C 关于y 轴对称的曲线为1C ,1C 关于x 轴对称的曲线为2C ,则曲线2C 的函数解析式为________________.

7、对于任意两个二次函数:()2211112222120y a x b x c y a x b x c a a =++=++≠,,当12a a =时,

我们称这两个二次函数的图象为全等抛物线,现有ABM ?,()()1010A B -,

,,,记过三点的二次函数抛物线为“C W W W ”(“□□□”中填写相应三个点的字母).

⑴ 若已知()01M ,,ABM ABN ??≌(图1),请通过计算判断ABM C 与ABN C 是否为全等抛物线; ⑵ 在图2中,以A B M 、、三点为顶点,画出平行四边形.

① 若已知()0M n ,

,求抛物线ABM C 的解析式,并直接写出所有过平行四边形中三个顶点且能与ABM C 全等的抛物线解析式.

② 若已知()M m n ,,当m n 、满足什么条件时,存在抛物线ABM C ?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与ABM C 全等的抛物线.若存在,请写出所有满足条件的抛物线“C W W W ”;若不存在,请说明理由.

8、已知:抛物线2:(2)5f y x =--+. 试写出把抛物线f 向左平行移动2个单位后,所得的新抛物线1f 的解析式;以及f 关于x 轴对称的曲线2f 的解析式.画出1f 和2f 的略图, 并求:

⑴ x 的值什么范围,抛物线1f 和2f 都是下降的;

⑵ x 的值在什么范围,曲线1f 和2f 围成一个封闭图形;

⑶ 求在1f 和2f 围成封闭图形上,平行于y 轴的线段的长度的最大值.

二次函数图形变换综合压轴题

1、在平面直角坐标系xoy 中,抛物线322

--=mx mx y (m ≠0)与x 轴交于A (3,0),B 两

点.

(1)求抛物线的表达式及点B 的坐标.

(2)当-2<x <3时的函数图像记为G ,求此时函数y 的取值范围.

(3)在(2)的条件下,将图像G 在x 轴上方的部分沿x 轴翻折,图像G 的其余部分保

持不变,得到一个新图像M.若经点C(4,2)的直线y=kx+b (k ≠0)与图像M 在第三象限内有两个公共过点,结合图像求b 的取值范围.

2、已知关于x 的一元二次方程0132

=-+-k x x 有实数根,k 为正整数.

(1)求k 的值;

(2)当此方程有两个不为0的整数根时,将关于x 的二次函数

132

-+-=k x x y 的图象向下平移2个单位,求平移后的函数图象的解析式;

(3)在(2)的条件下,将平移后的二次函数图象位于y 轴左侧的部分沿x 轴翻折,图象的

其余部分保持不变,得到一个新的图象G .当直线5y x b =+与图象G 有3个公共点时,请你直接写出b 的取值范围.

3、已知:抛物线C1:5442-++=a ax ax y 的顶点为P,与x 轴相交于A,B 两点(点A 在点B 的左边),点B 的横坐标是1

(1)求抛物线的解析式和顶点坐标;

(2)将抛物线沿x 轴翻折,再向右平移,平移后的抛物线C2的顶点为M ,当点P ,M 关于点B 成中心对称时,求平移后的抛物线C2的解析式;

(3)直线y=-5

3

x+m 与抛物线C1,C2的对称轴分别交于点E,F ,设由点E ,P ,F ,M 构成的

四边形的面积为S ,试用含m 的代数式表示S 。

4、将抛物线沿c1:3

1

312+-

=x y 沿x 轴翻折,得拋物线c2,如图所示. (1)请直接写出拋物线c2的表达式.

(2)现将拋物线C1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E . ①当B ,D 是线段AE 的三等分点时,求m 的值;

②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.

5、将抛物线沿c1:332+-=x y 沿x 轴翻折,得拋物线c2,如图所示.

(1)请直接写出拋物线c2的表达式.

(2)现将拋物线C1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E . ①当B ,D 是线段AE 的三等分点时,求m 的值;

②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.

二次函数图像与系数关系

二次函数图象与系数的关系 知识点 一、二次函数错误!未找到引用源。的图象与性质 二次函数错误!未找到引用源。图象可由抛物线错误!未找到引用源。平移个单位,再平移个单位而得到. 平移规律如下: (1)平移时与上、下、左、右平移的先后顺,既可以先左右移再上下移,也可以先上下移再左右移; (2)抛物线的移动主要看的移动,即在平移时只要抓住的位置变化就可以了; (3)平移规律:“上加下减,左加右减”. (4)抛物线错误!未找到引用源。经过反向平移也可以得到错误!未找到引用源。; (5)抛物线错误!未找到引用源。的对称轴是直线,顶点坐标是. 二次函数错误!未找到引用源。的性质列表如下: 函数 错误!未找到引 用源。的符号 错误!未找到引用源。错误! 未找到引用源。 错误!未找到引用源。错误! 未找到引用源。 图象 开口方向 对称轴 顶点坐标 最值

函数的增减性 二、错误!未找到引用源。与错误!未找到引用源。的互相转化 1.通过、可以将错误!未找到引用源。化为错误!未找到引用源。. 2.利用可以将错误!未找到引用源。转化为错误!未找到引用源。.简记为“一提,二配,三计算”.即错误!未找到引用源。错误!未找到引用源。. 因此,二次函数错误!未找到引用源。的图象是一条抛物线,它的对称轴是直线,顶点坐标 是. 三、二次函数错误!未找到引用源。的图象及性质 函数 错误!未找到引用源。的符号错误!未找到引用源。错误!未找 到引用源。 错误!未找到引用源。错误!未找 到引用源。 图象 开口方向 对称轴 顶点坐标 增减性 最值 拓展:对于抛物线错误!未找到引用源。. (1)若已知在直线错误!未找到引用源。的一侧,图象上升或下降,(能/不能)确定直线错误!未找到引用源。是该抛物线的对称轴. (2)若已知在直线错误!未找到引用源。的两侧,图象一侧上升而另一侧下降,则(能/不能)确定该直线

二次函数yax2的图象

二次函数y=ax2的图象 教学设计示例1 课题:二次函数的图象 教学目标: 1、会用描点法画出二次函数的图象; 2、根据图象观察、分析出二次函数的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由非凡到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和分析问题的能力; 6、培养学生勇于探索创创新及实事求是的科学精神. 教学重点:根据图象,观察、分析出二次函数的性质 教学难点:渗透数形结合的数学思想方法 教学用具:直尺、微机 教学方法:谈话、探究式 教学过程: 1、列表、描点画出函数与的图象,引入新课 例:画出函数与的图象 解:列两个表 x 4 3

1 0 1 2 3 4 8 2 2 8 x 2 1

1 2 8 2 2 8 分别描点画图 2、根据图象发现问题,由学生探索出新知识. 提问:你能从图象中发现抛物线是哪些性质?这两个函数图象有何异同? 这两个函数的图象都关于y轴对称.这一点可以从刚才的列表中可以看出, 时所对应的y值分别相等,如等.这样的两个点关于y轴对称.由这些点构成的抛物线也关于y轴对称.从解析式中也可以得出这个结论:互为相反数的两个数的平方数相等,因此,这两个函数的图象都是关于y轴对称

从图中可以看出,x可取x轴上的任意一点,而y对应的是大于、等于零的数.即抛物线有最低点.这一点可以从解析式中得到很好的解释, 可取 任意实数. 图象开口向上.这也说明数与形是数学中的两条线索,它们是互相对应的,反映了数形结合的思想. 从图中也可以看出抛物线不同于我们以前学过的正比例函数和一次函数,这两个函数的图象都是直线,而抛物线是曲线,有一个拐弯,函数的图象都在最低点拐了一个弯.这样它们的性质几发生了变化.在y轴的左侧,从左向右呈下坡趋势,即y随x的增大而减小;在y轴的右侧,从左向右,呈上坡趋势,即y随x的增大而增大.这一变化趋势也可以从列表中看出. 这两个图象除以上相同之处外,还有不同的地方.如: 离y轴近, 离y轴远.从列表中可以看出:如过点,而过点也就是说,当x=2时, 的图象所对应的点高于所对应的点.因此会有上述的结论. 3、画出函数的图象 与中的a都是正数,当a0时,抛物线的开口向上,当a<0时,抛物线的开口向下,a的绝对值越大,图象越靠近y 轴. 6、小结:这一节课,从始至中都是结合图象观察、归纳

二次函数的对称轴(学练结合)

二次函数的对称轴 二次函数的图像是关于某条直线对称的抛物线,这条直线就叫做对称轴。我们用公式这样表示对称轴,直线x=-b/2a,有图像可知,当二次函数图像上两点的纵坐标相等时,那么这两点必然关于对称轴对称,且对称轴为这两点横坐标之和的一半。形如:点 A(x1,y1)、B(x2,y2)在二次函数的图像上,若y1=y2,那么图像的对称轴为 (x1+x2)/2。抛物线的顶点必然通过对称轴。所以可以根据顶点坐标直接求出对称轴。例如已知二次函数的顶点坐标为(x1,y1),那么二次函数的对称轴为直线x=x1。 在平面直角坐标坐标系中,已知两点坐标便可求其连线的中点坐标,例如:已知点 A(x1,y1)、B(x2,y2),则两点连线的中点为 C((x1+x2)/2,(Y1+Y2)/2),一般情况,出题者会结合一次函数,中垂线,三角形,二次函数进行综合考查。

例题演练 1、已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴() A.只能是x=﹣1 B.可能是y轴 C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧 2、已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是() A. 3 B. 4 C. 5 D. 6 3、如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b. (1)求二次函数y1的解析式及点B的坐标; (2)由图象写出满足y1<y2的自变量x的取值范围; (3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.

2021年九年级中考复习求二次函数图像变化后解析式

求二次函数图像变化后解析式 一般式:y=ax2+bx+c中任意一点坐标为(x,y) ①关于x轴对称:横坐标不变,纵坐标变为相反数,对称后的点坐标为(x,-y)把新坐标代入到原解析式?y=ax2+bx+c整理得y=?ax2?bx?c 例:y=x2+4x+3中任意一点坐标为(x,y),点(x,y)关于x轴对称后变为(x,-y),把新坐标代入到原解析式得?y=x2+4x+3即y=?x2?4x?3 ②关于y轴对称:横坐标变为相反数,纵坐标不变,对称后的点坐标为(-x,y)把(-x,y)代入到原解析式得y=a(?x)2+b(?x)+c整理得y=ax2?bx+c 例:y=x2+4x+3中一点(x,y)关于y轴对称后坐标为(-x,y), 把(-x,y)代入到原解析式得y=(?x)2+4(?x)+3整理得y=x2?4x+3

③关于原点对称:横纵坐标变为相反数,对称后坐标为(-x,-y ) 把新坐标代入到原解析式?y =a (?x )2+b (?x )+c 整理得y=?ax 2+bx ?c 例:y =x 2+4x +3中一点(x ,y )关于原点对称后坐标(-x,-y ) 把(-x,-y )代入到原解析式得?y =(?x )2+4(?x )+3整理得y =?x 2+4x ?3 ④关于任一点(m ,n )对称:对称后坐标为(x1,y1) ∵(m ,n )为(x ,y )和(x1,y1)两点中点 由中点公式得m =x+x12 n =y+y12 整理的 x1=2m-x y1=2n-y 即对称后坐标(2m-x, 2n-y ),把新坐标代入原解析式得 2n-y=a (2m ?x )2+b (2m ?x )+c ,整理得y=?a (2m ?x )2?b (2m ?x )?c +2n 例:y =x 2+4x +3关于点(3,3)对称,任意一点(x,y )关于(3,3)对称后得坐标 (x1,y1),∵x+x12=3,y+y12 =3 解得x1=6-x ,y1=6-y 即新坐标为(6-x ,6-y ) 把(6-x ,6-y )代入原解析式得6-y=(6?x )2+4(6?x )+3 整理得y =x 2+16x ?57

超经典二次函数图象的平移和对称变换总结

二次函数图象的几何变换 内容基本要求略高要求较高要求 二次函数 1.能根据实际情境了解 二次函数的意义; 2.会利用描点法画出二 次函数的图像; 1.能通过对实际问题中 的情境分析确定二次函 数的表达式; 2.能从函数图像上认识 函数的性质; 3.会确定图像的顶点、 对称轴和开口方向; 4.会利用二次函数的图 像求出二次方程的近似 解; 1.能用二次 函数解决简 单的实际问 题; 2.能解决二 次函数与其 他知识结合 的有关问 题; 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 () y a x h k =-+的形式,确定其顶点(,) h k,然后做出二次函数2 y ax =的图像,将抛物线2 y ax =平移,使其顶点平移到(,) h k.具体平移方法如图所示: (2)平移规律:在原有函数的基础上“左加右减”.

二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2 y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称 2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2 y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称 2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称 2 y ax bx c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2 y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2 y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系 一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下: 1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:∣a ∣越大,抛物线的张口越小. 2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明02<- a b ,则对称轴在y 轴的左边; b 与a 异号,说明?b 2a >0,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴. 3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0 抛物线与y 轴的交点在y 轴的正半轴; c < 0 抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0,抛物线过原点. 4 a,b,c 共同决定判别式?=b 2?4ac 的符号进而决定图象与x 轴的交点 b 2?4a c >0 与x 轴两个交点 b 2?4a c =0 与x 轴一个交点 b 2?4a c <0 与x 轴没有交点 5 几种特殊情况:x=1时,y=a + b + c ; x= -1时,y=a - b + c . 当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0 当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0. 扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。 一.选择题(共8小题) 1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( ) A .a >0 B .b <0 C .c <0 D .b +2a >0 2.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( ) A .a >0 B .b <0 C .ac <0 D .bc <0. 3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:① abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有 ( ) A .1个 B .2个 C .3个 D .4个 4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0; ②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( ) A .4个 B .3个 C .2个 D .1个 第3题图 第4题图 第5题图 第6题图 5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0; ②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( ) A .1个 B .2个 C .3个 D .4个 6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

二次函数图像问题及答案难题.

二次函数图像性质 1、二次函数c bx ax y ++=2的图像如图所示,OA =OC , ①abc <0;② 24b ac <;③1-=-b ac ; ④02<+b a ;⑤ a c OB OA -=?; ⑥024< +-c b a 。其中正确的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2、抛物线y=ax 2 +bx+c 的图象如图,OA=OC ,则( ) (A ) ac+1=b; (B ) ab+1=c; (C )bc+1=a; (D )以上都不是 3,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图2所示,给出以下结论:① a +b +c <0;② a -b +c <0;③ b +2a <0;④ abc >0 .其中所有正确结论的序号是( ) A. ③④ B. ②③ C. ①④ D. ①②③ 4.如图是二次函数y =ax 2+bx +c x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c ________________.(填序号) 5.y =ax 2+bx +c (a ≠0)的图象如下图所示,abc ,b 2-4ac ,a -b +c ,a +b +c ,2a -b ,9a -4b 的有( ) A .1个 B .2个 C .3个 D .4个 6.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结 论: ①240b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<. 其中,正确结论的个数是 (A )1 (B )2 (C )3 (D )4 7.已知二次函数y=ax 2+bx+c 的图像与x 轴交于点(-2,0)(x 1,0),且1<x 1<2,与y 轴正半轴的交点在(0,2)下方。下列结论:(1)4a-2b+c=0.(2)a <b <0.(3)2a+c >0.(4)2a-b+1>0.其中正确的序号是 . 第(16)题

二次函数的对称性

(一)、教学内容 1.二次函数得解析式六种形式 ①一般式y=ax2 +bx+c(a≠0) ②顶点式(a≠0已知顶点) ③交点式(a≠0已知二次函数与X轴得交点) ④y=ax2(a≠0)(顶点在原点) ⑤y=ax2+c(a≠0) (顶点在y轴上) ⑥y=ax2 +bx (a≠0) (图象过原点) 2.二次函数图像与性质 对称轴: 顶点坐标: 与y轴交点坐标(0,c) 增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大 ?当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小 ☆二次函数得对称性 二次函数就是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应得纵坐标相等那么对称轴: 与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0) 与抛物线y=ax2 +bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2–bx-c(a≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数得对称轴 1、二次函数y=-mx+3得对称轴为直线x=3,则m=________。 2、二次函数得图像上有两点(3,-8)与(-5,-8),则此拋物线得对称轴就是( ) (A) (B) (C) (D) 3、y=2x-4得顶点坐标为___ _____,对称轴为__________。 4、如图就是二次函数y=ax2+bx+c图象得一部分,图象过点A(-3,0),对称轴为x=-1.求 它与x轴得另一个交点得坐标( , ) 5、抛物线得部分图象如图所示,若,则x得取值范围就是( ) A、 B、 C、或 D、或 6、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为 ( ) A、0 B、-1 C、 1 D、2 题型2 比较二次函数得函数值大小 1、、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为 ( ) (A)a+c (B)a-c (C)-c (D)c 2、若二次函数得图像开口向上,与x轴得交点为(4,0),(-2,0)知,此抛物 线得对称轴为直线x=1,此时时,对应得y 1 与y 2 得大小关系就是( ) A.y 1 <y 2 B、 y 1 =y 2 C、 y 1 >y 2 D、不确定 点拨:本题可用两种解法y x O –1 1 3 O –1 3 3 1

二次函数图像与系数的关系

二次函数图像与系数的关系 1. 如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A. 个 B. 个 C. 个 D. 个 2. 小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A. 个 B. 个 C. 个 D. 个 3. 设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A. ①② B. ③④ C. ①④ D. ①③ 5. 已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6. 已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7. 如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A. 个 B. 个 C. 个 D. 个 8. 二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A. 个 B. 个 C. 个 D. 个 9. 如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A. ①③④ B. ①②③ C. ①②④ D. ①②③④ 10. 已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

二次函数的图像与系数的关系

二次函数的图像与系数的关系 1.已知二次函数y=ax 2 +bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c >0;③4a+2b+c >0;④2a+b=0;⑤b 2 >4ac.其中正确的结论的有( ) A. 1个 B. 2个 C. 3个 D. 4个 2.如图,二次函数y =ax 2 +bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( ) A. a >0,b <0,c >0 B. b 2 ﹣4ac <0 C. 当﹣1<x <2时,y >0 D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数 图象,过点A (3,0),二次函数图象的对称轴是直线 x=1,下列结论正确的是( ) A. 2a+b=0 B. ac>0 C. D. 4.已知函数y=mx 2 -6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( ) A. 9 B. 0 C. 9或0 D. 9或1 5.如图,二次函数2 y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <, 0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大

而减小,其中正确的是(). A. ①②③ B. ②③④ C. ③④⑤ D. ①③④ 6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是() A. B. C. D. 7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0; ②9a+c<3b; ③25a+5b+c=0; ④当x>2时,y随x的增大而减小. 其中正确的结论有() A. 1个 B. 2个 C. 3个 D. 4个 8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,?③当-2<x<0时,y<0.正确的个数是()

二次函数图像与系数的关系

教学设计—— 二次函数的系数与图像 长葛六中刘晓金 目标:1、通过观察二次函数的图像的形成过程,导出二次函数的图像与系数的关系。 2、理解和探索相关二次函数的图像之间的关系。 3、会用学习的知识判断相关二次函数的图像之间的关系。 4、运用相关知识解决平移、对称、翻转图像的抛物线解析式。 重点:1、探索和总结二次函数的图像与系数之间的关系。 2、运用相关知识解决问题。 难点:运用相关知识解决问题。 学法:1、通过观察发现相关知识。 2、通过合作探索知识的运用。 教法:运用课件对知识由浅入深地进行展示,不断引导学生观察、探索、总结和应用。 教学过程 一、课堂导入 1、导言:不同的二次函数,图像也不相同,即使有时形状相同,在坐标系中的位置也不尽相同。你知道这是为什么吗?本节我们就一起来探讨一下。 (展示幻灯片1) 2、展示本节教学主要过程。 (展示幻灯片2) 二、师生互动过程 1、a的符号与抛物线开口方向

①、学生在练习本上画出y=x2,y=-x2的草图,观察抛物线的开口方向。 ②、(展示幻灯片3) ③、学生对着幻灯片,检查自己的发现。 ④、总结出:a>0时抛物线开口方向向上,a<0时抛物线开口方向向下。 ⑤、练习在抛物线y=(k-1)x2+x+1中k 时开口向上,k 时开口向下。 2、a的绝对值与图像开口的大小 ①、导言:我们知道二次函数的图像虽然是抛物线,但是形状却不尽相同,这究竟是为什么呢? ②、(展示幻灯片4)引导学生认真观察不同函数图像的形状(开口大小)与什么相关联? ③、引导学生总结出:a的绝对值相等,抛物线开口方向不同,大小相同。 ④、练习k取时,抛物线y=(k+3)x2-x+6可以由抛物线y=2x2变化而来。 3、C与图像和y轴的交点位置 ①、(展示幻灯片5) ②、通过引导学生,使学生总结出:C=0时抛物线与y轴相交于原点;C >0时抛物线与y轴相交于X轴上方;C<0时抛物线与y轴相交于x轴下方。 (C的值决定抛物线与y轴相交的位置) 4、a.b与对称轴的位置 ①、学生写出y=x2, y=x2+2x, y=x2-2x, y=-x2+2x, y=-x2-2x 中各个式子中a、b的值,并计算出ab 的值。 ②、(展示幻灯片6) ③、引导学生探讨幻灯片中各个图像的形成过程,总结出:ab=0时对称轴与y 轴重合;ab>0时对称轴在y轴的左边;ab<0时对称轴在y轴的右边。

二次函数图像和系数的关系

二次函数图像与系数的关系 1.如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A.个 B.个 C.个 D.个 2.小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A.个 B.个 C.个 D.个 3.设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A.①② B.③④ C.①④ D.①③ 5.已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6.已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7.如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A.个 B.个 C.个 D.个 8.二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A.个 B.个 C.个 D.个 9.如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A.①③④ B.①②③ C.①②④ D.①②③④ 10.已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

11. 已知二次函数()的图象如图所示,对称轴为。下列结论中,正确的是 ()。 A. B. C. D. 12. 如图,二次函数()的图象经过点和,下列结论中正确的是()。 A. B. C. D. 13. 如图,二次函数的图象与轴正半轴相交,其顶点的坐标为,下列结论: ①;② ;③;④。其中错误的是()。 A.① B.② C.③ D.④ 14. 如图,抛物线()过点和点,且顶点在第四象限,设, 则的取值范围是()。 A. B. C. D. 15. 已知二次函数的图象如图,则下列叙述正确的是()。 A. B. C. D.将该函数图象向左平移个单位后所得到抛物线的解析式为

二次函数图像与系数关系含答案

二次函数图像与系数关系 一.选择题(共9小题) 1.(2013?义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中, 正确的是() A.①②B.③④C.①④D.①③ 考点:二次函数图象与系数的关系. 专题:计算题;压轴题. 分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断; ②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入 (3a+b),并判定其符号; ③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值 范围; ④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0), ∴根据图示知,当x>3时,y<0. 故①正确; ②根据图示知,抛物线开口方向向下,则a<0. ∵对称轴x=﹣=1, ∴b=﹣2a, ∴3a+b=3a﹣2a=a<0,即3a+b<0. 故②错误; ③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0), ∴﹣1×3=﹣3, ∴=﹣3,则a=﹣. ∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点), ∴2≤c≤3, ∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣. 故③正确;

④根据题意知,a=﹣,﹣=1, ∴b=﹣2a=, ∴n=a+b+c=c. ∵2≤c≤3, ∴≤c≤4,即≤n≤4. 故④错误. 综上所述,正确的说法有①③. 故选D. 点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定. 2.(2013?烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 考点:二次函数图象与系数的关系. 专题:压轴题. 分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断 ③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的 增大而增大即可判断④. 解答:解:∵二次函数的图象的开口向上, ∴a>0, ∵二次函数的图象y轴的交点在y轴的负半轴上, ∴c<0, ∵二次函数图象的对称轴是直线x=﹣1, ∴﹣=﹣1, ∴b=2a>0,

二次函数系数abc与图像的关系28318

二次函数系数a、b、c与图像的关系 知识要点 二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0. (2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac <0. (5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号. (6)由对称轴公式x=,可确定2a+b的符号. 一.选择题(共9小题) 1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0 (m≠﹣1). 其中正确的个数是() A.1B.2C.3D.4 2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下 结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号 是() A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下 列四个结论: ①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有() A.1个B.2个C.3个D.4个 4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论: ①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确结论的个数为() A.1B.2C.3D.4 5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1, 且过点(﹣3,0)下列说法: ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点, 则y1>y2. 其中说法正确的是()

二次函数图像与性质总结

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.

概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我 们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

二次函数图像的变换

二次函数图像的变换 第一环节 【知识储备】 一、二次函数图象的平移变换 (1)具体步骤: 先利用配方法把二次函数化成2 ()y a x h k =-+的形式,确定其顶点(,)h k ,然后做出 二次函数2y ax =的图像,将抛物线2y ax =平移,使其顶点平移到(,)h k .具体平移方法如图 所示: (2)平移规律:在原有函数的基础上“左加右减”. 二、二次函数图象的对称变换 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2 y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2 y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2 y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2 y a x h k =-+-; 4. 关于顶点对称 2y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n , 对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,

二次函数图像对称变换前后系数的关系(专题)

二次函数图像对称变换前后系数的关系 课时学习目标: 1.能熟练根据二次函数的解析式的系数确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性区域。 2.会根据二次函数的解析式画出函数的图像,并能从图像上描述出函数的一些性质。 3.能说出抛物线y=ax 2+bx+c ,关于x 轴、y 轴对称变换后的解析式、关于坐标原点对称变换前后的解析式系数变化规律,能根据系数变化规律,熟练写出函数图像对称变换后解析式。 学习重点: 利用函数的图像,观察认识函数的性质,结合解析式,认识a 、b 、c 、ac b 42-的取值,对图像特征的影响。。 学习难点:利用图像认识总结函数性质变化规律。 一、复习预备 1.抛物线5)4(22-+-=x y 的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是 。 2.抛物线y=x 2-2x-3的顶点坐标是 ,对称轴是 ,在 侧,即x_____时, y 随着x 的增大而增大; 在 侧,即x_____时, y 随着x 的增大而减小;当x= 时,函数y 最 值是____ 。 3.已知函数y= x 2 -2x -3 , (1)把它写成k m x a y ++=2)(的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图; (5)设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积; (6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图—2所示,则:a 0; b 0;c 0;ac b 42- 0。 例3:已知二次函数的图像如图—3所示,下列结论: (1)a+b+c ﹤0, (2)a-b+c ﹥0, (3)abc ﹥0, (4)b=2a 其中正确的结论的个数是( )A.1个,B.2个,C.3个,D.4个. 二、归纳二次函数y=ax 2+bx+c(a ≠0)的图像 与系数a 、b 、c 、ac b 42-的关系

相关主题
文本预览
相关文档 最新文档