当前位置:文档之家› 研究报告飞机操纵起飞降落注意事项

研究报告飞机操纵起飞降落注意事项

研究报告飞机操纵起飞降落注意事项
研究报告飞机操纵起飞降落注意事项

研究报告飞机操纵起飞降落注意事项飞机的起飞

平飞、爬升和下降影响升降的是飞机的发动机推力,而不是推杆或拉杆。要使飞机由平飞状态转为稳定的爬升状态,必须增加发动机的推力(或拉力),而不仅仅是拉杆增大机翼迎角(AOA,angle of attack)。

如果发动机推力不变,拉杆只能上升一小段高度,实际上是将速度转化为高度(跃升),速度会不断减小,最终到达失速状态。

要匀速上升,首先增加发动机推力;要匀速下降,首先减少发动机推力。

但推力变化后,推力对重心作用的力矩也会变化,不得不对杆力稍作调整(幅度很少甚至为零)以维持原来的飞机姿态角,从而保持原飞行速度。

速度控制影响速度的是飞机的姿态角(Pitch),而不是发动机推力。

要增速,飞机必须推杆“低头”,要减速,飞机必须拉杆“抬头”。

当然,速度的增加会导致空气阻力的增大,若要大幅度增速,发动机推力还是需要增大一点的以平衡相应增加的阻力的。但在低速状态下由于空阻较少,仅需稍增油门,通常不增油门;

但在高速状态下,例如民航机的高亚音速飞行中,由于速度高,空气阻力极大,主要矛盾已经产生变化,上述理论虽仍然正确,但增速不仅首先要姿态角变化,还必须大大的加大推力以平衡因增速带来的阻力增加。

姿态角与迎角姿态角( pitch )是飞机或机翼与水平面的夹角,迎角(AOA,angle of attack,又称攻角)是机翼与空气来流的夹角。

一般情况下两者是相近的。但飞机上升或下降时,空气相对机翼不仅作水平运动,还作垂直方向上的运动时,姿态角就不等于迎角。

失速当机翼迎角(AOA)增大到所谓“临界点”时,机翼上翼面的气流分离,升力突然大减,阻力突然大增。这就是失速。注意,失的是升力。减速是因为阻力的增加。飞机速度越低,姿态角及迎角就自然越大,离“临界点”就越近,越容易失速。但事实上,飞机在任何情况下都可能失速,例如对正在高速飞行的特技飞机用机,突然猛拉操纵杆就很容易失速。或进入风切变区的飞机,由于气流作垂直运动,也可能导致迎角突然增大至超过“临界点”而失速(但这是姿态角是还没有来得及变化,仍然很小的)。

转弯要使飞机转弯,靠的是压坡度(bank)。向左(或右)压杆,使机翼向左(或右)倾斜,从而令机翼向上的升力产生一个向左(或右)的分力,这个分力就是使飞机作圆周运动转弯的向心力(中学物理课的知识用上了)。可见,转弯实质上是整架飞机作圆周运动,而不是靠蹬方向舵改变机头的偏转角度的。

由于升力向旁边“分了一个”,为使飞机作水平转弯而不掉高度,就必须稍拉杆使机翼迎角增大一点,增加升力以平衡重力。但拉杆会导致减速(一般减得很少),不想减速就要增加发动机推力了(一般不必)。

所压的坡度越大,需要增加的迎角就大,离失速就越近,所以在低空作大坡度转弯是危险的。

由于机翼倾斜了,左右翼的阻力是不同的,必须蹬方向舵来平衡这个力,以维持稳定的转弯率,并避免飞机出现侧滑。方向舵在转弯中的作用是“协调作用”,并不是转弯的原动力。

纵向平衡发动机推力的突然大幅度变化(如空中停车或开车,猛推拉油门杆)

会机头突然抬高或下沉,同样应有心理准备。

另外,收放襟翼、起落架、空气减速板(扰流器)也一样。应及时作杆力调整以维持飞机纵向平衡。

横侧平衡由于飞机的横向与侧向气动作用力是互相耦合的,如果压了坡度,机头指向(航向)很快就会自动向压坡度方向偏转。应预见到这个趋势并作好操纵调整的心理准备。同样,大幅度蹬方向舵亦会使飞机向舵面偏转方向倾斜而产生坡度。

螺旋桨的反向旋转作用力、洗流、进动等在低速下对飞机的横侧平衡都有影响。

飞机的着陆

着陆是进近(approch)的延续,第五边(finall leg)飞行是进近的最后阶段,尽管不是每次着陆都要飞标准的起落航线,但飞第五边是少不了的,在条件允许的情况下让第五边长一些是有利于作好着陆准备的。在第五边保持较稳定的表速、航迹、俯昂姿态和下降率是平稳接地的前提。这里重复一下Cessana182S的典型进近数字:表速:65节,下降率:400feet/min,油门:15英寸汞柱。至于再次确认襟翼全张和检查起落架放下并锁定(对于可收起落架的飞机)就不在话下了。

完美的着陆应该是随稳定第五边飞行后,让主起架上的机轮以很小的下降率在跑道的预定地点接地。接地瞬间的下降率是至关紧要的,让飞机在跑道上“欢蹦乱跳”是会给人耻笑的~波音的飞机手册上说:“要将飞机飞到跑道上,而不是落到跑道上”。

另外,有的飞行员炫耀每次着陆都可让机轮在离跑道头2至3英尺的地方接地,或许他的技术果真不错,但是,这样的着陆至少是危险的~试想,如果他接地前风速突然加大(阵风),把飞机吹后一点,或者他接地前一下不小心打了个喷嚏,拉杆的手松了一下,那他的机轮就要在泥地上打滚(如果不陷进去的话),并且要“上一个台阶”才能进入水泥或柏油跑道面。这时卖飞机零部件的就高兴了。但更糟糕的情况是,当他在Meigs那种水边跑道准备以“超人的技术”表演机轮在离跑道头2至3英尺距离接地时,如果偏偏预上倒霉的低空风切变,垂直气流将他的

飞机象拍苍蝇一样往下压,就算他最终设法把下降率减小了,也难免要向大家表演一下“超人的游泳技术”。

芝加哥Meigs机场36跑道的理想接地点在数字36后第一条白色实线处(那里的车胎痕特别深),离跑道头近200英尺(约60米)。就算是较短的跑道,对于低速飞机来说,在跑道全长的前1/3部分接地仍是可以轻松地用机轮刹车将飞机在跑道另一端之前停下来的。所以一般情况下,目测接地点时不要太“充分”利用跑道头,应留有余地。

--------------------------------------------------------------------------------

一、着陆动作三步曲----拉平、平飘、接地

--------------------------------------------------------------------------------

拉平:飞机(机轮)离地2米时,收油门至怠速,先慢后快拉杆,逐渐减少下滑角,使飞

机在0.5米高度时,退出下滑状态,即将下降率由400feet/min减至零。注意,Cessna182S 收

油门后表速会迅速减小。

平飘:拉平后,飞机可保持一段水平运动,并继续减速,这个过程一般很短暂,除非飞机

拉平后速度仍很大或未收光油门。(技术熟练的飞行员可做到平稳、轻盈的“无平飘着陆”)

接地:平飘后,随着速度的降低,飞机开始下沉,应再柔和拉杆,使飞机在0.1米的高度,

机头上仰,变成两点姿势,此时应带住杆,让飞机以两点姿势接地,并保持两点滑跑。

在近地高度上,判断飞机高度和下降率应以观察舱外环境为主,仪表所示数值此时不精确

且有滞后,仅可作为参考。

注:着陆前可选FS98的菜单:Option / Flight Analysis.... / Landing Analysis ,以测定飞机接地

前高度降至100英尺以下后的飞行轨迹和接地瞬间的下沉率。另,进近时应用Shift-Enter调

高视线位置,保证下滑时能看到跑道头。

--------------------------------------------------------------------------------

二、着陆偏差及修正方法

--------------------------------------------------------------------------------

1、拉平高

飞机在高0.5米以上拉成平飘状态叫做拉平高,拉平高会使飞机在较高的高度上坠地,易

损坏飞机。拉平高一般是由于视线太近,高度判断不准,造成拉杆早。或是由于下滑速度小,

拉杆太快,造成过早拉平。再就是由于下滑角小,一拉就平,造成拉平高。

发现拉高时,应立即稳住杆,待飞机下沉至0.5米高度左右,再柔和拉杆着陆。若拉平过

高时,应稍顶杆,待飞机下降至0.5米左右再拉平,做正常着陆动作。

2、拉平低

飞机拉平后的高度低于0.5米叫拉平低。拉平低时,易使飞机接地速度大,甚至三点接地,严重时使飞机损坏。拉平低一般是由于视线太远、拉平开始晚,或拉杆动作太慢,或下滑角大、拉平结束晚等。

发现要拉平低时,应适当加快拉杆动作,已经拉平低,在不拉飘的前提下柔和拉杆,以两点姿势接地,但在接地的瞬间应稳住杆。

3、拉飘

飞机在拉平后的平飘过程中向上飘起的现象叫拉飘。拉飘后,飞机速度迅速减小,易接地重而损坏飞机。拉飘一般是由于飞机速度太大,拉杆后升力大于重力,从而飘起;或速度正常,但拉杆动作粗;或视线太近,感觉飞机下沉快而急促拉杆,或飞机没下沉就拉杆等。

发现拉飘时,应立即迎杆,制止飞机继续上飘。若此时飞机高度不超过0.5米,且迎角不大,应稳住杆,待飞机下沉时,再相应拉杆。若飘起的高度大于0.5米,或仰角过大,应稍顶杆,减小迎角,但不能粗猛顶杆。待飞机下沉至0.5米,再柔和拉杆做正常着陆动作。

4、跳跃

飞机接地后又跳离地面的现象叫跳跃。跳跃一般是由于飞机未拉平,大速度三点接地,或完成两点姿势的高度太高,接地重,或接地瞬间拉杆,或接地后还继续拉杆等。

若飞机跳起高度不超过0.5米,且仰角不大,应稳住杆,待飞机下沉时,再相应拉杆。若飞机跳起的趋势明显,高度要超过0.5米,或仰角,应立即迎杆,减小仰角,制止上飘。待飞机下沉时,再柔和拉杆。

上述修正着陆偏差的过程中,视线不得离开地面,眼睛的余光应注意天地线,一旦出现坡度,应迅速及时向倾斜的反方向压杆、蹬舵,改平坡度,使飞机平稳接地。

--------------------------------------------------------------------------------

三、侧风着陆

--------------------------------------------------------------------------------

实际飞行中,在正逆风中或无风中着陆是很少遇到的。在侧风中着陆才算是“常规”。第

五边侧风时,飞机将随风向侧向飘移,使飞机偏离跑道,修正侧风有侧滑修正法和航向修正法两种方法:

1、侧滑修正法

侧滑修下法就是向侧风方向(上风方向)压杆,同时向下风方向蹬舵,使飞机向侧风方向侧滑,航迹对准跑道中心线。例如,侧风从右边吹来,就向右压杆,蹬左舵。向右压杆的结果是使飞机带右坡度,造成右侧滑。蹬左舵是制止因右侧滑引起的机头向右偏转,保持航向对正跑道中心线。飞机接地前需回杆、回舵,以正常姿态接地。侧滑修正法适用于侧风速较小的情况,因为蹬满反舵后,飞机能达到的侧滑角是有限的。

2、航向修正法

航向修正法就是操纵飞机向侧风方向(上风方向)转一角度,使飞机的航迹压在跑道的延长线上。如右图所示,要修正从右边吹来的侧风,就使飞机航向往右方偏,侧风越大,所需偏转的角度越大。由于速度合成的结果,使飞机的航迹压在跑道延长线上。

飞机接地前,应蹬舵使机头正对跑道中心线,同时向右(上风方向)压杆,以右轮单轮接地,接地后继续加大向右压杆力度,此时仍要蹬舵使机头保持正对跑道中心线。

随着飞机的减速,左轮轻轻接地,此时前轮仍高高在上,继续用方向舵保持机头方向,保持向右的压杆力,直至前轮因飞机的进一步减速而自然放下接地,此时,向右压杆到底,蹬左舵以免机头向右偏(机头自动右偏是侧风对垂直尾翼的“风标效应”引起的)。如果侧风很强,满蹬左舵仍不能制止机头右偏,就用左轮的机轮刹车--单轮刹车来纠正方向。在侧风中原则上应少用刹车,因为这时机轮易打滑。机轮打滑不仅使车胎磨损加剧,而且制动效果远比不上机轮不打滑时。

记住机轮接地的顺序为上风主轮->下风主轮->前轮

航向修正法利用航向与航迹的夹角来修正侧风,一般不受风速限制,但由于航向与跑道不平行,不便判断飞机的运动方向(航迹)。

侧风着陆难度较大,特别是航向修正法接地前后的一系列动作,初练习时难免在跑道上“欢蹦乱跳”,但只要勤思考、多尝试,必定可以把波音“要将飞机飞到跑道上,而不是落到跑道上”这说法表现得淋漓尽致。

附:如何在FS98中“制造”侧风:在菜单 Option/Preferences.... 下选Used Advance Weather

Dialog , 重新开始FS98后,在World/Weather....菜单的Winds下按Add layer就可生成各种各样的风。

--------------------------------------------------------------------------------

四、短跑道着陆和软、粗跑道着陆

--------------------------------------------------------------------------------

短跑道着陆:选择接地点尽量靠前(这时不得不选那个离跑道头2-3英尺的位置了),一

旦确信飞机可飞到预点接地点,就收油门至怠速、允分利用地面效应减速(既减水平速度,

又减垂直速度),前轮放下后全收襟翼,拉杆到底(这是为了加大作用在机轮上的压力以增

加摩擦力),在不打滑的前提下用尽刹车。

软、粗跑道着陆:在土跑道、草跑道、铺碎石跑道上着陆,应以尽可能低的(水平和垂

直)速度接地,接地后尽量拉杆保持两点滑跑,襟翼一直全张开(但如果飞机是下单翼的,

应小心机轮可能扬起的石块打坏襟翼),可打开一点油门以增加飞机的抬头力矩。一切为了

减小压在机轮上的力。

--------------------------------------------------------------------------------

五、复飞

--------------------------------------------------------------------------------

当无法形成稳定的进近或发现第五边太短,来不及完成着陆准备,或因天气差,下降至决

断高度(DH,dicision hight,通常比接地区高200英尺)时仍未能看清跑道,应进行复飞程序,

复飞动作有先后次序:首先加满油门,调整合适的俯仰姿态爬升,再视速度的增加收起部分

或全收襟翼、起落架。然后按指挥塔指示进入起落航线或等待航线。

关于复飞,有一条原则:进近时如果你觉得有些地方不对劲,尽管你还未知道是什么,那

么,必定是有问题,这时应当毫不犹豫的复飞~

如何做好起飞和着陆

如何做好起飞和着陆 这里我们根据手册和以往教员讲课的课件进行了简单的归纳,仅供大家参考: 一、起飞中如何防止擦机尾 (一)防止使用错误的起飞数据。 1、确保舱单数据是正确的。如有怀疑一定要同配载人员核实。 2、防止CDU上输错数据。输入数据后,左右座一定要核实。 3、查起飞性能手册时,一定要核实所使用的跑道、襟翼度数、是否关空调等,防止数据出现差错。 (二)正确应对强阵风、侧风/顺风带来的不利影响 当了解到当时的气象条件不稳定时,首先从思想上引起足够的重视,最好使用全推力起飞。阵风中起飞时,暂缓抬前轮,驾驶盘的输入量以保持机翼水平为宜,避免驾驶盘移动量过大,使用正常的抬头率2°—3°/秒,离地后平滑地从偏流状态中改出。 正常的起飞抬头率见下图:

二、如何做好着陆? (一)稳定进近是防止重着陆的基础。 公司《运行手册》明确规定,目视天气条件下,在500英尺AGL;仪表天气条件下1000英尺AGL,飞机必须建立稳定进近,否则应终止进近。 稳定进近必须同时满足下列条件: ●稳定的航道跟踪或着陆航向 ——飞机已按既定的仪表程序或目视参考保持在正确的横向或航迹上或只需少量横侧变化即可保持水平轨迹。 ●稳定的下滑道跟踪或下降率 ——飞机已按既定的仪表程序或目视参考保持在正确的垂直轨迹上或只需少量俯仰变化即可保持垂直轨迹。 ●稳定的着陆形态 ——飞机已建立所需的着陆形态。 ●稳定的发动机功率 ——推力稳定在保持最后进近速度所需数值。 ●稳定的安定面配平 ——飞机已按最后进近速度和目标下滑轨迹需求配平好。 ●稳定的速度 ——目标速度-5≤指示速度≤目标速度+10 ——正确的进近速度为:Vapp=Vref+1/2顶风+(阵风-稳定风),最小为Vref+5,最大为Vref+20。 除了上述的1000英尺或500英尺的稳定需求外,为了安全、

飞机操纵原理

一、飞行原理 飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。机翼升力是怎样产生的呢?这首先得从气流的基本原理谈起。在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。由此我们得出了流动空气的特性:流管细流速快;流管粗流速慢。这就是气流连续性原理。 实践证明,空气流动的速度变化后,还会引起压力变化。当流体稳定流过一个管道时,流速快的地方压力小。流速慢的地方压力大。 飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。这样在机翼上、下表面出现了压力差。这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。这就是飞机能离陆升空并在空中飞行的奥

飞机飞行的原理图解

飞机飞行的原理图解 飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。 飞机飞行原理: 1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。 2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。 3、当飞机前进的速度越大,这个压强差,即升力也就越大。所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。

飞机的组成: 大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。 机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。 1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。 3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 4.动力装置:主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机起飞和降落时英语广播内容

飞机起飞和降落时广播(中英文对照) (1)飞行过程欢迎词 (2)欢迎词 (3)女士们,先生们: (4)欢迎你乘坐中国XX航空公司航班XX_____前往_____(中途降落_____)。_____至____的飞行距离是_______,预计空中飞行时间是________小时_______分。飞行高度______米,飞行速度平均每小时_______公里。Welcome Good morning (afternon, evening), Ladies and Gentlemen: Welcome aboard XX Airlines flight XX______to______(via______) The distance between______and_______is______kilometers. Our flight will take ________ hours and_______minutes. We will be flying at an altitude of________meters and the average speed is_______ kilometers per hour. 为了保障飞机导航通讯系统的正常工作,在飞机起飞和下降过程中请不要使用手提式电脑,在整个航程中请不要使用手提电话,遥控玩具,电子游戏机,激光唱机和电音频接收机等电子设备。 In order to ensure the normal operation of aircraft navigation and communication systems, passengers are toys, and other electronic devices throughout the flight and the laptop computers are not allowed to use during take-off and landing. 飞机很快就要起飞了,现在有客舱乘务员进行安全检查。请您坐好,系好安全带,收起座椅靠背和小桌板。请您确认您的手提物品是否妥善安放在头顶上方的行李架内或座椅下方。(本次航班全程禁烟,在飞行途中请不要吸烟。) We will take off immediately, Please be seated, fasten your seat belt, and make sure your seat back is straight up, your tray table is closed and your carry-on items are securely stowed in the overhead bin or under the seat in front of you. This is a non-smoking flight, please do not smoke on board. 本次航班的乘务长将协同机上_______名乘务员竭诚为为您提供及时周到的服务。 谢谢!

关于某飞机起飞降落地地理题

《飞机飞行与昼夜长短》专题训练 1.一飞机沿赤道以555km/小时的速度向西飞行,乘客感觉到的昼夜长短是( ) A 、 昼长约12小时,夜长约12小时 B 、昼长约9小时,夜长约15小时 C 、昼长约18小时,夜长约18小时 D 、昼长约18小时,夜长约6小时 北京时间3月21日12点,一架飞机从某机场(120oE ,66o34′N )起飞,沿北极圈向东作环球航行,12小时后返回原地,据此回答2~3题。 2.飞行员能观测到的日出、日落次数是( ) A .一次日出,一次日落 B .两次日落,一次日出 C .两次日出,一次日落 D .零次日出,一次日落 3.观察者在飞机上看到的昼夜更替时间为( ) A .6小时 B .8小时 C .12小时 D .24小时 4. (潍坊市四县(市)2004—2005学年度第一学期期中考试) 在30°N 纬线上,若飞机向东以15°/小时的速度飞行,那么飞机上的人将经历( ) A 、昼夜长短相等 B 、昼夜长度均增加了一倍 C 、昼夜长度均减小了一半 D 、太阳永不西落或东升 5.一飞机沿赤道以555km/小时的速度向西飞行,乘客感觉到的昼夜长短是( ) A 、昼长约12小时,夜长约12小时 B 、昼长约9小时,夜长约15小时 C 、昼长约18小时,夜长约18小时 D 、昼长约18小时,夜长约6小时 6.假设一探险者驾驶轻型飞机沿赤道以555千米/小时的速度向东环球飞行一周。探险者在飞行过程中感觉到的昼夜长短情况是( ) A .昼长约9小时,夜长约9小时 B .昼长约12小时,夜长约12小时 C. 昼长约10小时,夜长约11小时 D .昼长约18小时,夜长约18小时 7.(江苏省海安中学2005届高三年级调研考试)某飞机于2004年9月23日下午6时从北京机场起飞,自西向东环球一周,48小时后飞回北京机场。下列说法可信的是( ) A 、飞行员在飞行途中看到太阳一直在西边的地平线上 B 、在经过120°E 、120°W 和0°经线时都能看到日出 C 、在经过180°经线时看到了日落 D 、该飞机在飞行过程中经历了三个昼夜 有一架飞机在当地时间7月1日5时从 旭日东升的A 机场起飞,沿纬线向东飞行, 一路上阳光普照,降落到B 机场正值日落。 读下图完成8~9题。 8.降落到B 机场时,当地时间为( ) A .7月2日11时 B .7月1日21时 C .7月1日19时 D .6月30日19时 9.从A 机场飞行到B 机场经历的时间是( ) A .6小时 B .10小时 C .14小时 D .22小时 读“某地区等高线地形图”,假设一探险者驾驶轻型 飞机从图中的P 地出发,以555千米/小时的速度向东环 球飞行一周。读图完成10~11题。

飞机的起飞原理

飞机起飞模型 伴随着科学技术的高速发展,给交通事业也带来了蓬勃的生机。特别是航天事业的发展。自1877年,在美国的代顿地区,莱特兄弟驾驶人类历史上第一架飞机飞行成功开始,到现在航天飞机宇宙飞船的上天,都给历史留下了美好的一页。但是,现今还有许许多多的人不理解飞机为什么能飞?为了让人们更好的了解飞机起飞原理,更好的接受科学知识,我特别制作了飞机起飞的模型。 一、模型的结构图和尺寸 飞机起飞模型的结构图飞机起飞模型的结构图 二、实验模型的原理说明 飞机能起飞依靠的是伯努力原理和机翼的升力。 两张纸在内外压强差作用下靠拢气流从机翼上下方流过的情况 飞机机翼的剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,流线分布情况如图所示。原来是一股气流,由于机翼地插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就

是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 所以,飞机能起飞,最重要的是机翼的制作,模型中机翼上表面凸起,下表面平整,当给它在水平方向受到风力时,机翼上表面的气流运动较下表面的慢,从而使下表面的压强大于上表面的压强,机翼获得向上的升力。 三、制作方法及实物图介绍 1.取cm cm 20150 的木板做飞机的水平轨道,另取两根长cm 40的钢筋做支架。如实物图所示。 2.用费旧的展板做飞机的机翼,尾翼和舵,如实物图所示。 3.用泡沫做飞机的机身和机舱。如实物图所示。 4.用一根长cm 90的长直铜管做水平支架,并在支架的一端连接一只铁球,作为动力。如实物图所示。 5.将铜管的另一端与飞机相连(在飞机重心位置处)。如实物图所示。 6.在飞机前端装一个风源(电风扇)。如实物图所示。 四、模型的使用说明 1、将模型放置于桌上,调节机身,使它处于飞行轨道中央。 2、打开电风扇,将风力调节到最高档——第三档。 3、观察飞机的起飞。 此模型的制作简单,它所需要的原材料简单易得,比如机身所需的是废旧泡沫,机翼是废旧展板。但是它能很好的展示飞机的起飞,很清楚的解释飞机的起飞原理,让人一看即明。另外模型使用简单,安全方便,适合各类人群演示,具有普遍性。 五、相关拓展知识 (一)影响飞机起飞的因素及注意事项 影响起飞滑跑距离的困素有:油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。这些因素一般都是通过影响离地速度 或起飞滑跑的平均加速度来影响起飞滑跑距离的。 1.油门位置 油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。所以,一般应用最大功率或最大油门状态起飞。

飞机起降过程物理过程分析

飞机起降过程物理过程分析 摘要:随着经济的发展,人们生活水平的提高,越来越多的人选择方便快捷的飞机作为主要出行方式。中国低空领域的开放,将会进一步促进整个行业的大发展。人们的生活也越来越离不开飞机。飞机涉及到非常多的知识和原理。文章将对飞机的原理和相关的运行规定进行整理分析,以及理想情况下飞机降落过程的受力分析来展示飞机降落的整个过程。 关键词:飞机;着陆;起飞;标准降落;受力分析 1 起飞着陆具体过程 在飞机的整个飞行中起飞着陆是最复杂、最危险的阶段,在这一阶段发生事故的概率最高。 当飞机得到起飞命令以后,飞行员加大飞机的油门开始滑跑,当滑跑速度达到一定数值(离地速度)时,飞行员向后拉驾驶杆使飞机的迎角增加,这样飞机的升力就随着滑跑速度和迎角的增加而增大。当升力增加到大于飞机的重力时,飞机便开始离开地面。以后,飞机继续加速爬升,当飞机爬升到离地面10~15米时,飞行员便开始收起落架以减小飞行阻力。当飞机爬升到安全高度以后,起飞阶段就结束了。

飞机着陆过程是指飞机从安全高度以3度下降角下降,发动机慢车,飞机近似等速直线飞行。在离地6到12米时,开始将飞机拉平。飞机减速平飞,继续增加迎角接近护尾迎角,速度继续降低。当升力小于重力时,飞机飘落主轮接地后,保持两点滑跑,利用空气阻力减速到一定速度后,飞机前轮接地,三点滑跑并开始刹车直到停止。整个过程可概括为:下降、拉平、平飘、接地、滑跑。 2 升力产生的物理过程 空气在机翼迎风时的流向图。如图1所示。 空气在机翼上方要随机翼的形状走过更多的行程,于是机翼上方的流速小于机翼下方,根据气体性质,那么机翼上方的气体压强要小于机翼下方,于是形成了上下的气压差,飞机的升力本质上由此产生。 3 起飞性能参数 提高飞机起飞时的加速度,使它尽快地达到离地速度,以缩短起飞滑跑距离。飞机起飞是一个直线加速运动,它分两个阶段,即最大功率地面滑跑阶段,以及加速爬升阶段。飞机起跑速度继续增加到一定数值时,机翼的升力和重量大致相等,驾驶员拉杆向后,飞机抬起机头,前轮离地,这个速度称为抬前轮速度。这时飞机开始升空,起飞的第一阶段滑跑完成,转入第二阶段即飞机飞到规定的高度,起飞阶段结束。

飞行原理论文

飞行原理论文 ——张兴鹏 要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。 一、飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1.机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2.机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3.尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

文档飞机转弯原理

从飞机爬升和下降的操作情况来看,似乎只要驾驶员踩踩脚蹬和控制一下方向舵,飞机就可以左转或右转了。但实际上比这要复杂的的多。与地上行驶的汽车相比,飞机多出来一个侧倾转动,而除非在路面倾斜的情况下,汽车自身是不会倾斜的。飞机在空中倾斜运动是自由的,驾驶杆向右转飞机向右倾斜,这时飞机的重力与地面垂直,可是机翼上的升力却是垂直于机翼的,此刻的升力不再指向地面的正上方而是指向斜上方。由于重力和升力的方向不同,它们不再互相平衡,于是就产生了一个垂直于机身指向右方的力,在这个力的作用下,飞机沿着一条圆弧向后右转动,这与人骑自行车的经验相近似,骑车人的身体如向一侧倾斜,自行车会随之倾斜并且自动向倾斜方向转弯无须转动车把。这就是驾驶员利用驾驶杆操纵副翼使飞机转弯的道理。同理,驾驶杆向左转时飞机也会向左转弯。从上面的描述,大致可以看出在飞机转弯时,驾驶杆的使用与汽车转弯时方向盘的使用是完全一致的。既然使用驾驶杆和使用脚蹬控制方向舵都能使飞机转弯,那它们之间有什么差别呢?下面让我们再进一步了解一下:如果驾驶员只用驾驶杆控制副翼使飞机转弯,例如右转弯,此时飞机向右侧倾斜,有一个心力拉着飞机向右转,但机头所对的方向并未改变(实际上它可能由于右侧倾斜导致略向左侧偏转),于是就出现了机头向前而飞机的整体向右转的状态。恰如同一条船面向前行而整个船体却沿圆弧行进。这样会使阻力增大,造成不必要的燃料浪费。如果驾驶员仅用脚蹬控制转弯,在机身不倾斜的状况下机头突然转向,此时机翼上的气流方向发生剧变,升力下降、机身受力增大,导致飞机高度快速下落,机舱内的乘客会感觉很不舒服。所以要实现一个平稳的、使人感到舒适的转弯(航空上称为直辖市转弯),驾驶员必须同时使用驾驶杆和脚蹬。假如飞机需要右转弯,驾驶员就把驾驶杆向右转动同时踩右脚蹬,此时飞机机可靠垂尾,机的任何动作可以分为三个基本动作,滚转、偏航和俯仰,三个动作依次需要副翼、方向舵和升降舵来实现。实际上飞机在空中转弯很复杂,同样包括了这三个动作。以向左转为例,飞行员踩左脚蹬,方向舵发生偏转,同时向左压杆,副翼偏转,飞机左滚转一定角度后,回杆,这个过程叫做压坡度。此时由于机翼不水平所以升力已经存在一个很小的左分量,飞机已经在左转,但转弯半径大而且在掉高度,所以飞行员此时要拉杆使升降舵偏转,飞机做俯仰动作,机头上抬,产生了更大的升力,这样飞机就可以在不丢高度的情况下实现小半径左转。在转弯到一定角度后,飞行员将杆复位,松开脚蹬,同时向右压杆,又滚转至水平位置,回杆。这样就完成了一个左转动作。很多时候飞机的转弯只是利用操作杆完成,我们玩航模的人都应该清楚,方向舵不过是起飞和降落时和前起联动调整划跑时才会用到,空中转弯完全依靠副翼和升降舵完成。如今大部分书都没有详细讲过飞机转弯的过程,但通过看一些录像还是能够发现蛛丝马迹,飞机转弯过程可以很清楚地看出开始的压坡度和后来的回正过程。头向右转、机身向右倾,飞机在天空中画中一条高度不变的平滑圆润的向外弯曲的美丽弧线。左转弯也是如此。以上就是飞机转弯的奥妙。第一种使用垂尾--飞机屁股上高高翘起的那个。就像船舵一样,垂尾后部向左折,飞机就左转,反之右转第二种。这种比较复杂,但比第一种效率高。先是飞机主机翼两端的翻滚控制翼张开,例如左翼向下,右翼向上,这样一来飞机就会以机头到机尾的轴线顺时针旋转,当旋转到90度左右时,主翼恢复正常,水平尾翼向上翘起,飞机就开始大幅度转向。这个动作本身和飞机起飞没什么区别。问题在于起飞动作处于垂直位面,转向动作处于水平位面。当机头指向你想转的方向时,水平尾翼恢复正常,翻滚控制翼再次张开,左翼向上,右翼向下,飞机逆时针旋转至恢复水平状态,主翼恢复正常,完成转向。转向控制翼只是主机翼的一小部分,并不是整个主翼转动

飞机靠什么原理起飞的

飞机靠什么原理起飞的? 飞机的机翼翼型不是一个平面,而是略向外凸,机翼的上表面外凸引起了上表面空气流管缩小,空气流速加快,与下表面的气流产生了流速差,根据伯努力原方程,流体流速越大,压强越小,因此,机翼上就有了升力,当飞机速度越快,流速差就越大,升力就越大,当升力超过重力,飞机就能起飞了 飞行原理一. 滑行 飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。 滑行的基本要求是飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。 二. 起飞 飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。 飞机起飞的操纵原理飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结 果。而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的起飞是一个速度不断增加的加速过程。;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。 (一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。 机翼起飞时,速度加快,因为机翼上方比下放曲,呈留线形.速度大,流速就大,流 速大,则上方气压大于下方的气压,于是下放的气压机翼有向上的托力!因此,飞机起飞是靠形成的上下气压差起飞的.

飞机的起飞原理

伯努利方程原理以及在实际生活中的运用 2011444367 陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。伯努利方程 p+ρgh+(1/2)*ρv 2=c 式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据伯努利方程在水平流管中有 p+(1/2)*ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用:

1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 伴随着科学技术的高速发展,给交通事业也带来了蓬勃的生机。特别是航天事业的发展。自1877年,在美国的代顿地区,莱特兄弟驾驶人类历史上第一架飞机飞行成功开始,到现在航天飞机宇宙飞船的上天,都给历史留下了美好的一页。但是,现今还有许许多多的人不理解飞机为什么能飞?为了让人们更好的了解飞机起飞原理,更好的接受科学知识,我特别制作了飞机起飞的模型。 一、模型的结构图和尺寸 飞机起飞模型的结构图飞机起飞模型的结构图 二、实验模型的原理说明

飞行必备知识:详解飞机机翼原理与功能图文

机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 前缘:翼型最前面的一点。后缘:翼型最后面的一点。翼弦:前缘与后缘的连线。弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 迎角(Angleofattack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 翼展:飞机机翼左右翼尖间的直线距离。 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生推力----由发动机产生的向前作用力阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢?首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。 空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。

飞机起飞的原理

飛機起飛的原理 [白努力定律] 班級:四光電二A 姓名:許家偉 學號:4980B020

大綱: 飛機能在空中飛行是因為有機翼(Wing)產生升力(Lift),機翼之所以能產生升力是因為有曲度,為了觀察翼面曲度和空氣流動的關係,常將機翼剖開,所得到的側面形狀即為翼剖面(Airfoil)。觀察翼剖面時發現當氣流平滑的通過翼剖面上、下方時會產生壓力差,使得機翼產生向上的升力。當氣流在某些情形下不能平滑的通過翼面時升力會減少,當整各翼面產生的升力不足以負擔飛機本身的重量時,即造成「失速」(Stall)的情形,大部份失速是在低速或大角度爬升、迴轉時發生,此時所有控制面將暫時失去作用,直到氣流揮復平滑為止。

飛機起飛降落運用的原理: 主要是靠機翼對空氣取得昇力,飛機的機翼斷面形狀有很多種,依造每種形 狀適用於不同功用的飛機,飛機的機翼從斷面來看,通常機翼上半部曲面及下半部曲面不一樣,通常為上半部曲面弧長較長,空氣流經飛機機翼截面,因空氣流過機翼表面時被一分為二,經過機翼上面的空氣流速較快,因此壓力會變的比較低(柏努力定律),,而經過機翼下面的空氣流速較慢,壓力就會比較高(柏努力定律),壓力高的地方會往壓力低的部分移動,這就是昇力的由來。但是至於昇力大小由昇力公式Y =(1/2)ρV2SCy[註V2是V的平方] ρ為空氣密度、V為飛機與氣流的相對速度、S為翼面積、Cy 為升力係數 由公式可知影響昇力大小的有1.機翼的面積2.機翼形狀的昇力係數3.空氣相對於機翼的流速4.當時的空氣密度,其中已空氣相對於機翼的流速影響最大,它直接影響到飛機起飛時的昇力取得,也就是說為什麼飛機起飛前總是要高速滑行的原因,且是逆風滑行,如此才能取得更高的相對速度,好取得更高的昇力,還有一般飛機會有襟翼,可以增加機翼面積,飛機在起飛或降落的時候,伸出襟翼(有興趣可以在搭飛機時往機翼看,起飛降落時飛機機翼前緣及後緣會伸展開來),亦是增加昇力方法,除此之外,飛機的昇力,還和攻角有關。攻角就是機翼前進方向與氣流的夾角,因為角度變化,氣流會在上翼面後端產生低壓區(與空氣分離有關),造成更大的壓力差,所以升力變大。但達到臨界攻角(約12~14 度,依造機翼斷面形狀不同)後,低壓區轉為亂流,造成失速。以上都是談飛機機翼如何產生昇力,至於是什麼東西在推動飛機使機翼產生昇力?那就是所謂的發動機了,空氣流出發動 機向後噴出時候,相對的對於飛機機體產生一個作用力,在地面使飛機往加速前進(地面滑行),達到起飛空速(機翼產生足夠的昇力),駕駛員拉起機鼻,飛機就這樣起飛了,當然發動機還是一直作動,一方面產生往前飛的力量,一方面換取速度使機翼產生昇力,一但發動機熄火,飛機失去前進的力量,也就失去昇力。還有為什麼直升機不用滑行就可以產生昇力?一般飛機如747,IDF,幻象2000,諸如此類的飛機我們稱為定翼機,也就是機翼固定不動,而直升機我們稱為旋翼機,機翼高速旋轉,產生昇力使飛機往上飛,再經由旋翼轉動角度改變,產生往前的力量。 飛機是藉著機翼所產生的上升力,以及飛機引擎所產生的推動力,而讓飛機可以在 白努利定律-當流體(在這文章裡是指空氣)經過一面積時,速度慢的流體將產生較大的壓力,相對的,速度快的流體因為密度較小,所以壓力就相較較小。

飞机原理及构造

第一章 1、飞机的主要组成及其功能? 组成:机翼、尾翼、机身、起落架、动力系统、飞行控制系统、航空电子系统及机载设备。 功能:机翼,产生升力的主要部件,可以安装发动机、起落架、油箱。 尾翼:保证飞机的平衡、稳定并操纵飞机。 机身:装载设备、乘员、和货物,并将机翼、尾翼、发动机、起落架等部件连接为一个整体。 起落架:用于飞机的起飞、降落和地面停放时支持飞机的装置。动力系统:提供推力或拉力使飞机克服飞行时受到的阻力。 飞行控制系统:用于操纵和控制飞机。 2、飞机研制过程? 1)拟定技术要求2)飞机设计过程3)飞机制造过程4)飞机的试飞、定型过程。 第二章 1、介绍流体特性,气体动力学基本概念? 流体特性:压缩性、粘性、传热性。 概念:用流体流动过程中的各个物理量描述的基本物理定律(质量守恒定律、牛顿运动三定律、热力学第一定律)就组成了空气动力学的基本方程组。 2、流体流动的基本规律,飞机升力的产生?

规律:流体绕物体流动时他的各个物理量,如速度、压力和温度等都会发生变化,但这些变化必须遵循基本的物理定律。 升力的产生:主要由机翼产生。而升力的产生又主要是由于上下翼面的压力差,因此压力差所作用的“机翼面积”越大,升力也越大。 3、飞机的升力和阻力? 升力:除了与翼型及迎角有关外,还与飞机机翼的平面形状,相对气流速速、空气密度有关。 阻力:飞机上不但机翼会产生阻力,机身、起落架、尾翼等都可能产生阻力。 摩擦阻力、压差阻力、干扰阻力与升力无关,故又统称为零升阻力。 诱导阻力:伴随升力的产生而产生的。 4、飞机翼型参数? 几何弦长,弯度分布,厚度分布 5、什么是流体的压缩性? 对流体施加压力,液体的体积会发生变化,在一定温度条件下,具有一定质量流量的体积或密度随压力变化而改变的特性,叫做可压缩性或弹性。 6、大气层的结构是什么? 从海平面起,最低一层是对流层,上层是平流层,再上是中间大

飞机仪表和起飞流程

在进行完例行的飞行前外部检查之后,我和教练坐进了飞机驾驶舱。我坐在驾驶室左侧,教练坐在驾驶室右侧。飞机两个座位上各有一套操作系统,每个人各有一套刹车装置。 <刹车转向踏板和操纵杆> FAR要求在飞行中驾驶员必须系上安全带背带。然后调整座位和刹车位置,使得双脚可以直接将两个刹车同时踩到底。 在滑行起飞之前,我们得简要的介绍一下飞机驾驶舱内的各种操纵杆和仪表。 Sports cruiser有两种不同的操纵台,老式的依靠传统的皮托管和惯性导航系统显示,随着技术的推进,新式的飞机基本上都用传感器和液晶屏代替了老式的仪表。但是基于介绍基本的原理,我们还是从老式的仪表作为一个引子。

<六大仪表> 红色框里是飞行最基本的六大仪表。主要分成两类:皮托管仪表和惯性导航设备。 皮托管仪表 1.空速表(Air Speed Indicator) 第一排左起第一个设备是空速表。这个设备通过测量伸出机身的空速管处的总压与静压的压差,间接测出空速,也就是飞机在空气中的相对运动速度。仪表盘上的数字单位是Knots (nm/h,海里每小时、节) 。

外圈绿色的范围是飞机正常的巡航速度范围,高于这个速度,进入黄色告警区域或超过红色危险区域,飞机就有损坏和解体的危险。如果收起襟翼时,75节是飞机最小的巡航速度,低于这个速度 飞机就会失速。右侧67-120节白色的区域代表飞机打开襟翼时的安全飞行速度,飞机伸出襟翼(大 家在坐民航飞机起飞降落时很容易在机翼后端观察到),增大了机翼的面积,降低了失速速度,使 得飞机能在较小的速度下起飞和降落。如果飞机展开襟翼,低于67节,就有可能失速;如果大于120节,飞机襟翼就有被破坏的危险。 2.气压高度表(Altimeter) 左数第三个表是气压高度表。顾名思义,这个仪表显示飞机的气压高度。仪表有三根指针,分别表 示数字的万、千、百读数,这里单位是英尺。高度表右侧有一个小窗,里面数字29.9叫做高度表 拨正值。主要的作用就是在不同的大气条件下,把相应的海平面气压修正到标准大气条件下。这样,飞机在机场地面时,高度表应当显示机场海拔高度(场高)。高度表拨正值应当按照由空中交通管 制席位的要求或航图要求及时调整。如下图高度计显示当前高度为10,180英尺。 3.升降速度表(Vertical speed indicator) 第二排最右侧是升降速度表。这个设备就是显示爬升或者下降率,通过检测气压高度表变化的情况 给出指示数字,单位:百英尺每分钟

相关主题
文本预览
相关文档 最新文档